Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 392
Filtrar
1.
Bioresour Technol ; 402: 130845, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754559

RESUMO

Waste-Green Infrastructure Nexus is crucial to mitigate carbon emissions in waste disposal and promote eco-functions of green infrastructure in a circular bio-economy. Our purpose is to verify the feasibility of the nexus via "food waste anaerobic digestion - digestate/digestate biochar - green roof promotion". The results found that food waste digestate and digestate biochar significantly promoted green roof plant growth, evapotranspiration, rainwater retention, runoff reduction, and prevention of nutrient leaching. Digestate treatments were better than digestate biochar for the green roof promotion. The promotion ranked consistently with 20 % digestate > 10 % digestate > 20 % digestate biochar > 10 % digestate biochar > control in stolon growth, leaf emergence, branching of Paspalum vaginatum, green roof establishment, rainwater retention, runoff reduction, and the leaching of nitrogen, phosphorus, potassium. This study demonstrated that food waste could be regenerated to promote urban green infrastructure to form a circular bio-economy by the Waste-Green Infrastructure Nexus.


Assuntos
Carvão Vegetal , Alimentos , Eliminação de Resíduos/métodos , Conservação dos Recursos Naturais/métodos , Perda e Desperdício de Alimentos
2.
Sci Rep ; 14(1): 11936, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789505

RESUMO

Green infrastructure networks enhance the protection and improvement of urban ecological environments, augment the efficiency and quality of ecosystem services, and furnish residents with healthier and more comfortable living conditions. Although previous research has investigated the construction or optimization methods of green infrastructure networks, these studies have been relatively isolated and lacking in case studies for mountainous cities. In the development of green infrastructure, mountainous cities must specifically consider the impact of terrain on network construction. Taking Fuzhou, a mountainous city in China, as an example, this study constructs and optimizes the green infrastructure network by employing morphological spatial pattern analysis, connectivity analysis, the Minimum Cumulative Resistance model, and circuit theory. These methodologies increase the connectivity of the Green Infrastructure within the study area, thereby promoting the health of the local ecosystem and creating conducive circumstances for the city's sustainable development. The findings reveal that: (1) Green infrastructure in Fuzhou takes up 5366.38 ha, constituting 21.76% of the study area, primarily situated in the northwest and south; (2) Fuzhou's Green Infrastructure network comprises 10 hubs and 17 corridors with a hub area of 1306.98 ha, predominantly distributed in the mountains encircling the city, including Meifeng Mountain, Gaogai Mountain, and Qingliang Mountain; (3) Based on optimization, the circuit centrality index categorizes hub importance into three protection levels, pinpointing nine crucial protected areas in the corridors and 680 areas requiring enhancement, including 68 areas for first-level improvement, 149 areas for second-level improvement, and 463 areas for third-level improvement. This research offers a methodological reference for constructing and optimizing green infrastructure networks in mountainous cities, providing both theoretical and practical foundations for optimizing green infrastructure networks in Fuzhou City.

3.
J Environ Manage ; 360: 121047, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38761616

RESUMO

Green roofs are well studied for the environmental, social, and economic services these provide. As a result, green roofs are widespread and within the common vernacular of city residents. Green roof bylaws and construction standards are present in many cities in North America, rooting the presence of this green infrastructure within urban landscapes. Although examples of green roofs constructed decades ago exist, rarely are green roofs monitored over such long periods, and in ways that allow for experimentation, analysis, and conclusions about performance or function. In this study we present findings on plant cover and biomass from a green roof testing facility in Toronto, Canada that was monitored for over a decade. We examine the contributions of growing media, planting, and irrigation in the first seven years (2011-2021) of the eleven-year monitoring period. We found that during this maintenance phase period (2011-2017), plant cover and biomass was highest in modules planted with Sedum, included organic media, and were irrigated, whereas non-irrigated modules planted with forbs and grasses had the poorest performance regardless of media type. Following the stoppage of irrigation, and the post maintenance phase (2017-2021), modules initially planted with Sedum continued to sustain cover and biomass whereas planted forbs and grasses mostly disappeared, and these treatments were overtaken by Sedum. Our findings demonstrate that with irrigation, plantings of forbs and grasses can sustain plant cover and biomass. However, Sedum buffers against major changes to environmental conditions or abrupt changes to maintenance, adding insurance against failure of extensive green roofs.

4.
Sci Total Environ ; 935: 173369, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777071

RESUMO

Green infrastructure (GI), as one type of ecological stormwater management practices, can potentially alleviate water problems and deliver a wide range of environmental benefits in urban areas. GIs are often planned and designed to reduce runoff and mitigate pollution. However, the influence of GI on groundwater hydrology and that of shallow groundwater on GI performance was seldom considered. This study utilized a calibrated surface-subsurface hydrological model, i.e., Storm Water Management Model coupled with USGS's modular hydrologic model (SWMM-MODFLOW) to consider the interaction between GI and groundwater into the process of GI planning. The optimal implementation ratio, aggregation level and upstream-downstream location of bioretention cells (BC, one type of GI) under different planning objectives and hydrogeologic conditions was explored. The consideration of groundwater management exerted a significant impact on the optimal spatial allocation of BCs. The results showed that when groundwater management was more concerned than runoff control, BCs were recommended to be allocated more apart from each other and more upstream in the catchment because more-distributed and upstream BCs can result in lower groundwater table rise which is beneficial. BCs were overall recommended to be allocated in areas of deeper groundwater tables, coarser soils, and flatter topographies. However, the spatial features of BCs are related to each other, the choice of them are affected by various hydrogeologic factors simultaneously. The exact location of BCs should be determined by considering the trade-off between runoff control efficiency and groundwater impact. The findings obtained in this study can provide guidance on GI planning in shallow groundwater areas.

5.
J Environ Manage ; 359: 120999, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677227

RESUMO

In recent years, particularly following the definition of the UN Sustainable Development Goals (SDGs) for 2030, Nature-Based Solutions (NBS) have gained considerable attention, capturing the interest of both the scientific community and policymakers committed to addressing urban environmental issues. However, the need for studies to guide decision-makers in identifying suitable locations for NBS implementation within urban stormwater management is evident. To address this gap, the present study employs a methodological approach grounded in multi-criteria analysis integrated with Geographic Information Systems (GIS) to identify areas with potential for NBS implementation. In this process, ten NBS were proposed and tested in the drainage area of a shallow tropical urban lake in Londrina, southern Brazil. Additionally, the study investigates areas hosting lower-income populations, a relevant aspect for public managers given the diverse economic subsidies required to implement NBS. Furthermore, the study incorporates a preliminary analysis that evaluates the potential ecosystem benefits to determine the most suitable NBS for a specific site. The result shows that all the ten analyzed NBS were deemed suitable for the study area. Rain barrels had the highest percentage coverage in the study area (37.1%), followed by tree pits (27.9%), and rain gardens (25.4%). Despite having the highest distribution in the basin area, rain barrels exhibited only moderate ecosystem benefits, prompting the prioritization of other NBS with more significant ecological advantages in the final integrated map. In summary, the methodology proposed showed to be a robust approach to selecting optimal solutions in densely populated urban areas.


Assuntos
Conservação dos Recursos Naturais , Sistemas de Informação Geográfica , Chuva , Brasil , Conservação dos Recursos Naturais/métodos , Ecossistema , Desenvolvimento Sustentável
6.
Environ Res ; 252(Pt 2): 118837, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570129

RESUMO

This detailed analysis highlights the numerous environmental benefits provided by urban green spaces, emphasizing their critical role in improving urban life quality and advancing sustainable development. The review delves into critical themes such as the impact of urban green spaces on human health, the complex interplay between urban ecology and sustainability, and the evaluation of ecosystem services using a comprehensive review of existing literature. The investigation thoroughly examines various aspects of green infrastructure, shedding light on its contributions to social cohesion, human well-being, and environmental sustainability in general. The analysis summarizes the study's findings and demonstrates the critical role of urban green spaces in urban ecology, which significantly mitigates environmental challenges. The intricate links between these green spaces and human health are thoroughly investigated, with benefits ranging from enhanced mental and physical well-being to comprehensive mental health. Furthermore, the analysis emphasizes how green spaces benefit urban development by increasing property values, boosting tourism, and creating job opportunities. The discussion also considers possible futures, emphasizing the integration of technology, the advancement of natural solutions, and the critical importance of prioritizing health and well-being in the design of urban green spaces. To ensure that urban green spaces are developed and maintained as essential components of resilient and sustainable urban environments, the assessment concludes with practical recommendations for communities, urban planners, and legislators.

7.
Sci Rep ; 14(1): 8903, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632373

RESUMO

Ecosystem services (ES) are essential to sustainable development at multiple spatial scales. Monitoring ES potential (ESP) at the metropolitan level is imperative to sustainable cities. We developed a procedure for long-term monitoring of metropolitan ESP dynamics, utilizing open-source land use land cover (LULC) data and the expert matrix method. We compared the ESP results of 38 European Capital Metropolitan Areas (ECMA) regarding biodiversity integrity, drinking water provision, flood protection, air quality, water purification, and recreation & tourism. Our results show significant declines in ESP across ECMA due to LULC alteration between 2006, 2012, and 2018. We found that ECMA in post-socialist European countries like Poland (Warszawa) have experienced high rates of land use transformation with a remarkable impact on ESP. Surprisingly, we found that Fennoscandinan ECMA, like Helsinki, Stockholm, and Oslo which lead the cumulative ESP ranking, faced the ESP reduction of the highest impact in recent years. The correlation analysis of ESP dynamics to urban expansion and population growth rates suggests that inattentive urbanization processes impact ESP more than population growth. We unveil the implications of our results to the EU and global level agendas like the European Nature Conservation Law and the Sustainable Development Goals.

8.
Sci Total Environ ; 927: 172219, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580120

RESUMO

Nature-based solutions (NBS) have great potential for achieving urban sustainability. While several reviews have comprehensively examined NBS, few have focused on its role in addressing urban sustainability challenges. Here we present a systematic review of 142 case studies selected from English papers published in SCI journals (i.e., indexed by Web of Science) during 2016-2022, whose titles, abstracts or keywords contain both urban-related terms and NBS-related terms. Using multiple methods, including statistical analysis, deductive content analysis, and inductive content analysis, we found that: (1) NBS have primarily been utilized to address urban flooding (43 %) and heat stress (21 %), with green roofs (24 %) and urban forests (16 %) being the most extensively studied NBS for tackling these challenges. (2) The ecosystem services (ES) capacity of NBS has been heavily researched (57 %), while studies addressing ES flows (7 %) and ES demand (18 %) are limited. (3) Most studies involved at least one NBS implementation process (83 %), but primarily focused on selecting and assessing NBS and related actions (66 %), with fewer studies on designing and implementing NBS and transferring & upscale NBS. We suggest that future research should contribute to the establishment of a checklist to assist in identifying which NBS types are effective in addressing specific urban sustainability challenges in varying contexts. Integrating the science and practice of NBS for urban sustainability is also crucial for advancing this field.

9.
Environ Sci Pollut Res Int ; 31(17): 24913-24935, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460036

RESUMO

High levels of urban green infrastructure (UGI) development can help mitigate the climate, biodiversity, and habitat crises faced by cities and support the achievement of sustainable urban development. Based on the relevant data of 41 cities in the Yangtze River Delta region obtained from 2011 to 2020, this study measured the development level of natural and geographic conditions, economic development, urban construction, social and cultural development, and eco-environment quality and urban green infrastructure (UGI); evaluated the development trend of UGI in the region during the 12th Five-Year Plan and 13th Five-Year Plan by using entropy TOPSIS; and used fs/QCA to explain the high-level development path of each city toward the achievement of a green infrastructure. The results showed that (1) the development level of UGI in the Yangtze River Delta region decreases from southeast to northwest, and gradually decreases from Shanghai, Hangzhou, and other central cities. (2) There were several different configurations of high levels and non-high levels of UGI development drivers across regions, confirming the existence of multiple causality and asymmetry indices in the drivers of UGI. (3) During the "12th Five-Year Plan" and the "13th Five-Year Plan" period, the conditions needed to achieve a high level of UGI gradually became stricter, expanding from nature-social culture and urban construction-eco-environmental drivers to nature-urban construction, nature-social culture-eco-environmental, urban construction-economy-social culture-eco-environmental drivers. Research findings can provide greater guidance and implications for future sustainable urban development.


Assuntos
Anti-Infecciosos , Reforma Urbana , China , Penicilinas , Biodiversidade , Cidades , Desenvolvimento Econômico , Fibrinolíticos
10.
Heliyon ; 10(5): e27007, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38495133

RESUMO

Green infrastructure is often proposed to complement conventional urban stormwater management systems that are stressed by extreme storms and expanding impervious surfaces. Established hydrological and hydraulic models inform stormwater engineering but are time- and data-intensive or aspatial, rendering them inadequate for rapid exploration of solutions. Simple spreadsheet models support quick site plan assessments but cannot adequately represent spatial interactions beyond a site. The present study builds on the Landscape Green Infrastructure Design (L-GrID) Model, a process-based spatial model that enables rapid development and exploration of green infrastructure scenarios to mitigate neighborhood flooding. We first explored how well L-GrID could replicate flooding reports in a neighborhood in Chicago, Illinois, USA, to evaluate its potential for green infrastructure planning. Although not meant for prediction, L-GrID was able to replicate the flooding reported and helped identify strategies for flood control. Once evaluated for this neighborhood, we extended the model to include water quality through the representation of dispersion and settling mechanisms for two pollutant surrogates-total nitrogen and total suspended solids. With the extended model, Landscape Green Infrastructure Design Model-Water Quality (L-GrID-WQ), we examined benefits, costs, and tradeoffs for different green infrastructure strategies. Bioswales were slightly more effective than other green infrastructure types in reducing flooding extent and downstream runoff and pollution, through increased infiltration and settling capacity. Permeable pavers followed in effectiveness and are suggested where spatial constraints may limit the installation of bioswales. Although green infrastructure supports both flooding and pollution control, small tradeoffs between these functions emerged across spatial layouts: strategies based on only curb-cuts better controlled pollution, while layouts that followed the path of water flow better controlled flooding. By illuminating such tradeoffs, L-GrID-WQ can support green infrastructure planning that prioritizes unique concerns in different areas of a landscape.

11.
Sci Total Environ ; 924: 171441, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38447731

RESUMO

Urban air pollution is one of the most important environmental problems for human health and several strategies have been developed for its mitigation. The objective of this study is to assess the impact of single and combined mitigation measures on concentrations of air pollutants emitted by traffic at pedestrian level in the same urban environment. The effectiveness of different scenarios of green infrastructure (GI), the implementation of photocatalytic materials and traffic low emission zones (LEZ) are investigated, as well as several combinations of LEZ and GI. A wide set of scenarios is simulated through Computational Fluid Dynamics (CFD) modelling for two different wind directions (perpendicular (0°) and 45° wind directions). Wind flow for the BASE scenario without any measure implemented was previously evaluated using wind-tunnel measurements. Air pollutant concentrations for this scenario are compared with the results obtained from the different mitigation scenarios. Reduction of traffic emissions through LEZ is found to be the most effective single measure to improve local air quality. However, GI enhances the effects of LEZ, which makes the combination of LEZ + GI a very effective measure. The effectiveness of this combination depends on the GI layout, the intensity of emission reduction in the LEZ and the traffic diversion in streets surrounding the LEZ. These findings, in line with previous literature, suggest that the implementation of GI may increase air pollutant concentrations at pedestrian level for some cases. However, this study highlights that this negative effect on air quality can turn into positive when used in combination with reductions of local traffic emissions.

12.
Sci Total Environ ; 926: 171397, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38438033

RESUMO

Discourses concerning the potential health benefits of blue-green infrastructure (BGI) have gained momentum, highlighting its positive influence on human health and wellbeing. While studies have explored the concept of "Nature Pyramid" and the role of exposure to natural environments in promoting health, the role of water elements remains underexplored. Rooted in this concept, this study proposed a notion of "blue-green diet" as a framework to understand the intricate mechanisms and determinants of optimal blue-green exposure. Understanding the relationship between these determinants and their health-related impacts can facilitate the enhancement of BGI design, leading to greater effectiveness in promoting health and wellbeing and supporting sustainable urban development strategies. To enhance the comprehension of the "blue-green diet", this study conducted a systematic literature review to grasp the underlying mechanisms behind its beneficial effects, focusing on two key determinants of "blue-green diet", which are also derived from the concept of the "Nature Pyramid": (1) the type of BGI and (2) the mode of interaction with and within BGIs. Under the search of BGI's overall health impacts, this study selected 54 journal publications concerning BGI's type and interaction mode from Web of Science and Scopus since 2010. The review revealed significant disparities in the health benefits provided by different types of BGI (in terms of artificial extent and scale) and between active and passive interaction modes. It examines how to balance natural and artificial elements for enhancing the benefits of BGI and discusses the attributes of BGI that encourage diverse and meaningful interaction patterns. These efforts collectively aim to optimize BGI design and planning, increase its capacity to promote health, and extend its benefits to a wider range of individuals. Future research should encompass a broader spectrum of determinants, such as diverse BGI settings, visit frequency and duration, and user's social-cultural backgrounds.


Assuntos
Promoção da Saúde , Desenvolvimento Sustentável , Humanos , Dieta
13.
Environ Res ; 250: 118445, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38360163

RESUMO

While urban trees can be important determinants of human health and wellbeing in world cities, the specific influence of nearby urban trees upon human wellbeing has not been adequately explored. While many studies have associated urban greenery abundance with wellbeing scores, many measures of urban greenery do not specify the type of vegetation or the impact of co-location. Here we fill this gap by associating self-reported measures of the presence of nearby trees (tree in front of one's home) with validated subjective wellbeing (SWB) scores. We also tested for the mediating role of what people thought about trees and nature, with a focus on the values people associate with urban trees and nature relatedness (NR). We used electronic panel survey data based on a demographic and geographical representative sample of more than 3400 residents living in Toronto, Canada, and Melbourne, Australia. We analysed these data using regression-based mediation and path analyses. We found that having a tree in front of one's home was strongly and positively associated with SWB scores in both cities with similar results (Melbourne, ß = 0.17, p < 0.05; Toronto, ß = 0.18, p < 0.05), while accounting for NR, values associated with urban trees, and demographics (e.g., age, education, home ownership). The mediating role of NR and values was small. The specific pathways of association between tree in front of one's home, SWB, NR, and values, varied by city, when accounting for demographics. We discuss how increasing the abundance of nearby urban trees in cities may also increase human wellbeing.


Assuntos
Árvores , Humanos , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Ontário , Cidades , Adolescente , Austrália
14.
Environ Monit Assess ; 196(3): 253, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340227

RESUMO

In addressing environmental challenges and ecosystem resilience, green networks are preserved, repaired, and rebuilt by green infrastructure. However, urbanization effects have seen urban land form undergo significant modifications over time due to different anthropogenic activities. The objective of this study is to evaluate the land use and land cover (LULC) change in FESTAC Town, a government-owned residential neighborhood in Lagos, with the goal of recommending interventions for conserving green infrastructure. The study mainly focuses on employing remote sensing and geographic information system (GIS) techniques to detect alterations in land use in FESTAC Town from 1984 to 2022. The ERDAS Imagine software was utilized, employing a supervised classification-maximum likelihood algorithm, to identify changes in LULC. Additionally, an accuracy assessment was conducted using ground truth data. Findings from this study show significant increase in built-up areas at the cost of loss in dense vegetation over a 38-year period thereby, putting pressure on available green spaces. In terms of the area under each LULC category, most significant changes have been observed in built-up area (410.86%), bare surface (- 79.79%), sparse vegetation (- 53.42%), and dense vegetation (- 31.83%). Effective conservation strategies should focus on promoting connectivity between green spaces, engaging stakeholders in the planning and implementation of green infrastructure projects.


Assuntos
Ecossistema , Monitoramento Ambiental , Nigéria , Monitoramento Ambiental/métodos , Cidades , Sistemas de Informação Geográfica , Urbanização , Conservação dos Recursos Naturais
15.
J Environ Manage ; 354: 120212, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340665

RESUMO

The site selection for Low Impact Development (LID) practices is a significant process. It affects the effectiveness of LID in controlling stormwater surface runoff, volume, flow rate, and infiltration. This research paper presents a comprehensive review of various methods used for LID site selection. It starts by introducing different methods and tools. Three main methods: index-based methods, GIS-based multi-criteria decision analysis (MCDA), and multi-criteria models and tools, are discussed in detail. A comparative analysis of these methods is then conducted based on ten different criteria. These criteria include the number of variables, data properties, the scale of analysis, benefits maximization approach, multi-attribute decision analysis, user-friendliness, community and stakeholder participation, and the validation methods. This comparison reveals limitations in each method. These include inadequate data availability and quality, lack of evaluation methods, comprehensive assessment criteria and spatial explicitness. These challenges underscore the need for future research to prioritize spatial clarity, broaden criteria, improve data quality through standardization, incorporate field visits and remote sensing for robust results, integrate big data, and develop web-based, open-source tools for enhanced accessibility. These key strategies provide valuable insights for advancing LID site selection methods.


Assuntos
Chuva , Movimentos da Água , Projetos de Pesquisa
16.
Environ Sci Pollut Res Int ; 31(12): 18512-18526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38347359

RESUMO

Blue-green infrastructure (BGI) plays a crucial role in regulating urban carbon cycles. Nonetheless, the spatiotemporal effect of BGI on carbon emissions has not received extensive attention. This study used the Yangtze River Delta (YRD) region as the study area and quantified the landscape patterns of BGI. Using a spatiotemporal geographically weighted regression model, we analyzed the impact of evolving spatiotemporal characteristics of BGI on carbon emissions. Additionally, we constructed a spatiotemporal weight matrix using the Moran index ratio to examine the spillover effects of BGI among different regions. Our results show that the aggregation effect of carbon emissions in the YRD region is gradually increasing while BGI has a dynamic impact on carbon emissions. In terms of spatial and temporal spillovers, under the influence of economic connections between regions, patch fragmentation and distance exert a persistent positive influence on carbon emissions, while shape complexity has a negative impact, with area and layout characteristics showing no significant effects. However, area and patch distance have a persistent positive influence on carbon emissions in adjacent areas, while shape complexity exhibits a negative impact. Therefore, optimizing urban BGI through a regional synergistic governance system is important to promote low-carbon urban development.


Assuntos
Carbono , Rios , Ciclo do Carbono , Regressão Espacial , China , Desenvolvimento Econômico
17.
Sci Total Environ ; 921: 171095, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401732

RESUMO

Determining wood carbon (C) fractions (CFs)-or the concentration of elemental C in wood on a per unit mass basis-in harvested wood products (HWP) is vital for accurately accounting embodied C in the built environment. Most estimates of embodied C assume that all wood-based building material is comprised of 50 % C on a per mass basis: an erroneous assumption that emerges from the literature on tree- and forest-scale C estimation, which has been shown to lead to substantial errors in C accounting. Here, we use published wood CF data from live trees, alongside laboratory analyses of sawn lumber, to quantify generalizable wood CFs for HWPs. Wood CFs in lumber average 51.7 %, deviating significantly from a 50 % default wood CF, as well as from CFs in live wood globally (which average 47.6 % across all species, and 47.1 % in tree species not typically employed in construction). Additionally, the volatile CF in lumber-i.e., the quantity of C lost upon heating of wood samples, but often overlooked in C accounting-is lower than the volatile CF in live wood, but significantly >0 % suggesting that industrial lumber drying processes remove some, but not all, of volatile C-based compounds. Our results demonstrate that empirically-supported wood CFs for construction material can correct meaningful systematic biases when estimating C storage in the built environment.

18.
Water Res X ; 22: 100212, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38327899

RESUMO

Sound urban water management relies on extensive and reliable monitoring of water infrastructure. As low-cost sensors and networks have become increasingly available for environmental monitoring, urban water researchers and practitioners must consider the benefits and disadvantages of such technologies. In this perspective paper, we highlight six technical and socio-technological considerations for low-cost monitoring technology to reach its full potential in the field of urban water management, including: technical barriers to implementation, complementarity with traditional sensing technologies, low-cost sensor reliability, added value of produced information, opportunities to democratize data collection, and economic and environmental costs of the technology. For each consideration, we present recent experiences from our own work and broader literature and identify future research needs to address current challenges. Our experience supports the strong potential of low-cost monitoring technology, in particular that it promotes extensive and innovative monitoring of urban water infrastructure. Future efforts should focus on more systematic documenting of experiences to lower barriers to designing, implementing, and testing of low-cost sensor networks, and on assessing the economic, social, and environmental costs and benefits of low-cost sensor deployments.

19.
Sci Total Environ ; 914: 169907, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185164

RESUMO

Deicing practices and infrastructure weathering can impact plants, soil, and water quality through the input and transport of base cations. Base cation accumulation in green stormwater infrastructure (GSI) soils has the potential to decrease soil infiltration rates and plant water uptake or to promote leaching of metals and nutrients. To understand base cation retention in GSI soils and its drivers, we sampled 14 GSI soils of different age, contributing areas, and infiltration areas, across 3 years. We hypothesized that soil, climate, and landscape drivers explain the spatial and temporal variability of GSI soil base cation concentrations. Sodium (Na), Calcium (Ca), and Magnesium (Mg) concentrations in GSI soils were higher than in reference soils, while Ca and Mg were similar to an urban floodplain soil. Neither the contributing area, contributing impervious area, nor their ratios to infiltration area predicted base cation concentrations. Age predicted the spatial variability of Potassium (K) concentrations. Ca and Mg were moderately predicted by sand and silt, while clay predicted Mg, and sand predicted K. However, no soil characteristics predicted Na concentrations. A subset of sites had elevated Na in Fall 2019, which followed a winter with many freezing events and higher-than-average deicer salt application. K in sites with elevated Na was lower than in non-elevated sites, suggesting that transient spikes of Na driven by deicer salt decreased the ability of GSI soils to accumulate K. These findings demonstrate the large variability of GSI soil base cation concentrations and the relative importance of soil, climate, and landscape drivers of base cation dynamics. High variability in GSI soil data is commonly observed and further research is needed to reduce uncertainties for modeling studies and design. Improved understanding of how GSI soil properties evolve over time, and their relation to GSI performance, will benefit GSI design and maintenance practices.

20.
Curr Environ Health Rep ; 11(1): 4-17, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38172471

RESUMO

PURPOSE OF REVIEW: Unprecedented urbanization in Asia affects the net radiation and energy flux of urban areas in the form of urban heat islands (UHI). The application of nature-based solutions (NbS) via urban green and blue infrastructures is a promising approach to mitigate UHI via urban boundary condition modifications, which affect the energy balance. This narrative review discusses the application of green and blue infrastructures in the Asian context by highlighting its progress, challenges, and recommendations. This review is descriptive in nature and includes perspectives on the discussed topics. RECENT FINDINGS: Studies on the application of green and blue infrastructures in UHI mitigation are still scant in Asia. Their cooling performance is greatly influenced by their types, size, geometry, surface roughness, spread (threshold distance), temporal scales, topography, pollution levels, prevailing climate, and assessment techniques. Distinct urban characteristics, climatic conditions, environmental risks, lack of awareness and expertise, lack of policy and government incentives, and limited scientific studies are the major challenges in their implementation of UHI mitigation in Asia. Although green and blue infrastructures are associated with urban cooling, more in-depth experimental work and multidisciplinary research collaboration are paramount to exploring its implementation potential in Asia and other countries that share similar urban and environmental characteristics.


Assuntos
Poluição Ambiental , Temperatura Alta , Humanos , Cidades , Ásia , Políticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...