Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(28): e2320070121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38968120

RESUMO

Hedgehog (Hh) signaling, an evolutionarily conserved pathway, plays an essential role in development and tumorigenesis, making it a promising drug target. Multiple negative regulators are known to govern Hh signaling; however, how activated Smoothened (SMO) participates in the activation of downstream GLI2 and GLI3 remains unclear. Herein, we identified the ciliary kinase DYRK2 as a positive regulator of the GLI2 and GLI3 transcription factors for Hh signaling. Transcriptome and interactome analyses demonstrated that DYRK2 phosphorylates GLI2 and GLI3 on evolutionarily conserved serine residues at the ciliary base, in response to activation of the Hh pathway. This phosphorylation induces the dissociation of GLI2/GLI3 from suppressor, SUFU, and their translocation into the nucleus. Loss of Dyrk2 in mice causes skeletal malformation, but neural tube development remains normal. Notably, DYRK2-mediated phosphorylation orchestrates limb development by controlling cell proliferation. Taken together, the ciliary kinase DYRK2 governs the activation of Hh signaling through the regulation of two processes: phosphorylation of GLI2 and GLI3 downstream of SMO and cilia formation. Thus, our findings of a unique regulatory mechanism of Hh signaling expand understanding of the control of Hh-associated diseases.


Assuntos
Quinases Dyrk , Proteínas Hedgehog , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco , Animais , Proteína Gli3 com Dedos de Zinco/metabolismo , Proteína Gli3 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Humanos , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proliferação de Células , Cílios/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Proteínas Nucleares , Proteínas Repressoras
2.
Transl Oncol ; 46: 101994, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38776708

RESUMO

Cervical cancer ranks fourth in women in terms of incidence and mortality. The RNA-binding protein YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2) contributes to cancer progression by incompletely understood mechanisms. We show how YTHDF2 controls the fate of cervical cancer cells and whether YTHDF2 could be a valid target for the therapy of cervical cancer. Sphere formation and alkaline phosphatase staining assays were performed to evaluate tumor stemness of cervical cancer cells following YTHDF2 knockdown. Apoptosis was detected by flow cytometry and TUNEL assay. The compounds 4PBA and SP600125 were used to investigate the correlation between JNK, endoplasmic reticulum stress, tumor stemness, and apoptosis. Data from The Cancer Genome Atlas (TCGA) databases and Gene Expression Omnibus (GEO) revealed that GLI family zinc finger 2 (GLI2) might be the target of YTHDF2. The transcription inhibitor actinomycin D and dual-luciferase reporter gene assays were employed to investigate the association between the GLI2 mRNA and YTHDF2. Nude mouse xenografts were generated to assess the effects of YTHDF2 knockdown on cervical cancer growth in vivo. Knockdown of YTHDF2 up-regulated the expression of GLI2, leading to JNK phosphorylation and endoplasmic reticulum stress. These processes inhibited the proliferation of cervical cancer cells and their tumor cell stemness and promotion of apoptosis. In conclusion, the knockdown of YTHDF2 significantly affects the progression of cervical cancer cells, making it a potential target for treating cervical cancer.

3.
Stem Cells Transl Med ; 13(7): 678-692, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38761090

RESUMO

Cardiomyocyte (CM) proliferation and maturation are highly linked processes, however, the extent to which these processes are controlled by a single signaling axis is unclear. Here, we show the previously undescribed role of Hedgehog (HH)-GLI2-CKS1B cascade in regulation of the toggle between CM proliferation and maturation. Here we show downregulation of GLI-signaling in adult human CM, adult murine CM, and in late-stage hiPSC-CM leading to their maturation. In early-stage hiPSC-CM, inhibition of HH- or GLI-proteins enhanced CM maturation with increased maturation indices, increased calcium handling, and transcriptome. Mechanistically, we identified CKS1B, as a new effector of GLI2 in CMs. GLI2 binds the CKS1B promoter to regulate its expression. CKS1B overexpression in late-stage hiPSC-CMs led to increased proliferation with loss of maturation in CMs. Next, analysis of datasets of patients with heart disease showed a significant enrichment of GLI2-signaling in patients with ischemic heart failure (HF) or dilated-cardiomyopathy (DCM) disease, indicating operational GLI2-signaling in the stressed heart. Thus, the Hh-GLI2-CKS1B axis regulates the proliferation-maturation transition and provides targets to enhance cardiac tissue engineering and regenerative therapies.


Assuntos
Proliferação de Células , Miócitos Cardíacos , Proteína Gli2 com Dedos de Zinco , Miócitos Cardíacos/metabolismo , Humanos , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular
4.
Cell Rep ; 43(4): 114083, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602877

RESUMO

A common cause of deafness in humans is dysregulation of the endocochlear potential generated by the stria vascularis (SV). Thus, proper formation of the SV is critical for hearing. Using single-cell transcriptomics and a series of Shh signaling mutants, we discovered that the Shh receptor Patched1 (Ptch1) is essential for marginal cell (MC) differentiation and SV formation. Single-cell RNA sequencing analyses revealed that the cochlear roof epithelium is already specified into discrete domains with distinctive gene expression profiles at embryonic day 14, with Gsc as a marker gene of the MC lineage. Ptch1 deficiency leads to defective specification of MC precursors along the cochlear basal-apical regions. We demonstrated that elevated Gli2 levels impede MC differentiation through sustaining Otx2 expression and maintaining the progenitor state of MC precursors. Our results uncover an early specification of cochlear non-sensory epithelial cells and establish a crucial role of the Ptch1-Gli2 axis in regulating the development of SV.


Assuntos
Diferenciação Celular , Cóclea , Receptor Patched-1 , Estria Vascular , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Animais , Camundongos , Estria Vascular/metabolismo , Estria Vascular/citologia , Cóclea/metabolismo , Cóclea/embriologia , Cóclea/citologia , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética
5.
Environ Toxicol ; 39(7): 3833-3845, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38546377

RESUMO

Depleted uranium (DU) retains the radiological toxicities, which accumulates preferentially in the kidneys. Hedgehog (Hh) pathway plays a critical role in tissue injury. However, the role of Hh in DU-induced nephrotoxicity was still unclear. This study was carried out to investigate the effect of Gli2, which was an important transcription effector of Hh signaling, on DU induced nephrotoxicity. To clarify it, CK19 positive tubular epithelial cells specific Gli2 conditional knockout (KO) mice model was exposed to DU, and then histopathological damage and Hh signaling pathway activation was analyzed. Moreover, HEK-293 T cells were exposed to DU with Gant61 or Gli2 overexpression, and cytotoxicity of DU as analyzed. Results showed that DU caused nephrotoxicity accompanied by activation of Hh signaling pathway. Meanwhile, genetic KO of Gli2 reduced DU-induced nephrotoxicity by normalizing biochemical indicators and reducing Hh pathway activation. Pharmacologic inhibition of Gli1/2 by Gant61 reduced DU induced cytotoxicity by inhibiting apoptosis, ROS formation and Hh pathway activation. However, overexpression of Gli2 aggravated DU-induced cytotoxicity by increasing the levels of apoptosis and ROS formation. Taken together, these results revealed that Hh signaling negatively regulated DU-inducted nephrotoxicity, and that inhibition of Gli2 might serve as a promising nephroprotective target for DU-induced kidney injury.


Assuntos
Proteínas Hedgehog , Rim , Camundongos Knockout , Transdução de Sinais , Proteína Gli2 com Dedos de Zinco , Animais , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Humanos , Células HEK293 , Transdução de Sinais/efeitos dos fármacos , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Rim/efeitos dos fármacos , Rim/patologia , Rim/metabolismo , Camundongos , Urânio/toxicidade , Apoptose/efeitos dos fármacos , Piridinas/farmacologia , Piridinas/toxicidade , Masculino , Nefropatias/induzido quimicamente , Nefropatias/patologia , Nefropatias/metabolismo , Pirimidinas/farmacologia , Pirimidinas/toxicidade , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
6.
Kaohsiung J Med Sci ; 40(5): 422-434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38385859

RESUMO

Diabetic foot ulcer (DFU) is a serious complication of diabetic patients which negatively affects their foot health. This study aimed to estimate the role and mechanism of the miR-200 family in DNA damage of diabetic wound healing. Human foreskin fibroblasts (HFF-1 cells) were stimulated with high glucose (HG). Db/db mice were utilized to conduct the DFU in vivo model. Cell viability was evaluated using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assays. Superoxide dismutase activity was determined using detection kits. Reactive oxygen species determination was conducted via dichlorodihydrofluorescein-diacetate assays. Enzyme-linked immunosorbent assay was used to evaluate 8-oxo-7,8-dihydro-2'deoxyguanosine levels. Genes and protein expression were analyzed by quantitative real-time polymerase chain reaction, western blotting, or immunohistochemical analyses. Luciferase reporter gene and RNA immunoprecipitation assays determined the interaction with miR-200a/b/c-3p and GLI family zinc finger protein 2 (GLI2) or ataxia telangiectasia mutated (ATM) kinase. HG repressed cell proliferation and DNA damage repair, promoted miR-200a/b/c-3p expression, and suppressed ATM and GLI2. MiR-200a/b/c-3p inhibition ameliorated HG-induced cell proliferation and DNA damage repair repression. MiR-200a/b/c-3p targeted ATM. Then, the silenced ATM reversed the miR-200a/b/c-3p inhibition-mediated alleviative effects under HG. Next, GLI2 overexpression alleviated the HG-induced cell proliferation and DNA damage repair inhibition via miR-200a/b/c-3p. MiR-200a/b/c-3p inhibition significantly promoted DNA damage repair and wound healing in DFU mice. GLI2 promoted cell proliferation and DNA damage repair by regulating the miR-200/ATM axis to enhance diabetic wound healing in DFU.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Reparo do DNA , Fibroblastos , MicroRNAs , Cicatrização , Animais , Humanos , Camundongos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proliferação de Células , Pé Diabético/patologia , Pé Diabético/metabolismo , Pé Diabético/genética , Dano ao DNA , Fibroblastos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Pele/patologia , Pele/metabolismo , Cicatrização/genética
7.
Arch. endocrinol. metab. (Online) ; 68: e220254, 2024. tab
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1520079

RESUMO

ABSTRACT Objective: Congenital hypopituitarism (CH) is a rare disease characterized by one or more hormone deficiencies of the pituitary gland. To date, many genes have been associated with CH. In this study, we identified the allelic variant spectrum of 11 causative genes in Turkish patients with CH. Materials and methods: This study included 47 patients [21 girls (44.6%) and 26 boys (55.4%)] from 45 families. To identify the genetic etiology, we screened 11 candidate genes associated with CH using next-generation sequencing. To confirm and detect the status of the specific familial variant in relatives, Sanger sequencing was also performed. Results: We identified 12 possible pathogenic variants in GHRHR, GH1, GLI2, PROP-1, POU1F1, and LHX4 in 11 patients (23.4%), of which six were novel variants: two in GHRHR, two in POU1F1, one in GLI2, and one in LHX4. In all patients, these variants were most frequently found in GLI2, followed by PROP-1 and GHRHR. Conclusion: Genetic causes were determined in only 23.4% of all patients with CH and 63% of molecularly diagnosed patients (7/11) from consanguineous families. Despite advances in genetics, we were unable to identify the genetic etiology of most patients with CH, suggesting the effect of unknown genes or environmental factors. More genetic studies are necessary to understand the etiology of CH.

8.
Elife ; 122023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38096226

RESUMO

The Hedgehog (Hh) family of secreted proteins governs embryonic development and adult tissue homeostasis through the Gli family of transcription factors. Gli is thought to be activated at the tip of primary cilium, but the underlying mechanism has remained poorly understood. Here, we show that Unc-51-like kinase 4 (Ulk4), a pseudokinase and a member of the Ulk kinase family, acts in conjunction with another Ulk family member Stk36 to promote Gli2 phosphorylation and Hh pathway activation. Ulk4 interacts with Stk36 through its N-terminal region containing the pseudokinase domain and with Gli2 via its regulatory domain to bridge the kinase and substrate. Although dispensable for Hh-induced Stk36 kinase activation, Ulk4 is essential for Stk36 ciliary tip localization, Gli2 phosphorylation, and activation. In response to Hh, both Ulk4 and Stk36 colocalize with Gli2 at ciliary tip, and Ulk4 and Stk36 depend on each other for their ciliary tip accumulation. We further show that ciliary localization of Ulk4 depends on Stk36 kinase activity and phosphorylation of Ulk4 on Thr1023, and that ciliary tip accumulation of Ulk4 is essential for its function in the Hh pathway. Taken together, our results suggest that Ulk4 regulates Hh signaling by promoting Stk36-mediated Gli2 phosphorylation and activation at ciliary tip.


Assuntos
Proteínas Hedgehog , Fatores de Transcrição Kruppel-Like , Feminino , Gravidez , Humanos , Fosforilação , Proteínas Hedgehog/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
9.
Arch Endocrinol Metab ; 68: e220254, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948564

RESUMO

Objective: Congenital hypopituitarism (CH) is a rare disease characterized by one or more hormone deficiencies of the pituitary gland. To date, many genes have been associated with CH. In this study, we identified the allelic variant spectrum of 11 causative genes in Turkish patients with CH. Materials and methods: This study included 47 patients [21 girls (44.6%) and 26 boys (55.4%)] from 45 families. To identify the genetic etiology, we screened 11 candidate genes associated with CH using next-generation sequencing. To confirm and detect the status of the specific familial variant in relatives, Sanger sequencing was also performed. Results: We identified 12 possible pathogenic variants in GHRHR, GH1, GLI2, PROP-1, POU1F1, and LHX4 in 11 patients (23.4%), of which six were novel variants: two in GHRHR, two in POU1F1, one in GLI2, and one in LHX4. In all patients, these variants were most frequently found in GLI2, followed by PROP-1 and GHRHR. Conclusion: Genetic causes were determined in only 23.4% of all patients with CH and 63% of molecularly diagnosed patients (7/11) from consanguineous families. Despite advances in genetics, we were unable to identify the genetic etiology of most patients with CH, suggesting the effect of unknown genes or environmental factors. More genetic studies are necessary to understand the etiology of CH.


Assuntos
Hipopituitarismo , Feminino , Humanos , Masculino , Alelos , Hipopituitarismo/diagnóstico , Hipopituitarismo/genética , Mutação , Proteínas Nucleares/genética , Fator de Transcrição Pit-1/genética , Fatores de Transcrição/genética , Proteína Gli2 com Dedos de Zinco/genética
10.
Cells ; 12(19)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37830570

RESUMO

ADP-ribosylation factor-like protein 13B (ARL13B), a regulatory GTPase and guanine exchange factor (GEF), enriches in primary cilia and promotes tumorigenesis in part by regulating Smoothened (SMO), GLI, and Sonic Hedgehog (SHH) signaling. Gliomas with increased ARL13B, SMO, and GLI2 expression are more aggressive, but the relationship to cilia is unclear. Previous studies have showed that increasing ARL13B in glioblastoma cells promoted ciliary SMO accumulation, independent of exogenous SHH addition. Here, we show that SMO accumulation is due to increased ciliary, but not extraciliary, ARL13B. Increasing ARL13B expression promotes the accumulation of both activated SMO and GLI2 in glioma cilia. ARL13B-driven increases in ciliary SMO and GLI2 are resistant to SMO inhibitors, GDC-0449, and cyclopamine. Surprisingly, ARL13B-induced changes in ciliary SMO/GLI2 did not correlate with canonical changes in downstream SHH pathway genes. However, glioma cell lines whose cilia overexpress WT but not guanine exchange factor-deficient ARL13B, display reduced INPP5e, a ciliary membrane component whose depletion may favor SMO/GLI2 enrichment. Glioma cells overexpressing ARL13B also display reduced ciliary intraflagellar transport 88 (IFT88), suggesting that altered retrograde transport could further promote SMO/GLI accumulation. Collectively, our data suggest that factors increasing ARL13B expression in glioma cells may promote both changes in ciliary membrane characteristics and IFT proteins, leading to the accumulation of drug-resistant SMO and GLI. The downstream targets and consequences of these ciliary changes require further investigation.


Assuntos
Cílios , Glioma , Humanos , Cílios/metabolismo , Glioma/genética , Glioma/metabolismo , Proteínas Hedgehog/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteína Gli2 com Dedos de Zinco/metabolismo , Receptor Smoothened/metabolismo
11.
Aging (Albany NY) ; 15(20): 11131-11151, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37851362

RESUMO

Epithelial ovarian cancer (EOC), the most predominant subtype of ovarian cancer (OC), involves poor prognosis and exhibits high aggression. Triptolide (TPL), like other Chinese herbs, has historically played a significant role in modern medicine. The screening system based on Gli-dependent luciferase reporter activity assessed the effects of over 800 natural medicinal materials on hedgehog (Hh) signaling pathway activity and discovered that TPL had an excellent inhibitory effect on Hh signaling pathway activity. However, the significance and mechanism of TPL involvement in regulating the Hh pathway have not been well explored. Thus, this work aimed to understand better how TPL affects the Hh pathway activity, which, in turn, influences the biological behavior of EOC. Our findings observed that Smo agonist SAG-induced EOC cell proliferation, migration, and invasion were drastically reversed by TPL in a concentration-dependent pattern. Further evidence suggested that TPL promotes the degradation of Gli1 and Gli2 to inhibit the activity of the Hh signaling pathway by relying on Gli1 and Gli2 ubiquitination. Our in vivo studies also confirmed that TPL could significantly inhibit the tumor growth of EOC. Taken together, our results revealed that one of the antitumor mechanisms of TPL was the targeted inhibition of the Hh/Gli pathway.


Assuntos
Proteínas Hedgehog , Neoplasias Ovarianas , Humanos , Feminino , Proteínas Hedgehog/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Linhagem Celular Tumoral
12.
Cancers (Basel) ; 15(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37444470

RESUMO

Liposarcomas are the most diagnosed soft tissue sarcoma, with most cases consisting of well-differentiated (WDLPS) or dedifferentiated (DDLPS) histological subtypes. While both tumor subtypes can have clinical recurrence due to incomplete resections, DDLPS often has worse prognosis due to a higher likelihood of metastasis compared to its well-differentiated counterpart. Unfortunately, targeted therapeutic interventions have lagged in sarcoma oncology, making the need for molecular targeted therapies a promising future area of research for this family of malignancies. In this work, previously published data were analyzed to identify differential pathways that may contribute to the dedifferentiation process in liposarcoma. Interestingly, Gli-mediated Hedgehog signaling appeared to be enriched in dedifferentiated adipose progenitor cells and DDLPS tumors, and coincidentally Gli1 is often co-amplified with MDM2 and CDK4, given its genomic proximity along chromosome 12q13-12q15. However, we find that Gli2, but not Gli1, is differentially expressed between WDLPS and DDLPS, with a noticeable co-expression signature between Gli2 and genes involved in ECM remodeling. Additionally, Gli2 co-expression had a noticeable transcriptional signature that could suggest Gli-mediated Hedgehog signaling as an associated pathway contributing to poor immune infiltration in these tumors.

13.
Biochem Biophys Res Commun ; 676: 182-189, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523816

RESUMO

It has been reported that cadherin 6 (CDH6) upregulation is associated with enhanced epithelial-to-mesenchymal transition (EMT) in several types of solid tumor cells. The current study aimed to explore the effect of CDH6 on the migration and invasion of stomach adenocarcinoma (STAD) cells, the transcription factors involved in CDH6 dysregulation and their effect on mitochondrial fission. Bioinformatics analysis was performed using data extracted from the Genotype-Tissue Expression Project, the Cancer Genome Atlas and Kaplan-Meier plotter. AGS and HGC27 cells were used to establish an in vitro STAD cell model. The results showed that higher CDH6 expression was associated with significantly shorter overall survival in patients with STAD. In addition, CDH6 overexpression promoted wound healing, enhanced the invasion ability of tumor cells and increased mitochondrial fission. Glioma-associated oncogene family zinc finger 2 (GLI2) could bind to the CDH6 promoter and activate its transcription. Fluorescent labeling also showed that GLI2 overexpression promoted mitochondrial fission. However, CDH6 silencing significantly reduced mitochondrial fragmentation. Besides, GLI2 overexpression notably upregulated phosphorylated-focal adhesion kinase and dynamin-related protein 1. However, the above effects were largely abrogated by CDH6 knockdown. In conclusion, the present study suggested that the novel GLI2/CDH6 axis could enhance the migration, invasion and mitochondrial fission of STAD cells.


Assuntos
Adenocarcinoma , Neoplasias Gástricas , Humanos , Adenocarcinoma/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Dinâmica Mitocondrial , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Proteína Gli2 com Dedos de Zinco/metabolismo
14.
Cancer Sci ; 114(9): 3608-3622, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37417427

RESUMO

Increasing evidence has shown that circular RNAs (circRNAs) interact with RNA-binding proteins (RBPs) and promote cancer progression. However, the function and mechanism of the circRNA/RBP complex in esophageal squamous cell carcinoma (ESCC) are still largely unknown. Herein, we first characterized a novel oncogenic circRNA, circ-FIRRE, by RNA sequencing (Ribo-free) profiling of ESCC samples. Furthermore, we observed marked circ-FIRRE overexpression in ESCC patients with high TNM stage and poor overall survival. Mechanistic studies indicated that circ-FIRRE, as a platform, interacts with the heterogeneous nuclear ribonucleoprotein C (HNRNPC) protein to stabilize GLI2 mRNA by directly binding to its 3'-UTR in the cytoplasm, thereby resulting in elevated GLI2 protein expression and subsequent transcription of its target genes MYC, CCNE1, and CCNE2, ultimately contributing to ESCC progression. Moreover, HNRNPC overexpression in circ-FIRRE knockdown cells notably abolished circ-FIRRE knockdown-mediated Hedgehog pathway inhibition and ESCC progression impairment in vitro and in vivo. Clinical specimen results showed that circ-FIRRE and HNRNPC expression was positively correlated with GLI2 expression, which reveals the clear significance of the circ-FIRRE/HNRNPC-GLI2 axis in ESCC. In summary, our results indicate that circ-FIRRE could serve as a valuable biomarker and potential therapeutic target for ESCC and highlight a novel mechanism of the circ-FIRRE/HNRNPC complex in ESCC progression regulation.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Humanos , Carcinoma de Células Escamosas do Esôfago/patologia , RNA Circular/genética , RNA Circular/metabolismo , Neoplasias Esofágicas/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , RNA Mensageiro/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , MicroRNAs/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Linhagem Celular Tumoral , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteínas Nucleares/genética
15.
Cell Mol Life Sci ; 80(6): 171, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261512

RESUMO

Imbalance of bone homeostasis induces bone degenerative diseases such as osteoporosis. Hedgehog (Hh) signaling plays critical roles in regulating the development of limb and joint. However, its unique role in bone homeostasis remained largely unknown. Here, we found that canonical Hh signaling pathway was gradually augmented during osteoclast differentiation. Genetic inactivation of Hh signaling in osteoclasts, using Ctsk-Cre;Smof/f conditional knockout mice, disrupted both osteoclast formation and subsequent osteoclast-osteoblast coupling. Concordantly, either Hh signaling inhibitors or Smo/Gli2 knockdown stunted in vitro osteoclast formation. Mechanistically, Hh signaling positively regulated osteoclast differentiation via transactivation of Traf6 and stabilization of TRAF6 protein. Then, we identified connective tissue growth factor (CTGF) as an Hh-regulatory bone formation-stimulating factor derived from osteoclasts, whose loss played a causative role in osteopenia seen in CKO mice. In line with this, recombinant CTGF exerted mitigating effects against ovariectomy induced bone loss, supporting a potential extension of local rCTGF treatment to osteoporotic diseases. Collectively, our findings firstly demonstrate that Hh signaling, which dictates osteoclast differentiation and osteoclast-osteoblast coupling by regulating TRAF6 and CTGF, is crucial for maintaining bone homeostasis, shedding mechanistic and therapeutic insights into the realm of osteoporosis.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Osteoporose , Feminino , Camundongos , Animais , Osteoclastos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Osteoblastos/metabolismo , Osteogênese , Transdução de Sinais , Osteoporose/genética , Osteoporose/metabolismo , Homeostase , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Diferenciação Celular , Reabsorção Óssea/metabolismo
16.
Oncol Rep ; 50(1)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37264957

RESUMO

Following the publication of the above article, a concerned reader drew to the Editor's attention that, in the above paper, they had identified multiple instances of overlapping data panels comparing the TUNEL assay data shown in Fig. 2C and D on p. 750 with that shown in Fig. 4C on p. 752, suggesting that data purportedly showing results obtained under different experimental conditions had been derived from a smaller number of original sources. Upon informing the authors about this matter, they consulted their original data and requested a corrigendum to take account of the overlapping data in Figs. 2 and 4; however, given the number of instances of overlapping data panels that were identified comparing these two figures, the Editor of Oncology Reports has decided that this article should be retracted from the publication owing to a lack of overall confidence in the presented data. Upon informing the authors of this decision, they did not accepted the decision to retract this article. The Editor apologizes to the readership for any inconvenience resulting from the retraction of this article. [Oncology Reports 39: 747­754, 2018; DOI: 10.3892/or.2017.6150].

17.
Biochem Biophys Res Commun ; 666: 179-185, 2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37199136

RESUMO

Hedgehog (Hh) signaling is involved in multiple biological events including development and cancers. It is processed through primary cilia, which are assembled from the mother centriole in most mammalian cells. Pancreatic ductal adenocarcinoma (PDAC) cells generally lose their primary cilia; thus, the Hh signaling pathway is postulated to be independent of the organelle in PDAC. We previously reported that the mother centriole-specific protein, centrosomal protein 164 (CEP164), is required for centriolar localization of the GLI2 transcription factor in Hh signaling and for suppressing the expression of Hh-target genes. In this study, we demonstrated the physical interaction between CEP164 and GLI2, and delineated their binding modes at the mother centriole. The ectopically expressed GLI2-binding region of CEP164 reduced the centriolar GLI2 localization and enhanced the expression of Hh-target genes in PDAC cells. Furthermore, similar phenotypes were observed in PDAC cells lacking primary cilia. These results suggest that the CEP164-GLI2 association at the mother centriole is responsible for controlling Hh signaling, independent of primary cilia in PDAC cells.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Cílios/metabolismo , Transdução de Sinais , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Fatores de Transcrição Kruppel-Like/metabolismo , Mamíferos/metabolismo , Neoplasias Pancreáticas
18.
Curr Protein Pept Sci ; 24(5): 436-446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37132101

RESUMO

Background: Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive malignancy with a poor prognosis. Aspartate ß-hydroxylase (ASPH) is an α-ketoglutarate-dependent dioxygenase involved in the post-translational hydroxylation of target proteins. ASPH has been demonstrated to be upregulated in ICC, yet its role remains to be elucidated. This study aimed to investigate the potential function of ASPH in ICC metastasis. Methods: Survival curves for the overall survival of pan-cancer data from The Cancer Genome Atlas (TCGA) database was depicted using the Kaplan-Meier method and compared using the log-rank test. The expression of ASPH, glycogen synthase kinase (GSK)-3ß, phosphorylation GSK-3ß (p-GSK-3ß), epithelial-mesenchymal transition (EMT) biomarkers, and sonic hedgehog (SHH) signaling elements in ICC cell lines was analyzed by western blot. Wound healing and transwell assays were conducted to examine the effects of ASPH knockdown and overexpression on cell migration and invasion. An immunofluorescence assay was conducted to evaluate the expression of glioma-associated oncogene 2 (GLI2), GSK-3ß and ASPH. The effect of ASPH on tumor in vivo was analyzed using a nude mouse xenograft model. Results: Pan-cancer data showed that expressed ASPH was significantly correlated with a poor prognosis in patients. ASPH knockdown inhibited the migration and invasion of human ICC cells lines QBC939 and RBE. ASPH overexpression contributed to an increase in the N-cadherin and Vimentin, resulting in the promotion of the EMT process. The p-GSK-3ß levels decreased in the presence of ASPH overexpression. The overexpression of ASPH led to an upregulation of the expression of SHH signaling elements GLI2 and SUFU. The results of in vivo experiments with a lung metastasis model in nude mice with ICC cell line RBE are consistent with these results. Conclusion: ASPH accelerated metastasis of ICC cells by facilitating EMT via a GSK-3ß/SHH/GLI2 axis-dependent manner, in which phosphorylation of GSK-3ß was downregulated and the SHH signaling pathway was activated.


Assuntos
Ácido Aspártico , Colangiocarcinoma , Animais , Camundongos , Humanos , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/farmacologia , Ácido Aspártico/farmacologia , Linhagem Celular Tumoral , Camundongos Nus , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Oxigenases de Função Mista/farmacologia , Colangiocarcinoma/genética , Transição Epitelial-Mesenquimal , Movimento Celular , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-37074078

RESUMO

Pituitary stalk interruption syndrome (PSIS) is a rare congenital disease resulting in hypopituitarism of variable degree. Serious courses, due to severe combined pituitary insufficiency, are even rarer and associated with a very early manifestation immediately after birth. First clinical signs are elusive and lead to delayed diagnosis and treatment, often resulting in life-threatening complications. Objective of the current report is to point out early leading symptoms and key issues of neonatal manifested PSIS to increase the awareness, improve the clinical management and thereby enable an early diagnosis and treatment to prevent further complications. This report presents and compares the clinical course and management of two male newborns with manifested PSIS. Early leading symptoms were the same in both patients, including recurrent hypoglycaemia, hyponatraemia, jaundice, cholestasis, sucking weakness and genital abnormalities. Patient 1 developed an infection-induced adrenal crisis, persistent substitution-dependent thrombocytopenia and convulsions due to severe hypoglycaemia in delayed PSIS diagnosis. In patient 2, due to recognised above-mentioned symptoms, endocrine testing and a subsequent cerebral magnetic resonance imaging were performed early and he was diagnosed and treated before major complications occurred. Genetic testing was performed in both patients. GLI2 gene mutation (NM_005270.5:c.2537del; p.(Pro846Argfs*66)) heterozygous was detected in patient 1. No mutation was found in patient 2. Conclusively, the early diagnosis of neonatal PSIS is indispensable in the treatment and prevention of the possible severe clinical manifestation of this orphan disease. Therefore, increased awareness for early leading symptoms and proper clinical management are crucial.

20.
Ann Clin Lab Sci ; 53(1): 52-63, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36889770

RESUMO

OBJECTIVE: Being a prevalent endocrine and metabolic disease, polycystic ovary syndrome (PCOS) severely threatens women's physical and mental health. Glioma-associated oncogene family zinc finger 2 (GLI2) expression is up-regulated in granulosa cells of PCOS patients, but its specific role in PCOS remains unclear. METHODS: Following the treatment of human ovarian granulosa cells (KGN) with dihydrotestosterone (DHT), RT-qPCR and western blot were utilized to check GLI2 expression. After GLI2 expression was silenced, cell activity was detected through CCK8 and apoptosis was examined via TUNEL and western blot. Inflammation and oxidative stress were tested utilizing ELISA and western blot. The binding between GLI2 and neuronal precursor cell-expressed developmentally downregulated 4 (NEDD4L) promoter was predicted by JASPAR database and verified by luciferase reporter and ChIP assay. In addition, RT-qPCR and western blot were applied to check the mRNA and protein expressions of NEDD4L. Following the knockdown of NEDD4L in GLI2-silencing cells, CCK8 assay, TUNEL assay, western blot, ELISA and other methods were performed again. Finally, western blot detected the expressions of Wnt pathway-related proteins. RESULTS: GLI2 was up-regulated in DHT-treated KGN cells. Interference with GLI2 increased the viability, decreased the apoptosis, and inhibited the inflammatory response and oxidative stress of DHT-induced KGN cells. GLI2 could bind to NEDD4L promoter and transcriptionally suppress NEDD4L expression. Further experiments testified that NEDD4L depletion reversed the impacts of GLI2 deficiency on the viability, apoptosis, inflammation, oxidative stress and Wnt signaling pathway in DHT-challenged KGN cells. CONCLUSION: GLI2 activated Wnt signaling to promote androgen-induced granulosa cell damage through transcriptional inhibition of NEDD4L.


Assuntos
Glioma , MicroRNAs , Síndrome do Ovário Policístico , Humanos , Feminino , Via de Sinalização Wnt/genética , Androgênios/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Células da Granulosa/metabolismo , Apoptose/genética , Proteínas Wnt/metabolismo , Inflamação/metabolismo , Dedos de Zinco , Oncogenes , Proliferação de Células/genética , MicroRNAs/genética , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismo , Proteínas Nucleares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA