Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Transl Oncol ; 24(3): 407-431, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34595736

RESUMO

An antibody-drug conjugate (ADC) is an advanced chemotherapeutic option with immense promises in treating many tumor. They are designed to selectively attack and kill neoplastic cells with minimal toxicity to normal tissues. ADCs are complex engineered immunoconjugates that comprise a monoclonal antibody for site-directed delivery and cytotoxic payload for targeted destruction of malignant cells. Therefore, it enables the reduction of off-target toxicities and enhances the therapeutic index of the drug. Hepatocellular carcinoma (HCC) is a solid tumor that shows high heterogeneity of molecular phenotypes and is considered the second most common cause of cancer-related death. Studies show enormous potential for ADCs targeting GPC3 and CD24 and other tumor-associated antigens in HCC with their high, selective expression and show potential outputs in preclinical evaluations. The review mainly highlights the preclinical evaluation of different antigen-targeted ADCs such as MetFab-DOX, Anti-c-Met IgG-OXA, Anti CD 24, ANC-HN-01, G7mab-DOX, hYP7-DCand hYP7-PC, Anti-CD147 ILs-DOX and AC133-vcMMAF against hepatocellular carcinoma and its future relevance.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Imunoconjugados/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos
2.
J Oral Pathol Med ; 46(4): 297-300, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27647326

RESUMO

BACKGROUND: Glypican-3 is a cell surface proteoglycan that is found in embrionary tissues, and there are no studies investigating this protein in odontogenic tumor. Thus, the aim of this study was to investigate glypican-3 in a series of aggressive and non-aggressive odontogenic tumors. METHODS: Fifty-nine cases of tumors were divided into aggressive odontogenic tumors (20 solid ameloblastomas, four unicystic ameloblastoma, 28 KOTs including five associated with Gorlin-Goltz syndrome) and non-aggressive odontogenic tumors (five adenomatoid odontogenic tumors and two calcifying cystic odontogenic tumors) and analyzed for glypican-3 using immunohistochemistry. RESULTS: Glypican-3 was observed in seven solid ameloblastoma and eighteen keratocystic odontogenic tumors including three of the five syndromic cases, but there was no significant difference between syndromic and sporadic cases (P > 0.05; Fisher's exact Test). All cases of unicystic ameloblastoma (n = 4), adenomatoid odontogenic tumor (n = 5), and calcifying cystic odontogenic tumor (n = 2) were negative. CONCLUSIONS: This provided insights into the presence of glypican-3 in odontogenic tumors. This protein distinguished aggressive from non-aggressive odontogenic tumors.


Assuntos
Glipicanas/metabolismo , Tumores Odontogênicos/patologia , Ameloblastoma/metabolismo , Humanos , Imuno-Histoquímica
3.
Oncotarget ; 7(37): 60133-60154, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27507057

RESUMO

Breast cancer is the disease with the highest impact on global health, being metastasis the main cause of death. To metastasize, carcinoma cells must reactivate a latent program called epithelial-mesenchymal transition (EMT), through which epithelial cancer cells acquire mesenchymal-like traits.Glypican-3 (GPC3), a proteoglycan involved in the regulation of proliferation and survival, has been associated with cancer. In this study we observed that the expression of GPC3 is opposite to the invasive/metastatic ability of Hs578T, MDA-MB231, ZR-75-1 and MCF-7 human breast cancer cell lines. GPC3 silencing activated growth, cell death resistance, migration, and invasive/metastatic capacity of MCF-7 cancer cells, while GPC3 overexpression inhibited these properties in MDA-MB231 tumor cell line. Moreover, silencing of GPC3 deepened the MCF-7 breast cancer cells mesenchymal characteristics, decreasing the expression of the epithelial marker E-Cadherin. On the other side, GPC3 overexpression induced the mesenchymal-epithelial transition (MET) of MDA-MB231 breast cancer cells, which re-expressed E-Cadherin and reduced the expression of vimentin and N-Cadherin. While GPC3 inhibited the canonical Wnt/ß-Catenin pathway in the breast cancer cells, this inhibition did not have effect on E-Cadherin expression. We demonstrated that the transcriptional repressor of E-Cadherin - ZEB1 - is upregulated in GPC3 silenced MCF-7 cells, while it is downregulated when GPC3 was overexpressed in MDA-MB231 cells. We presented experimental evidences showing that GPC3 induces the E-Cadherin re-expression in MDA-MB231 cells through the downregulation of ZEB1.Our data indicate that GPC3 is an important regulator of EMT in breast cancer, and a potential target for procedures against breast cancer metastasis.


Assuntos
Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Glipicanas/genética , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Glipicanas/metabolismo , Humanos , Células MCF-7 , Camundongos Nus , Interferência de RNA , Transplante Heterólogo , Carga Tumoral/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA