Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38775724

RESUMO

The adipokine chemerin contributes to exercise-induced improvements in glucose and lipid metabolism; however, the underlying mechanism remains unclear. We aimed to confirm the impact of reduced chemerin expression on exercise-induced improvement in glycolipid metabolism in male diabetic (DM) mice through exogenous chemerin administration. Furthermore, the underlying mechanism of chemerin involved in changes in muscle mitochondria function mediated by androgen/androgen receptor (AR) was explored by generating adipose-specific and global chemerin knockout (adipo-chemerin-/- and chemerin-/-) mice. DM mice were categorized into the DM, exercised DM (EDM), and EDM + chemerin supplementation groups. Adipo-chemerin-/- and chemerin-/- mice were classified in the sedentary or exercised groups and fed either a normal or high-fat diet. Exercise mice underwent a 6-week aerobic exercise regimen. The serum testosterone and chemerin levels, glycolipid metabolism indices, mitochondrial function, and protein levels involved in mitochondrial biogenesis and dynamics were measured. Notably, exogenous chemerin reversed exercise-induced improvements in glycolipid metabolism, AR protein levels, mitochondrial biogenesis, and mitochondrial fusion in DM mice. Moreover, adipose-specific chemerin knockout improved glycolipid metabolism, enhanced exercise-induced increases in testosterone and AR levels in exercised mice, and alleviated the detrimental effects of a high-fat diet on mitochondrial morphology, biogenesis, and dynamics. Finally, similar improvements in glucose metabolism (but not lipid metabolism), mitochondrial function, and mitochondrial dynamics were observed in chemerin-/- mice. In conclusion, decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, likely through changes in androgen/AR signaling.

2.
Ann Jt ; 9: 13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690073

RESUMO

Background: Rheumatoid arthritis (RA), a systemic autoimmune disease with approximately 1% prevalent population worldwide, which the etiology is still unclear. RA cannot be completely cured at present, which seriously affects the quality of life of patients. This study is to compare the peripheral blood α-L-fucosidase (AFU) between RA and healthy persons. Methods: A cross-sectional study was performed using total of 96 patients with RA served as case group and another 94 age-matched healthy volunteers served as a control group. AFU assay is detected by continuous monitoring method using Toshiba TBA-120FR (Tokyo, Japan) fully automatic biochemical analyzer in Japan, and the reagent is purchased from Zhejiang Quark Biological Company (Zhejiang, China). Statistical analysis was performed using SPSS 24.0 (SPSS, Inc., Chicago, IL, USA). Results: AFU activity in peripheral blood of RA patients were lower than healthy controls. The higher AFU activity, the shorter the course of disease (r=-0.2790, P=0.0065). The activity of lactate dehydrogenase in patients with RA is higher than that of healthy control, but the activity of acetylcholinesterase is lower than that of normal people. Finally, AFU activity was negatively correlated with the activity of lactate dehydrogenase (r=-0.2381, P=0.0208) and positively correlated with the activity of acetylcholinesterase (r=0.2985, P=0.0035). Conclusions: Changes of peripheral blood AFU activity might be associated with progression of disease in RA patients. The changes of AFU activity may lead to disturbances in glucose and lipid metabolism.

3.
Respir Res ; 25(1): 214, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762509

RESUMO

OBJECTIVES: Obstructive sleep apnea (OSA) is associated with abnormal glucose and lipid metabolism. However, whether there is an independent association between Sleep Apnea-Specific Hypoxic Burden (SASHB) and glycolipid metabolism disorders in patients with OSA is unknown. METHODS: We enrolled 2,173 participants with suspected OSA from January 2019 to July 2023 in this study. Polysomnographic variables, biochemical indicators, and physical measurements were collected from each participant. Multiple linear regression analyses were used to evaluate independent associations between SASHB, AHI, CT90 and glucose as well as lipid profile. Furthermore, logistic regressions were used to determine the odds ratios (ORs) for abnormal glucose and lipid metabolism across various SASHB, AHI, CT90 quartiles. RESULTS: The SASHB was independently associated with fasting blood glucose (FBG) (ß = 0.058, P = 0.016), fasting insulin (FIN) (ß = 0.073, P < 0.001), homeostasis model assessment of insulin resistance (HOMA-IR) (ß = 0.058, P = 0.011), total cholesterol (TC) (ß = 0.100, P < 0.001), total triglycerides (TG) (ß = 0.063, P = 0.011), low-density lipoprotein cholesterol (LDL-C) (ß = 0.075, P = 0.003), apolipoprotein A-I (apoA-I) (ß = 0.051, P = 0.049), apolipoprotein B (apoB) (ß = 0.136, P < 0.001), apolipoprotein E (apoE) (ß = 0.088, P < 0.001) after adjustments for confounding factors. Furthermore, the ORs for hyperinsulinemia across the higher SASHB quartiles were 1.527, 1.545, and 2.024 respectively, compared with the lowest quartile (P < 0.001 for a linear trend); the ORs for hyper-total cholesterolemia across the higher SASHB quartiles were 1.762, 1.998, and 2.708, compared with the lowest quartile (P < 0.001 for a linear trend) and the ORs for hyper-LDL cholesterolemia across the higher SASHB quartiles were 1.663, 1.695, and 2.316, compared with the lowest quartile (P < 0.001 for a linear trend). Notably, the ORs for hyper-triglyceridemia{1.471, 1.773, 2.099} and abnormal HOMA-IR{1.510, 1.492, 1.937} maintained a consistent trend across the SASHB quartiles. CONCLUSIONS: We found SASHB was independently associated with hyperinsulinemia, abnormal HOMA-IR, hyper-total cholesterolemia, hyper-triglyceridemia and hyper-LDL cholesterolemia in Chinese Han population. Further prospective studies are needed to confirm that SASHB can be used as a predictor of abnormal glycolipid metabolism disorders in patients with OSA. TRIAL REGISTRATION: ChiCTR1900025714 { http://www.chictr.org.cn/ }; Prospectively registered on 6 September 2019; China.


Assuntos
Hipóxia , Apneia Obstrutiva do Sono , Humanos , Masculino , Feminino , Estudos Transversais , Pessoa de Meia-Idade , Adulto , Hipóxia/sangue , Hipóxia/epidemiologia , Apneia Obstrutiva do Sono/epidemiologia , Apneia Obstrutiva do Sono/sangue , Apneia Obstrutiva do Sono/diagnóstico , Glicemia/metabolismo , Transtornos do Metabolismo dos Lipídeos/epidemiologia , Transtornos do Metabolismo dos Lipídeos/sangue , Transtornos do Metabolismo dos Lipídeos/diagnóstico , Idoso , Polissonografia , Metabolismo dos Lipídeos/fisiologia , Resistência à Insulina/fisiologia
4.
Biochem Pharmacol ; 225: 116313, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38788963

RESUMO

Bile acids (BAs) have surpassed their traditional roles as lipid solubilizers and regulators of BA homeostasis to emerge as important signalling molecules. Recent research has revealed a connection between microbial dysbiosis and metabolism disruption of BAs, which in turn impacts ageing-related diseases. The human BAs pool is primarily composed of primary BAs and their conjugates, with a smaller proportion consisting of secondary BAs. These different BAs exert complex effects on health and ageing-related diseases through several key nuclear receptors, such as farnesoid X receptor and Takeda G protein-coupled receptor 5. However, the underlying molecular mechanisms of these effects are still debated. Therefore, the modulation of signalling pathways by regulating synthesis and composition of BAs represents an interesting and novel direction for potential therapies of ageing-related diseases. This review provides an overview of synthesis and transportion of BAs in the healthy body, emphasizing its dependence on microbial community metabolic capacity. Additionally, the review also explores how ageing and ageing-related diseases affect metabolism and composition of BAs. Understanding BA metabolism network and the impact of their nuclear receptors, such as farnesoid X receptor and G protein-coupled receptor 5 agonists, paves the way for developing therapeutic agents for targeting BA metabolism in various ageing-related diseases, such as metabolic disorder, hepatic injury, cardiovascular disease, renal damage and neurodegenerative disease.

5.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167246, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38763408

RESUMO

Glucose and lipid metabolic disorders (GLMDs), such as diabetes, dyslipidemia, metabolic syndrome, nonalcoholic fatty liver disease, and obesity, are significant public health issues that negatively impact human health. The endoplasmic reticulum (ER) plays a crucial role at the cellular level for lipid and sterol biosynthesis, intracellular calcium storage, and protein post-translational modifications. Imbalance and dysfunction of the ER can affect glucose and lipid metabolism. As an essential trace element, selenium contributes to various human physiological functions mainly through 25 types of selenoproteins (SELENOs). At least 10 SELENOs, with experimental and/or computational evidence, are predominantly found on the ER membrane or within its lumen. Two iodothyronine deiodinases (DIOs), DIO1 and DIO2, regulate the thyroid hormone deiodination in the thyroid and some external thyroid tissues, influencing glucose and lipid metabolism. Most of the other eight members maintain redox homeostasis in the ER. Especially, SELENOF, SELENOM, and SELENOS are involved in unfolded protein responses; SELENOI catalyzes phosphatidylethanolamine synthesis; SELENOK, SELENON, and SELENOT participate in calcium homeostasis regulation; and the biological significance of thioredoxin reductase 3 in the ER remains unexplored despite its established function in the thioredoxin system. This review examines recent research advances regarding ER SELENOs in GLMDs and aims to provide insights on ER-related pathology through SELENOs regulation.

6.
Diabetes Metab Syndr Obes ; 17: 1481-1490, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562279

RESUMO

Purpose: To investigate the correlation between thyroid-related hormones and diabetic retinopathy (DR) in euthyroid patients with type 2 diabetes mellitus (T2DM). Patients and Methods: Patients with T2DM admitted to our hospital between January 2023 and June 2023 were retrospectively analyzed. The patients were divided into DR and non-diabetic retinopathy (NDR) groups according to whether DR occurred. Thyroid function-related hormones (TSH, FT3, and FT4), blood glucose indices (FBG and HbA1c), and blood lipid indices (HDL-C, LDL-C, TC, and TG) of the two groups were analyzed by univariate and multivariate logistic regression to explore the risk factors for DR. Pearson correlation analysis and multiple stepwise regression analysis were used to investigate the correlation of TSH or FT3 with FBG, HbA1c, and TG in DR patients. Results: Of the 286 patients with T2DM included in this study, 101 (35.31%) developed DR and 185 (64.69%) did not. High TG, FBG, HbA1c, and TSH and low FT3 levels were independent risk factors for DR in T2DM patients. TSH positively correlated with TG, whereas FT3 negatively correlated with TG and HbA1c in T2DM patients with DR. Conclusion: Higher TSH and lower FT3 in T2DM patients with normal thyroid function may affect glucose and lipid metabolism, thereby increasing the risk of DR.

7.
Diabetes Metab Syndr Obes ; 17: 1575-1583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616992

RESUMO

Purpose: This study seeks to assess the potential of early pregnancy Triglyceride Glucose Index (TyG), triglyceride to High-Density Lipoprotein Cholesterol ratio (TG/HDL-c), Low-Density Lipoprotein Cholesterol to High-Density Lipoprotein Cholesterol ratio (LDL-C/HDL-C), and Total Cholesterol to High-Density Lipoprotein Cholesterol ratio (TC/HDL-C) in predicting Gestational Diabetes Mellitus (GDM). Patients and Methods: A total of 1073 adults singleton pregnant women were enrolled from June 2017 to September 2019. Complete anthropometric data and lipid profiles were measured in the first trimester (before 12 weeks gestation) and a 75g oral glucose tolerance test (OGTT) at 24-28 weeks was performed. Based on OGTT results, participants were categorised into Normal Glucose Tolerance (NGT) group (n=872) and GDM group (n=201). General data, laboratory test results, and surrogate insulin resistance indicators such as TyG index, TG/HDL-C, LDL-C/HDL-C, and TC/HDL-C were documented and compared. To compare differences between the two groups, t-test was used, Spearman correlation analysis and linear regression analysis were performed to establish associations between these indicators and insulin resistance in GDM. Receiver Operating Characteristic (ROC) curves were generated to compare the thresholds of these indicators for predicting GDM during pregnancy and to quantify overall diagnostic accuracy. Results: Individuals with GDM had higher TyG, TG/HDL-C, and LDL-C/HDL-C levels (P < 0.001), but with no significant difference observed in TC/HDL-C. All four ratios were positively correlated with Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), yet only TyG emerged as an independent risk factor for HOMA-IR. The Area under the Curve (AUC) of TyG index (0.692) was comparable to that of HOMA-IR (0.703). The cut-off points for TyG index, TG/HDL-C, and HOMA-IR in predicting GDM were 7.088, 0.831, and 1.8, respectively. HOMA-IR exhibited the highest sensitivity (79.1%), while TyG index (64.3%) and TG/HDL-C ratio (64.3%) demonstrated better specificity compared to HOMA-IR (56.3%). LDL-C/HDL-C and TC/HDL-C offered no discernible predictive advantage. Conclusion: Early pregnancy TyG index and TG/HDL-C can aid in identifying pregnant women at risk for GDM, potentially facilitating early and effective intervention to improve prognosis. TyG index exhibited superior predictive capability compared to TG/HDL-C.

8.
Plant Foods Hum Nutr ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441843

RESUMO

The flowers of Edgeworthia gardneri are used as herbal tea and medicine to treat various metabolic diseases including hyperglycemia, hypertension, and hyperlipidemia. This paper investigate the chemical constituents and biological activities of ethanolic extract and its different fractions from E. gardneri flowers. Firstly, the E. gardneri flowers was extracted by ethanol-aqueous solution to obtain crude extract (CE), which was subsequently fractionated by different polar organic solution to yield precipitated crystal (PC), dichloromethane (DCF), ethyl acetate (EAF), n-butanol (n-BuF), and residue water (RWF) fractions. UHPLC-ESI-HRMS/MS analysis resulted in the identification of 25 compounds, and the main compounds were flavonoids and coumarins. The precipitated crystal fraction showed the highest phenolic and flavonoid contents with 344.4 ± 3.38 mg GAE/g extract and 305.86 ± 0.87 mg RE/g extract. The EAF had the strongest antioxidant capacity and inhibitory effect on α-glucosidase and pancreatic lipase with IC50 values of 126.459 ± 7.82 and 23.16 ± 0.79 µg/mL. Besides, both PC and EAF significantly regulated the glucose and lipid metabolism disorders by increasing glucose consumption and reducing TG levels in HepG2 cells. Molecular docking results suggested that kaempferol-3-O-glucoside and tiliroside had good binding ability with enzymes, indicating that they may be potential α-glucosidase and pancreatic lipase inhibitors. Therefore, the E. gardneri flowers could be served as a bioactive agent for the regulation of metabolic disorders.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38407966

RESUMO

Aims: Drug resistance in ovarian cancer (OC) cells often leads to recurrence, metastasis, and high mortality rates among OC patients. Hydroxytyrosol (HT) has been reported to inhibit the proliferation of ovarian and other types of cancer cells. Here we synthesized a novel cyclohexane-hydroxytyrosol derivative (Chx-HT) for enhanced anticaner efficacy. We examined the growth-suppressing effect of Chx-HT on OC cells in vitro and in a xenograft mouse model and investigated the underlying mechanism. Results: We demonstrated that Chx-HT inhibits proliferation, promotes apoptosis, and remodels glucose and lipid metabolism by reducing fatty acid ß-oxidation while increasing glycolysis, de novo fatty acid synthesis (FAS), and lipid droplet (LD) accumulation, impairs mitochondrial respiration, and induces oxidative stress both in vitro and in vivo. In addition, Chx-HT blocks autophagic flux by obstructing the maturation of lysosomal cathepsins in the late stage, but also activates autophagy through the p-AMPK/p-mTOR/p-ULK1 pathway in response to energy deficit. Innovation and Conclusion: Reactive oxidative species (ROS) play a critical role in mediating the effects of Chx-HT on proliferation, apoptosis, autophagy, tricarboxylic acid (TCA) cycle, fatty acid ß-oxidation, and mitochondrial respiration, and the autophagic activation underlies the effects of Chx-HT on glycolysis, de novo FAS, and LD accumulation in OC cells. Cotreating OC cells with Chx-HT and autophagic inhibitor or glycolytic inhibitor results in an additive inhibition of proliferation. Our study indicates that Chx-HT stands for a promising OC therapeutic by ROS and autophagy blockade-mediated metabolic remodeling.

10.
Endocr Connect ; 13(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323605

RESUMO

Adipokine chemerin plays important roles in disorders of glucose and lipid metabolism of obesity and obesity-related diseases, and exercise-induced improvement of glucose and lipid metabolism is closely related to the decrease of chemerin, but the mechanisms by which chemerin regulates glucose and lipid metabolism remain unclarified. Hypotestosterone induces male obesity and disorders of glucose and lipid metabolism through androgen receptor (AR) and its target genes: glucose and lipid metabolism-related molecules (including FOXO1, PEPCK, PGC-1α, and SCD1). Recently, the link between them has been reported that chemerin modulated the secretion of androgen. In this study, global chemerin knockout (chemerin (-/-)) mice were established to demonstrate the roles of chemerin in regulating blood glucose and blood lipid of mice under diet (high-fat (HFD) and normal diet) and exercise interventions and then to explore its mechanisms (AR - glucose and lipid metabolism enzymes). We found that the blood lipid and adipocyte size were low accompanied by the improvements in the levels of serum testosterone, gastrocnemius AR, and gastrocnemius FOXO1, SCD1, and PGC-1α in HFD chemerin (-/-) mice, but exercise-induced improvements of these indicators in HFD WT mice were attenuated or abolished in HFD chemerin (-/-) mice. In conclusion, the decrease of chemerin improved the blood lipid profile of HFD male mice at sedentary and exercise states, mediated partly by the increases of testosterone and AR to regulate glucose and lipid metabolism enzymes. To our knowledge, it is the first report that chemerin's regulation of glucose and lipid metabolism might be mediated by testosterone and AR in vivo.

11.
Eur J Med Res ; 29(1): 117, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347605

RESUMO

INTRODUCTION: During normal pregnancy, changes in the gut microbiota (GM) in response to physiological alterations in hormonal secretion, immune functions and homeostasis have received extensive attention. However, the dynamic changes in the GM during three consecutive trimesters of pregnancy and their relationship with glucose and lipid metabolism have not been reported. In this study, we aimed to investigate the dynamic changes in the diversity and species of the GM during three consecutive trimesters in women who naturally conceived, and their relationships with abnormal fasting blood glucose (FBG) and serum lipid levels. METHODS: A total of 30 pregnant women without any known chronic or autoimmune inflammatory disease history before pregnancy were enrolled during the first trimester. Serum and stool samples were collected during the first trimester, the second trimester, and the third trimester. Serum samples were tested for FBG and blood lipid levels, and stool specimens were analyzed by 16S rDNA sequencing. RESULTS: The abundance ratio of bacteroidetes/firmicutes showed an increasing tendency in most of the subjects (19/30, 63.3%) from the first to the third trimester. LEfSe analysis showed that the abundance of Bilophila was significantly increased from the first to the third trimester. In addition, at the genus level, the increased relative abundance of Mitsuokella, Clostridium sensu stricto and Weissella were potentially involved in the development of high FBG during pregnancy. The raised relative abundance of Corynebacterium, Rothia and Granulicatella potentially contributed to the occurrence of dyslipidemia during pregnancy. CONCLUSIONS: There are dynamic changes in the GM during the three trimesters, and the alterations in some bacterium abundance may contribute to the development of high FBG and dyslipidemia during pregnancy. Monitoring enterotypes and correcting dysbiosis in the first trimester may become new strategies for predicting and preventing glucolipid metabolism disorders during pregnancy.


Assuntos
Dislipidemias , Microbioma Gastrointestinal , Gravidez , Feminino , Humanos , Microbioma Gastrointestinal/genética , Metabolismo dos Lipídeos , Glucose , Lipídeos
12.
Carbohydr Polym ; 331: 121849, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388033

RESUMO

The physicochemical properties of dietary fiber in the gastrointestinal tract, such as hydration properties, adsorption properties, rheological properties, have an important influence on the physiological process of host digestion and absorption, leading to the differences in satiety and glucose and lipid metabolisms. Based on the diversified physicochemical properties of konjac glucomannan (KGM), it is meaningful to review the relationship of structural characteristics, physicochemical properties and glycose and lipid metabolism. Firstly, this paper bypassed the category of intestinal microbes, and explained the potential of dietary fiber in regulating glucose and lipid metabolism during nutrient digestion and absorption from the perspective of colloidal nutrition. Secondly, the modification methods of KGM to regulate its physicochemical properties were discussed and the relationship between KGM's molecular structure types and glycose and lipid metabolism were summarized. Finally, based on the characteristics of KGM, the application of KGM in the main material and ingredients of fat reduction food was reviewed. We hope this work could provide theoretical basis for the study of dietary fiber colloid nutrition science.


Assuntos
Metabolismo dos Lipídeos , Mananas , Ciências da Nutrição , Fibras na Dieta , Glucose
13.
Fish Physiol Biochem ; 50(2): 635-651, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38165563

RESUMO

Largemouth bass (Micropterus salmoides) were fed with three diets containing 6%, 12%, and 18% wheat starch for 70 days to examine their impacts on growth performance, glucose and lipid metabolisms, and liver and intestinal health. The results suggested that the 18% starch group inhibited the growth, and improved the hepatic glycogen content compared with the 6% and 12% starch groups (P < 0.05). High starch significantly improved the activities of glycolysis-related enzymes, hexokinase (HK), glucokinase (GK), phosphofructokinase (PFK), and pyruvate kinase (PK) (P < 0.05); promoted the mRNA expression of glycolysis-related phosphofructokinase (pfk); decreased the activities of gluconeogenesis-related enzymes, pyruvate carboxylase (PC), and phosphoenolpyruvate carboxykinase (PEPCK); and reduced the mRNA expression of gluconeogenesis-related fructose-1,6-bisphosphatase-1(fbp1) (P < 0.05). High starch reduced the hepatic mRNA expressions of bile acid metabolism-related cholesterol hydroxylase (cyp7a1) and small heterodimer partner (shp) (P < 0.05), increased the activity of hepatic fatty acid synthase (FAS) (P < 0.05), and reduced the hepatic mRNA expressions of lipid metabolism-related peroxisome proliferator-activated receptor α (ppar-α) and carnitine palmitoyltransferase 1α (cpt-1α) (P < 0.05). High starch promoted inflammation; significantly reduced the mRNA expressions of anti-inflammatory cytokines transforming growth factor-ß1 (tgf-ß1), interleukin-10 (il-10), and interleukin-11ß (il-11ß); and increased the mRNA expressions of pro-inflammatory cytokine tumor necrosis factor-α (tnf-α), interleukin-1ß (il-1ß), and interleukin-8 (il-8) in the liver and intestinal tract (P < 0.05). Additionally, high starch negatively influenced the intestinal microbiota, with the reduced relative abundance of Trichotes and Actinobacteria and the increased relative abundance of Firmicutes and Proteobacteria. In conclusion, low dietary wheat starch level (6%) was more profitable to the growth and health of M. salmoides, while high dietary starch level (12% and 18%) could regulate the glucose and lipid metabolisms, impair the liver and intestinal health, and thus decrease the growth performance of M. salmoides.


Assuntos
Bass , Glucose , Animais , Glucose/metabolismo , Amido/farmacologia , Bass/fisiologia , Triticum/metabolismo , Metabolismo dos Lipídeos , Dieta/veterinária , Fígado/metabolismo , Carboidratos da Dieta/metabolismo , Lipídeos , Fosfofrutoquinases/metabolismo , RNA Mensageiro/metabolismo
14.
Pak J Med Sci ; 40(1Part-I): 26-30, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38196473

RESUMO

Objective: This study evaluates the impact of metformin combined with liraglutide on the glucose and lipid metabolism, oxidative stress, and vascular endothelium of patients with type-2 diabetes mellitus (T2DM) and metabolic syndrome. Methods: Medical records of 78 patients with T2DM and metabolic syndrome, admitted to Caoxian People's Hospital from July 2021 to July 2022, were retrospectively analysed. Thirty five patients were treated with metformin (control group), and 43 patients were treated with metformin combined with liraglutide (observation group). Indexes of glucose and lipid metabolism, function of vascular endothelium and the oxidative stress of both groups were compared before and after the treatment. Results: There was a significant decrease in the levels of fasting plasma glucose (FPG), Glycosylated Hemoglobin A1c (HbA1c), triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), systolic blood pressure (SBP), diastolic blood pressure (DBP) and waist circumference in both groups three months after the treatment, These indexes were significantly lower in the observation group compared to the control group (P<0.05). High-density lipoprotein cholesterol (HDL-C) levels were higher in the observation group (P<0.05). There was a significant improvement in the levels of nitric oxide (NO), endothelin-1 (ET-1), superoxide dismutase (SOD), and malondialdehyde (MDA) after the treatment, and these indexes were markedly better in the observation group compared to the control group (P<0.05). Conclusions: Metformin combined with liraglutide treatment is associated with better outcomes than metformin alone in patients with T2DM and metabolic syndrome. Combined treatment results in improved glucose and lipid metabolism, vascular endothelial function, and oxidative stress index values.

15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-999163

RESUMO

ObjectiveTo investigate the effect of Gegen Qinliantang on glucose and lipid metabolism in the rat model of catch-up growth (CUG) induced by a high-fat diet and the underlying mechanism. MethodA total of 60 SD rats were randomized into a normal control group (n=18) and a modeling group (n=42). The rat model of CUG was established with a restricted diet followed by a high-fat diet, and the changes of general status and body weight were observed. The levels of fasting blood glucose (FBG), fasting insulin (FINS), triglyceride (TG), and total cholesterol (TC) were measured in 6 rats in each group at the end of the 4th and 8th week, respectively. The homeostasis model assessment of insulin resistance index (HOMA-IR) was calculated, and the insulin sensitivity and body composition changes of CUG rats were evaluated. The successfully modeled rats were assigned into 6 groups: normal control, model, high-, medium-, and low-dose Gegen Qinliantang (2.5, 5, 10 g·kg-1), and pioglitazone (3.125 mg·kg-1). The rats were administrated with corresponding drugs by gavage for 6 weeks, and the normal control group and model group were administrated with the same amount of normal saline. During the experiment period, the changes of body weight were recorded, and the FBG, FINS, HOMA-IR, TG, and TC were determined at the end of the experiment. Hematoxylin-eosin (HE) staining was employed to observe the pathological changes of skeletal muscle in rats. The levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in the skeletal muscle were measured strictly according to the manuals of the reagent kits. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was performed to measure the mRNA levels of silencing information regulator 1 (SIRT1), peroxisome proliferator-activated receptor-gamma coactivator1α (PGC1α), and nuclear respiratory factor 1 (Nrf1) in the skeletal muscle. Western blot and immunohistochemistry were employed to assess the expression of SIRT1, PGC1α, and Nrf1 in the skeletal muscle. ResultCompared with the normal control group, the model group presented elevated levels of FBG, FINS, TG, and TC (P<0.05, P<0.01), increased HOMA-IR (P<0.01), increased diameter of muscle fibers and adipocytes between muscle cells in the skeletal muscle, rising levels of ROS and MDA in the skeletal muscle (P<0.01), and down-regulated mRNA and protein levels of SIRT1, PGC1α, and Nrf1 (P<0.05, P<0.01). Compared with the model group, Gegen Qinliantang (especially the medium and high doses) and pioglitazone decreased the body weight, FINS, HOMA-IR, and TG (P<0.05, P<0.01) and reduced interstitial components such as intermuscular fat in the skeletal muscles and the diameter of muscle fibers. Furthermore, the drugs lowerd the levels of ROS and MDA (P<0.05, P<0.01) and up-regulated the mRNA and protein levels of SIRT1, PGC1α, and Nrf1 (P<0.05, P<0.01) in the skeletal muscle. ConclusionGegen Qinliantang can ameliorate the glucose and lipid metabolism disorders and insulin resistance in CUG rats by regulating the SIRT1/PGC1α/Nrf1 signaling pathway.

16.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1012699

RESUMO

ObjectiveBased on network pharmacology and transcriptomics, the mechanism of Zishen Qinggan prescription (ZSQGF) in improving glucose and lipid metabolism in type 2 diabetes (T2DM) model rats was explored. MethodBased on network pharmacology analysis of the differential genes between ZSQGF and T2DM, gene ontology(GO)analysis and Kyoto encyclopedia of genes and genomes(KEGG) analysis were conducted, and molecular docking analysis was used to verify the binding between components and targets. A T2DM rat model was established by high-fat feeding and injection of streptozotocin (STZ). The rats were randomly divided into the control group, model group, metformin (Met, 72 mg·kg-1) group, and ZSQGF high-, medium-, and low-dose groups (ZSQGF-H, ZSQGF-M, and ZSQGF-L, with 4.8, 2.4, and 1.2 g·kg-1 raw drug in the solution). The living status of rats was monitored and the levels of total cholesterol (TC), total triglycerides (TG), high density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in rat serum were detected. The liver tissues were subjected to Hematoxylin eosin(HE) staining and oil red O staining. The differential genes were analyzed through transcriptomics, GO and KEGG analysis, and the protein-protein interaction(PPI) network was obtained to screen key targets. With network pharmacology and transcriptomics analysis results, the protein pathways were identified. The expression levels of nuclear factor-κB (NF-κB), matrix metalloproteinase(MMP)-1 and MMP-9 proteins in liver tissues were detected by Western blot. The mRNA expression of B-cell lymphoma-2(Bcl-2) modifying factor(BMF), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4), and fatty acid synthase(FASN) was detected by real-time polymerase chain reaction(Real-time PCR). The expression of MMP-1 and MMP-9 in the liver was detected by immunofluorescence staining. ResultTranscriptomics and network pharmacology analysis suggested that ZSQGF may protect the liver through the glucose and lipid metabolism pathway and the inflammation pathway. Experiments showed that after 8 weeks of administration, the body weight, blood sugar, serum indicators, and pathological staining results of rats were improved. Western blot results indicated a decrease in the relative expression levels of NF-κB, MMP-1 and MMP-9 proteins in the liver. Real-time PCR results showed a decrease in the transcriptional expression of BMF, NOX4, and FASN in the ZSQGF-H group, while immunofluorescence staining results present decreased expression of MMP-1 and MMP-9 in the ZSQGF groups. ConclusionZSQGF can improve the glucose and lipid metabolism by inhibiting the expression of FASN, reducing lipid synthesis, and regulating the NF-κB signaling pathway.

17.
Acta Pharmaceutica Sinica ; (12): 105-118, 2024.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1005446

RESUMO

Isoliquiritigenin (ISL) is an active chalcone compound isolated from licorice. It possesses anti-inflammatory and anti-oxidative activities. In our previous study, we uncovered a great potential of ISL in treatment of type 2 diabetes mellitus (T2DM). Therefore, this study aims to reveal the mechanism underlying the alleviatory effects of ISL on T2DM-induced glycolipid metabolism disorder. High-fat-high-sugar diet (HFD) combined with intraperitoneal injection of streptozotocin (STZ) were used to establish T2DM mice model. All animal experiments were carried out with approval of the Committee of Ethics at Beijing University of Chinese Medicine. HepG2 cells were used in in vitro experiments, and sodium palmitate (SP) was applied to establish insulin resistance (IR) model cells. The effects of ISL on body weight, fasting blood glucose levels, and pathological changes in the livers of mice were examined. Enzyme-linked immune sorbent assay (ELISA) and real-time quantitative PCR (RT-qPCR) were applied to detect the regulatory effects of ISL on key targets involved in glucolipid metabolism. Additionally, molecular docking and analytical dynamics simulation methods were used to analyze the interaction between ISL and key target protein. The results indicate that ISL significantly downregulates the transcriptional levels and inhibits the activities of key enzymes involved in gluconeogenesis, including pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK), and fructose-1, 6-bisphosphatase (FBP). It also downregulates the transcriptional and protein levels of hepatocyte nuclear factor 4α (HNF4α) and cAMP response element binding protein (CREB), the two transcriptional factors involved in gluconeogenesis. Thus, ISL inhibits hepatic gluconeogenesis in T2DM mice. In addition, ISL reduces total cholesterol (TC) and triglyceride (TG) levels in the livers of T2DM mice. Moreover, ISL downregulates the mRNA levels of lipogenesis genes and upregulates those of genes involved in fatty acid oxidation, lipid uptake, and lipid export. In conclusion, ISL suppresses hepatic gluconeogenesis, promotes lipolysis, and restrains lipogenesis in T2DM mice, thereby improving the abnormal glycolipid metabolism caused by T2DM.

18.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1003770

RESUMO

ObjectiveTo observe and compare the intervention effect of modified Cangfu Daotantang on glucose and lipid metabolism in simple obese children with phlegm dampness and stagnation. MethodA total of 60 children with simple obesity were randomly divided into two groups according to the simple randomization method of the random number table. The odd number was included in the test group, and the even number was included in the basic treatment group, with 30 cases in each group. On the basis of signing the informed consent notice, the treatment group was given modified Cangfu Daotantang combined with basic treatment, while the control group was only given basic treatment. After three months of treatment, the body mass index (BMI), glucose and lipid metabolism level [total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), fasting plasma glucose (FPG), fasting insulin (FINS), and homeostasis model assessment-insulin resistance (HOMA-IR)], the change in the total score of traditional Chinese medicine (TCM) syndromes, and the effective rate of treatment were observed and compared. ResultAfter treatment, the BMI of the observation group and the control group decreased significantly (P<0.01). Compared with the control group, the BMI level in the observation group decreased significantly (P<0.05). After treatment, the levels of TC, TG, and LDL-C in the observation group and the control group decreased significantly (P<0.01). Compared with the control group, the levels of TC, TG, and LDL-C in the observation group decreased significantly (P<0.05). In addition, the level of TC in the observation group improved significantly compared with that in the control group (P<0.01). The levels of FPG, FINS, and HOMA-IR in the observation group and the control group were significantly lower than those before treatment (P<0.05). After treatment, compared with the control group, the levels of FPG, FINS, and HOMA-IR in the observation group were significantly reduced (P<0.05). The level of FPG in the observation group was significantly improved compared with that in the control group (P<0.01). After treatment, the total score of TCM syndromes in the two groups decreased significantly (P<0.01). Compared with the control group, the total score of TCM syndromes in the observation group was lower (P<0.01). After treatment, the total effective rate of treatment was 86.67% (26/30) in the observation group and 73.33% (22/30) in the control group. By rank sum test, the total effective rate of the observation group was better than that of the control group (Z=-2.100, P<0.05). ConclusionModified Cangfu Daotantang combined with basic treatment can effectively reduce the BMI of obese children and improve their glucose and lipid metabolism. It has good clinical effects and high clinical application value, which is worth further in-depth research and promotion.

19.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1003407

RESUMO

ObjectiveTo investigate the different effects of Yunvjian with or without Achyranthis Bidentatae Radix on glucose and lipid metabolism and inflammatory response in diabetic rats with the syndrome of Yin deficiency and internal heat. MethodThe rat model of diabetes due to Yin deficiency and internal heat was established by feeding with a high-sugar and high-fat diet and injection of thyroxine and streptozotocin. The successfully modeled rats were randomized into model control, Yunvjian without Achyranthis Bidentatae Radix (11.8 g·kg-1), Yunvjian with Achyranthis Bidentatae Radix (12.8 g·kg-1), and Achyranthis Bidentatae Radix (1.0 g·kg-1) groups (n=10), and another 10 rats were taken as the normal control group. Each group was administrated with corresponding drugs or saline by gavage for 28 days. The fasting blood glucose (FBG), fasting insulin (FINS), total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) in rats were measured. Enzyme-linked immunosorbent assay was employed to determine the levels of cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), triiodothyronine (T3), thyroxine (T4), interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and C-reactive protein (CRP) in the serum. The histopathological changes of the liver were observed. The expression of lipoxygenase-2 (COX-2) was detected by immunofluorescence. The mRNA levels of nuclear transcription factors-κB (NF-κB), monocyte chemotactic protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) were determined by real-time polymerase chain reaction (Real-time PCR).Western blot was employed to determine the protein levels of NF-κB in hibitory protein(IκB) kinase β (IKKβ), IκBα, and phosphorylated IκBα (p-IκBα) in the liver and the protein levels of NF-κB in the cytoplasm and nucleus. ResultCompared with the normal group, the model group showed elevated levels of FBG, FINS, insulin resistance index, TC, TG, LDL-C, cAMP, T3, T4, IL-1β, IL-6, TNF-α, and CRP, up-regulated mRNA levels of NF-κB, MCP-1, and ICAM-1, and up-regulated protein levels of COX-2, p-IκBα, and nuclear NF-κB (P<0.01). Compared with the model group, Yunvjian without Achyranthis Bidentatae Radix lowered the levels of FBG, FINS, insulin resistance index, TC, TG, LDL-C, cAMP, T3, T4, IL-1β, IL-6, TNF-α, and CRP, down-regulated the mRNA levels of NF-κB, MCP-1, and ICAM-1, and down-regulated the protein levels of COX-2, p-IκBα and nuclear NF-κB (P<0.05, P<0.01). Compared with the Yunvjian without Achyranthis Bidentatae Radix, Yunvjian with Achyranthis Bidentatae Radix showed lowered levels of FBG, FINS, insulin resistance index, and inflammatory cytokines, down-regulated mRNA levels of NF-κB, MCP-1, and ICAM-1, and down-regulated protein levels of p-IκBα and nuclear NF-κB (P<0.05, P<0.01). ConclusionAchyranthis Bidentatae Radix can enhance the performance of Yunvjian in reducing blood glucose and inhibiting inflammation in diabetic rats with the syndrome of yin deficiency and internal heat by down-regulating the IKK/IκB/NF-κB signaling pathway.

20.
Cytokine ; 173: 156423, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979212

RESUMO

Isthmin is a polypeptide secreted by adipocytes that was first detected in Xenopus gastrula embryos. Recent studies have focused on the biological functions of isthmin in growth and development, angiogenesis, and metabolism. Distinct spatiotemporal expression of isthmin-1 (ISM-1) was observed during growth and development. ISM-1 plays an important role in the occurrence and development of cancer by regulating cell proliferation, migration, angiogenesis, and immune microenvironments. Moreover, ISM-1, as a newly identified insulin-like adipokine, increases adipocyte glucose uptake and inhibits hepatic lipid synthesis. However, the biological function of ISM-1 remains largely unknown. In this review, we highlight the structure and physiological functions of isthmin and explore its application potential, contributing to a better understanding of its function and providing prevention and treatment strategies for various diseases.


Assuntos
Trombospondinas , Proliferação de Células , Glucose , Insulina , Fígado/metabolismo , Humanos , Animais , Trombospondinas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...