Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Adv ; 75: 108415, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39033836

RESUMO

Glycosylated bacteriocins, known as glycocins, were first discovered in 2011. These bioactive peptides are produced by bacteria to gain survival advantages. They exhibit diverse types of glycans and demonstrate varied antimicrobial activity. Currently, there are 13 experimentally known glycocins, with over 250 identified in silico across different bacterial phyla. Notably, glycocins are recognized for their glycan-mediated antimicrobial activity, proving effective against drug-resistant and foodborne pathogens. Many glycocins contain rare S-linked glycans. Glycosyltransferases (GTs), responsible for transferring sugar to glycocins and involved in glycocin biosynthesis, often cluster together in the producer's genome. This clustering makes them valuable for custom glycoengineering with diverse substrate specificities. Heterologous expression of glycocins has paved the way for the establishment of microbial factories for glycopeptide and glycoconjugate production across various industries. In this review, we emphasize the primary roles of fully and partially characterized glycocins and their glycosylating enzymes. Additionally, we explore how specific glycan structures facilitate these functions in antibacterial activities. Furthermore, we discuss newer approaches and increasing efforts aimed at exploiting bacterial glycobiology for the development of food preservatives and as replacements or complements to traditional antibiotics, particularly in the face of antibiotic-resistant pathogenic bacteria.


Assuntos
Glicosiltransferases , Glicosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Glicosilação , Bacteriocinas/química , Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Bacteriocinas/genética , Anti-Infecciosos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/química
2.
Glycoconj J ; 38(2): 233-250, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33206284

RESUMO

Glycosylated bacteriocins (glycocins) are potential clean label food preservatives and new alternatives to antibiotics. Further development requires the availability of a method for laboratory evolution of glycocins, wherein the challenges to overcome include ensuring glycosylation in a heterologous host, avoiding potential toxicity of active glycocins to the host, and provisioning of a one-pot screening assay for active mutants. Employing EntS, a sequential O/S- di-glycosyltransferase from Enterococcus faecalis TX0104, a proof of the concept microbial system and high throughput screening assay (SELECT-GLYCOCIN) is developed for generation of O/S- linked glycopeptide libraries and screening of glycocins for desired activity/property. The method enabled enzyme-dependent in vivo glycosylation in the heterologous host and rapid screening of mutants of enterocin 96 (Ent96)- a glycocin active against food-borne pathogen L. monocytogenes. Using SELECT-GLYCOCIN, a library of random (1.5 X 10^3) and rational (17) mutants of Ent96 was generated. The mutants were screened for bioactivity to identify a total of 376 random and 14 rational mutants as bioactive. Downstream detailed analysis of 16 random and 14 rational mutants led to the identification of sequence- and or glyco-variants namely, G16E-H24Q, C13T, and Ent96-K4_K5insYYGNGV (PedioEnt96) as improved antimicrobials. To summaries, SELECT-GLYCOCIN provides a system and a generic method for discovery and screening of glycocins that can further be adapted to any known/unknown glycocins and can be employed in food preservatives' and drug discovery programs.


Assuntos
Bacteriocinas/metabolismo , Bacteriocinas/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Proteínas Recombinantes/metabolismo , Antibacterianos/farmacologia , Bacteriocinas/genética , Enterococcus faecalis/genética , Escherichia coli/genética , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Hemólise/efeitos dos fármacos , Humanos , Listeria monocytogenes/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mutação , Biblioteca de Peptídeos , Estudo de Prova de Conceito , Proteínas Recombinantes/genética
3.
Appl Microbiol Biotechnol ; 100(7): 2939-51, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26860942

RESUMO

Lactic acid bacteria (LAB) constitute a heterogeneous group of microorganisms that produce lactic acid as the major product during the fermentation process. LAB are Gram-positive bacteria with great biotechnological potential in the food industry. They can produce bacteriocins, which are proteinaceous antimicrobial molecules with a diverse genetic origin, posttranslationally modified or not, that can help the producer organism to outcompete other bacterial species. In this review, we focus on the various types of bacteriocins that can be found in LAB and the organization and regulation of the gene clusters responsible for their production and biosynthesis, and consider the food applications of the prototype bacteriocins from LAB. Furthermore, we propose a revised classification of bacteriocins that can accommodate the increasing number of classes reported over the last years.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriocinas/biossíntese , Bifidobacterium/metabolismo , Ácido Láctico/biossíntese , Lactobacillaceae/metabolismo , Proteínas de Bactérias/genética , Bacteriocinas/química , Bacteriocinas/classificação , Bifidobacterium/genética , Fermentação , Microbiologia de Alimentos , Expressão Gênica , Lactobacillaceae/genética , Família Multigênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA