Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7247, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538638

RESUMO

A wide-field microscope with epi-fluorescence and selective plane illumination was combined with a single-photon avalanche diode (SPAD) array camera to enable live-cell fluorescence lifetime imaging (FLIM) using time-correlated single-photon counting (TCSPC). The camera sensor comprised of 192 × 128 pixels, each integrating a single SPAD and a time-to-digital converter. Jointly, they produced a stream of single-photon images of photon arrival times with ≈ 38 ps accuracy. The photon arrival times were subject to systematic delays and nonlinearities, which were corrected by a Monte-Carlo algorithm. The SPAD camera was then applied to FLIM where histogramming the resulting photon arrival times in each pixel resulted in decays compatible with common data processing pipelines for fluorescence lifetime analysis. The capabilities of the TCSPC camera-based FLIM microscope were demonstrated by imaging living unicellular photosynthetic algae and artificial lipid vesicles. Epi-fluorescence illumination enabled rapid fluorescence lifetime imaging of living cells and selective-plane illumination enabled 3-dimensional FLIM of stationary samples.


Assuntos
Algoritmos , Microscopia de Fluorescência/métodos
2.
bioRxiv ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37790449

RESUMO

Non-linear biomolecular interactions on the membranes drive membrane remodeling that underlies fundamental biological processes including chemotaxis, cytokinesis, and endocytosis. The multitude of biomolecules, the redundancy in their interactions, and the importance of spatiotemporal context in membrane organization hampers understanding the physical principles governing membrane mechanics. A minimal, in vitro system that models the functional interactions between molecular signaling and membrane remodeling, while remaining faithful to cellular physiology and geometry is powerful yet remains unachieved. Here, inspired by the biophysical processes underpinning chemotaxis, we reconstituted externally-controlled actin polymerization inside giant unilamellar vesicles, guiding self-organization on the membrane. We show that applying undirected external chemical inputs to this system results in directed actin polymerization and membrane deformation that are uncorrelated with upstream biochemical cues, indicating symmetry breaking. A biophysical model of the dynamics and mechanics of both actin polymerization and membrane shape suggests that inhomogeneous distributions of actin generate membrane shape deformations in a non-linear fashion, a prediction consistent with experimental measurements and subsequent local perturbations. The active protocellular system demonstrates the interplay between actin dynamics and membrane shape in a symmetry breaking context that is relevant to chemotaxis and a suite of other biological processes.

3.
Membranes (Basel) ; 13(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36676883

RESUMO

Topological rearrangements of biological membranes, such as fusion and fission, often require a sophisticated interplay between different proteins and cellular membranes. However, in the case of fusion proteins of enveloped viruses, even one molecule can execute membrane restructurings. Growing evidence indicates that matrix proteins of enveloped viruses can solely trigger the membrane bending required for another crucial step in virogenesis, the budding of progeny virions. For the case of the influenza A virus matrix protein M1, different studies report both in favor and against M1 being able to produce virus-like particles without other viral proteins. Here, we investigated the physicochemical mechanisms of M1 membrane activity on giant unilamellar vesicles of different lipid compositions using fluorescent confocal microscopy. We confirmed that M1 predominantly interacts electrostatically with the membrane, and its ability to deform the lipid bilayer is non-specific and typical for membrane-binding proteins and polypeptides. However, in the case of phase-separating membranes, M1 demonstrates a unique ability to induce macro-phase separation, probably due to the high affinity of M1's amphipathic helices to the raft boundary. Thus, we suggest that M1 is tailored to deform charged membranes with a specific activity in the case of phase-separating membranes.

4.
Biophys Rep ; 9(4): 188-194, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-38516622

RESUMO

Eukaryotic cells compartmentalize diverse biochemical functions within organelles defined by intracellular membranes. Recent focus has intensified on studying the interactions among organelles and the role of membrane contacts in maintaining cellular balance. While analyzing these contacts mainly involves fluorescence and electron microscopy, as well as biochemical cell fractionation, understanding their mechanisms and responses to genetic and environmental changes remains challenging. Here we describe an approach employing in vitro reconstitution of membrane contacts using unilamellar vesicles. This technique offers insights into contact mechanisms when combined with established methods like fluorescence imaging and mass spectrometry, potentially deepening our understanding of membrane contacts and organelle networks.

5.
Bio Protoc ; 12(4): e4328, 2022 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35340293

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery mediates membrane fission reactions that exhibit a different topology from that observed in clathrin-coated vesicles. In all of the ESCRT-mediated events, the nascent vesicle buds away from the cytosol. However, ESCRT proteins are able to act upon membranes with different geometries. For instance, the formation of multivesicular bodies (MVBs) and the biogenesis of extracellular vesicles both require the participation of the ESCRT-III sub-complex, and they differ in their initial membrane geometry before budding starts: the protein complex acts either from outside the membrane organelle (causing inward budding) or from within (causing outward budding). Several studies have reconstituted the action of the ESCRT-III subunits in supported bilayers and cell-sized vesicles mimicking the geometry occurring during MVBs formation (in-bud), but extracellular vesicle budding (out-bud) mechanisms remain less explored, because of the outstanding difficulties encountered in encapsulation of functional ESCRT-III in vesicles. Here, we provide a different approach that allows the recreation of the out-bud formation, by combining giant unilamellar vesicles as a membrane model and a microinjection system. The vesicles are immobilized prior to injection via weak adhesion to the chamber coverslip, which also ensures preserving the membrane excess area required for budding. After protein injection, vesicles exhibit outward budding. The approach presented in this work can be used in the future to disentangle the mechanisms underlying ESCRT-III-mediated fission, recreating the geometry of extracellular bud production, which remains a challenge. Moreover, the microinjection methodology can be also adapted to interrogate the action of other cytosolic components on the encapsulating membranous organelle. Graphic abstract: Out-bud formation after ESCRT-III protein injection into GUVs.

6.
Methods Mol Biol ; 2383: 167-179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34766289

RESUMO

The mechanism of entry of cell-penetrating peptides (CPPs) into the cytosol of various cells has been studied by examining the interaction of CPPs with lipid bilayers and their entry into lipid vesicle lumens using various methods. Here we describe a single giant unilamellar vesicle (GUV) method to study CPPs. In this new method, we use GUVs containing small GUVs in the mother GUV lumen or GUVs containing large unilamellar vesicles (LUVs) in the GUV lumen and investigate the interaction of fluorescent probe-labeled CPPs with single GUVs in real time using confocal laser scanning microscopy. This method can detect CPPs in the GUV lumen with high sensitivity, allowing immediate measurement of the time course of entry of CPPs into the vesicle lumen. This method allows simultaneous measurement of the entry of CPPs and of CPP-induced pore formation, allowing the relationship between the two events to be determined. One can also simultaneously measure the entry of CPPs and the CPP concentration in the GUV membrane. The rate of entry of CPPs into a single GUV lumen can be estimated by obtaining the fraction of GUVs into which CPPs entered before a specific time t without pore formation among all examined GUVs (i.e., the fraction of entry) and the lumen intensity due to LUVs with bound CPPs. This method is therefore useful for elucidating the mechanism of entry of CPPs into lipid vesicles.


Assuntos
Peptídeos Penetradores de Células/análise , Corantes Fluorescentes , Bicamadas Lipídicas , Microscopia Confocal , Lipossomas Unilamelares
7.
Chem Phys Lipids ; 241: 105148, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34600914

RESUMO

Size control of giant unilamellar vesicles (GUVs) has been challenged extensively for realizing quantitative assays within these biomimetic reactors. Although microfluidics-based monodisperse GUV generation methods have shown tremendous progress, they are often difficult and still not available for general users. Meanwhile, the conventional bulk methods, which are more flexible in compositions, only generate polydisperse GUVs with a linear dimension ranging more than two orders of magnitude. Here, we characterized the sizing protocol of GUVs using the metal mesh with a large opening area ratio (>35%). Unlike the conventional track-etched membrane filters with a small opening area ratio (<10%), the present method enabled fast filtration (<10 min) to remove GUVs smaller than the mesh size without delicate flow control. We demonstrated that the combination of extrusion and filtration with selected filters produced GUV populations with fairly narrow size distributions (<30% C.V. in diameter).


Assuntos
Metais Pesados/química , Lipossomas Unilamelares/química , Tamanho da Partícula
8.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036492

RESUMO

A specific series of peptides, called a cell-penetrating peptide (CPP), is known to be free to directly permeate through cell membranes into the cytosol (cytolysis); hence, this CPP would be a potent carrier for a drug delivery system (DDS). Previously, we proposed the mechanism of cytolysis as a temporal and local phase transfer of membrane lipid caused by positive membrane curvature generation. Moreover, we showed how to control the CPP cytolysis. Here, we investigate the phospholipid vesicle's size effect on CPP cytolysis because this is the most straightforward way to control membrane curvature. Contrary to our expectation, we found that the smaller the vesicle diameter (meaning a higher membrane curvature), the more cytolysis was suppressed. Such controversial findings led us to seek the reason for the unexpected results, and we ended up finding out that the mobility of membrane lipids as a liquid crystal is the key to cytolysis. As a result, we could explain the cause of cytolysis suppression by reducing the vesicle size (because of the restriction of lipid mobility); osmotic pressure reduction to enhance positive curvature generation works as long as the membrane is mobile enough to modulate the local structure. Taking all the revealed vital factors and their effects as a tool, we will further explore how to control CPP cytolysis for developing a DDS system combined with appropriate cargo selection to be tagged with CPPs.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Vesículas Citoplasmáticas/metabolismo , Algoritmos , Transporte Biológico , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Fenômenos Químicos , Vesículas Citoplasmáticas/química , Vesículas Citoplasmáticas/ultraestrutura , Bicamadas Lipídicas/química , Modelos Teóricos , Análise Espectral
9.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751745

RESUMO

Cell-penetrating peptide (CPP) can directly penetrate the cytosol (cytolysis) and is expected to be a potent vector for a drug delivery system (DDS). Although there is general agreement that CPP cytolysis is related to dynamic membrane deformation, a distinctive process has yet to be established. Here, we report the key process and factors controlling CPP cytolysis. To elucidate the task, we have introduced trypsin digestion of adsorbed CPP onto giant unilamellar vesicle (GUV) to quantify the adsorption and internalization (cytolysis) separately. Also, the time-course analysis was introduced for the geometric calculation of adsorption and internalization amount per lipid molecule consisting of GUV. As a result, we found that adsorption and internalization assumed to occur successively by CPP molecule come into contact with membrane lipid. Adsorption is quick to saturate within 10 min, while cytolysis of each CPP on the membrane follows successively. After adsorption is saturated, cytolysis proceeds further linearly by time with a different rate constant that is dependent on the osmotic pressure. We also found that temperature and lipid composition influence cytolysis by modulating lipid mobility. The electrolyte in the outer media is also affected as a chemical mediator to control CPP cytolysis by following the Hoffmeister effect for membrane hydration. These results confirmed the mechanism of cytolysis as temporal and local phase transfer of membrane lipid from Lα to Mesh1, which has punctured bilayer morphologies.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Bicamadas Lipídicas/química , Animais , Arginina/química , Membrana Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/farmacologia , Galinhas , Citosol/química , Citosol/efeitos dos fármacos , Gema de Ovo/química , Fluoresceína-5-Isotiocianato/química , Lipídeos de Membrana/química , Tripsina/química , Tripsina/farmacologia , Lipossomas Unilamelares/química , Lipossomas Unilamelares/farmacologia
10.
Biochim Biophys Acta ; 1848(5): 1268-76, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25660752

RESUMO

Amphiphilic molecules supposed to affect membrane protein activity could strongly interact also with the lipid component of the membrane itself. Neurosteroids are amphiphilic molecules that bind to plasma membrane receptors of cells in the central nervous system but their effect on membrane is still under debate. For this reason it is interesting to investigate their effects on pure lipid bilayers as model systems. Using the micropipette aspiration technique (MAT), here we studied the effects of a neurosteroid, allopregnanolone (3α,5α-tetrahydroprogesterone or Allo) and of one of its isoforms, isoallopregnanolone (3ß,5α-tetrahydroprogesterone or isoAllo), on the physical properties of pure lipid bilayers composed by DOPC/bSM/chol. Allo is a well-known positive allosteric modulator of GABAA receptor activity while isoAllo acts as a non-competitive functional antagonist of Allo modulation. We found that Allo, when applied at nanomolar concentrations (50-200 nM) to a lipid bilayer model system including cholesterol, induces an increase of the lipid bilayer area and a decrease of the mechanical parameters. Conversely, isoAllo, decreases the lipid bilayer area and, when applied, at the same nanomolar concentrations, it does not affect significantly its mechanical parameters. We characterized the kinetics of Allo uptake by the lipid bilayer and we also discussed its aspects in relation to the slow kinetics of Allo gating effects on GABAA receptors. The overall results presented here show that a correlation exists between the modulation of Allo and isoAllo of GABAA receptor activity and their effects on a lipid bilayer model system containing cholesterol.


Assuntos
Colesterol/química , Membranas Artificiais , Neurotransmissores/química , Fosfatidilcolinas/química , Pregnanolona/química , Esfingomielinas/química , Tensoativos/química , Colesterol/metabolismo , Isomerismo , Cinética , Neurotransmissores/metabolismo , Neurotransmissores/farmacologia , Fosfatidilcolinas/metabolismo , Pregnanolona/metabolismo , Pregnanolona/farmacologia , Receptores de GABA-A/química , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Esfingomielinas/metabolismo , Sucção , Tensoativos/metabolismo , Tensoativos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...