RESUMO
Chemical oxidizers and redox enzymes have traditionally been used to enhance the quality of baked goods. However, consumers now seek natural and clean-label ingredients, avoiding those with chemical-sounding names. Honey, a natural source of glucose oxidase (GOX), represents a promising alternative to purified enzymes for baking purposes. This study aimed to evaluate the effect of honey on the molecular structure and microstructure of gluten proteins in sourdough fermented by different lactic acid bacteria (LAB) strains. Four wheat-rye (1:1) sourdoughs were prepared, each supplemented with honey and inoculated with a different LAB strain. Additionally, two uninoculated doughs, one with honey (honey dough) and the other without (control dough), were prepared under identical conditions. Electronic paramagnetic resonance spectroscopy revealed the presence of hydrogen peroxide in honey solutions, indicating its role as an active source of GOX. Raman spectroscopy showed that honey addition altered the molecular structure of gluten by increasing the proportion of random coils at the expense of α-helix structures. This change is likely attributed to the competition between honey sugars and gluten proteins for water molecules in this system. Moreover, honey led to a decrease in the free sulfhydryl content of gluten compared to the control dough, suggesting an increase in disulfide crosslinking points. These enhanced protein-protein interactions were observed in scanning electron microscopy micrographs as a coarse gluten network composed of interconnected strands and fibrils. All LAB strains exhibited optimal acidification (pH < 4.3) in honey-supplemented sourdoughs, promoting the hydrolysis of gluten proteins into smaller fragments. Overall, honey-supplemented sourdoughs showed a gradual increase in the ß-sheet content while decreasing the proportion of random coils over time. This trend suggests that the polypeptide fragments interacted through interchain hydrogen bonds, leading to a more ordered structure, which likely contributes to providing dough with good baking aptitude.
RESUMO
Celiac disease (CD) is a chronic illness characterized by an inflammatory process triggered by gluten protein intake. Recent evidence has suggested that the lower relative abundance of bifidobacteria in the intestinal lumen may be associated with CD. Herein, we assessed the effect of the Bifidobacterium species Bifidobacterium bifidum, Bifidobacterium longum, Bembidion breve, Bifidobacterium animalis alone, and also a Bifidobacterium consortium on the digestion of intact gluten proteins (gliadins and glutenins) and the associated immunomodulatory responses elicited by the resulting peptides. The cytotoxicity and proinflammatory responses were evaluated through the activation of NF-kB p65 and the expression of cytokines TNF-α and IL-1ß in Caco-2 cell cultures exposed to gluten-derived peptides. The peptides induced a clear reduction in cytotoxic responses and proinflammatory marker levels compared to the gluten fragments generated during noninoculated gastrointestinal digestion. These results highlight the possible use of probiotics based on bifidobacteria as a prospective treatment for CD.
Assuntos
Bifidobacterium/metabolismo , Gliadina/metabolismo , Glutens/metabolismo , Biotransformação , Células CACO-2 , Doença Celíaca/tratamento farmacológico , Doença Celíaca/genética , Doença Celíaca/imunologia , Gliadina/química , Gliadina/imunologia , Glutens/imunologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Probióticos/administração & dosagem , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Wheat gluten proteins are decisive for the industrial properties of flour, so alterations resulting from grain infection with Fusarium graminearum produce changes in the glutenin content that affect the baking properties. This work analyzes the high-molecular-weight glutenin changes from wheat flour with different degrees of F. graminearum infection at field, since these proteins are determinant for the quality properties of flour. Wheat cultivars-on field trials-infected with F. graminearum isolates of diverse aggressiveness showed severity values between 9.1 and 42.58% and thousand kernel weight values between 28.12 and 32.33 g. Negative correlations between severity and protein content and positive correlations between yield and protein content were observed, employing reversed-phase high-performance liquid chromatography and polyacrylamide gel electrophoresis. Furthermore, the protein signal changes were in agreement for both methodological approaches. Also, the degree of disease observed and the protein changes on infected wheat cultivars varied in relation with the aggressiveness of the isolate responsible for the infection. The principal component analysis showed a close arrangement among protein values obtained by HPLC. For each cultivar, two principal components were obtained, which explained 80.85%, 88.48%, and 93.33% of the total variance (cultivars Sy200, AGP Fast, and Klein Tigre respectively). To our knowledge, the approaches employed for the analysis of protein changes according to the degree of disease, as well as the thorough statistical analysis, are novel for the study of Fusarium Head Blight.
Assuntos
Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Glutens/análise , Doenças das Plantas/microbiologia , Proteínas de Plantas/análise , Triticum/química , Triticum/microbiologia , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel de Poliacrilamida , Farinha/análiseRESUMO
The use of vital wheat gluten in the baking industry and wheat flour mills aims to improve the rheological characteristics of flour considered unsuitable to obtain products such as sliced bread, French bread, high-fiber breads, and other products that require strong flours. To improve characteristics such as flour strength, dough mixing tolerance, and bread volume, vital wheat gluten is added to flour at levels that can vary from 2% to 10% (flour basis), with 5% being a commonly used dosage. However, the vital wheat gluten commercialized in the market has few quality specifications, especially related to the characteristics of the proteins that constitute it and are responsible for the formation of the viscoelastic gluten network. Information on protein quality is important, because variations are observed in the technological quality of vital wheat gluten obtained from different sources, which could be associated to damage caused to proteins during the obtainment process. Several tests, either physical-chemical analyses, or rheological tests, are carried out to establish gluten quality; however, they are sometimes time-consuming and costly. Although these tests give good answers to specify gluten quality, flour mills, and the baking industries require fast and simple tests to evaluate the uses and/or dosage of vital gluten addition to wheat flour. This review covers the concepts, uses, obtainment processes, and quality analysis of vital wheat gluten, as well as simple tests to help identify details about protein quality of commercial vital wheat gluten.