Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 505
Filtrar
1.
BioTech (Basel) ; 13(3)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39051340

RESUMO

Aseptic seedlings of different ages derived from surface-sterilized mature seeds were applied as an explant source. Various explants such as 7- and 21-day-old hypocotyl fragments, 42-day-old nodal stem segments, and transverse nodal segments of stem, as well as leaf petioles, were cultured on the agar-solidified Murashige and Skoog (MS) basal medium supplemented with 0.1 mg/L IAA, 5 mg/L AgNO3 and different types and concentrations of cytokinin (1 mg/L zeatin, 0.25 mg/L thidiazuron (TDZ), and 5 mg/L 6-benzylaminopurine (6-BAP)). Consequently, it was found that 7- and 21-day-old hypocotyl fragments, as well as nodal stem segments obtained from adult aseptic seedlings, are characterized by a high explant viability and callus formation capacity with a frequency of 79.7-100%. However, the success of in vitro somatic shoot organogenesis was significantly determined not only by the culture medium composition and explant type but also depending on its age, as well as on the size and explant preparation in cases of hypocotyl and age-matched nodal stem fragments, respectively. Multiple somatic shoot organogenesis (5.7 regenerants per explant) with a frequency of 67.5% was achieved during 3 subcultures of juvenile hypocotyl-derived callus tissue on MS culture medium containing 0.25 mg/L TDZ as cytokinin source. Castor bean regenerants were excised from the callus and successfully rooted on ½ MS basal medium without exogenous auxin (81%). In vitro plantlets with well-developed roots were adapted to ex vitro conditions with a frequency of 90%.

2.
Methods Mol Biol ; 2827: 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985259

RESUMO

Plant cell, tissue, and organ cultures (PCTOC) have been used as experimental systems in basic research, allowing gene function demonstration through gene overexpression or repression and investigating the processes involved in embryogenesis and organogenesis or those related to the potential production of secondary metabolites, among others. On the other hand, PCTOC has also been applied at the commercial level for the vegetative multiplication (micropropagation) of diverse plant species, mainly ornamentals but also horticultural crops such as potato or fruit and tree species, and to produce high-quality disease-free plants. Moreover, PCTOC protocols are important auxiliary systems in crop breeding crops to generate pure lines (homozygous) to produce hybrids for the obtention of polyploid plants with higher yields or better performance. PCTOC has been utilized to preserve and conserve the germplasm of different crops or threatened species. Plant genetic improvement through genetic engineering and genome editing has been only possible thanks to the establishment of efficient in vitro plant regeneration protocols. Different companies currently focus on commercializing plant secondary metabolites with interesting biological activities using in vitro PCTOC. The impact of omics on PCTOC is discussed.


Assuntos
Células Vegetais , Técnicas de Cultura de Tecidos , Técnicas de Cultura de Células/métodos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Células Vegetais/metabolismo , Desenvolvimento Vegetal/genética , Plantas/genética , Plantas/metabolismo , Técnicas de Cultura de Tecidos/métodos
3.
Front Plant Sci ; 15: 1383645, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978516

RESUMO

Bitter pit is a disorder affecting the appearance of apples. Susceptibility is genetically controlled by both the cultivar and rootstock, with both environmental and horticultural factors affecting its severity and proportional incidence. Symptoms appear more frequently at the calyx end of the fruit and consist of circular necrotic spots, which take on a "corky" appearance visible through the peel. Bitter pit may develop before harvest, or after harvest, reducing the proportions of marketable fruit. In this review, current knowledge of the factors associated with the occurrence of bitter pit in apples is summarized and discussed along with their interactions with Ca uptake and distribution to fruit. This disorder has been previously linked with localized Ca deficiencies in fruit during its development. However, these relationships are not always clear. Even with over a century of research, the precise mechanisms involved in its development are still not fully understood. Additional factors also contribute to bitter pit development, like imbalances of mineral nutrients, low concentration of auxins, high concentration of gibberellins, changes in xylem functionality, or physiological responses to abiotic stress. Bitter pit remains a complex disorder with multiple factors contributing to its development including changes at whole plant and cellular scales. Apple growers must carefully navigate these complex interactions between genetics, environment, and management decisions to minimize bitter pit in susceptible cultivars. Accordingly, management of plant nutrition, fruit crop load, and tree vigor still stands as the most important contribution to reducing bitter pit development. Even so, there will be situations where the occurrence of bitter pit will be inevitable due to cultivar and/or abiotic stress conditions.

4.
Plants (Basel) ; 13(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38999573

RESUMO

The endangered plant species Adenophora liliifolia faces threats to its survival in the wild, necessitating the development of effective micropropagation techniques for potential reintroduction efforts. This study demonstrates that Adenophora liliifolia effectively reproduces on MS synthetic medium with diverse plant growth regulators (PGR) and natural extracts, facilitating swift micropropagation for potential future reintroduction endeavors. It highlights the substantial impact of PGR composition and natural extracts on the growth and development of A. liliifolia. The ideal growth medium for A. liliifolia was determined to be ½ MS with specific treatments. Additionally, incorporating silver nitrate (AgNO3) at 5 mg L-1 into the medium led to enhanced root formation and shoot length, albeit excessive concentrations adversely affected root development. Varying concentrations of NAA significantly affected different plant growth parameters, with the 0.1 mg L-1 treatment yielding comparable plant height to the control. Moreover, 50 mL L-1 of coconut water bolstered root formation, while 200 mL L-1 increased shoot formation during in vitro propagation. However, elevated doses of coconut water (CW) impeded root development but stimulated shoot growth. Experiments measuring chlorophyll a + b and carotenoid content indicated higher concentrations in the control group than differing levels of applied coconut water. Optimizing pH levels from 6.8-7 to 7.8-8.0 notably enhanced plant height and root formation, with significant carotenoid accumulation observed at pH 6.8-7. Soil samples from A. liliifolia's natural habitat exhibited a pH of 6.65. Ultimately, the refined in vitro propagation protocol effectively propagated A. liliifolia, representing a pioneering effort and setting the stage for future restoration initiatives and conservation endeavors.

5.
Chin Med ; 19(1): 102, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049014

RESUMO

Plant growth regulators (PGRs) are involved in multiple aspects of plant life, including plant growth, development, and response to environmental stimuli. They are also vital for the formation of secondary metabolites in various plants. Salvia miltiorrhiza is a famous herbal medicine and has been used commonly for > 2000 years in China, as well as widely used in many other countries. S. miltiorrhiza is extensively used to treat cardiovascular and cerebrovascular diseases in clinical practices and has specific merit against various diseases. Owing to its outstanding medicinal and commercial potential, S. miltiorrhiza has been extensively investigated as an ideal model system for medicinal plant biology. Tanshinones and phenolic acids are primary pharmacological constituents of S. miltiorrhiza. As the growing market for S. miltiorrhiza, the enhancement of its bioactive compounds has become a research hotspot. S. miltiorrhiza exhibits a significant response to various PGRs in the production of phenolic acids and tanshinones. Here, we briefly review the biosynthesis and signal transduction of PGRs in plants. The effects and mechanisms of PGRs on bioactive compound production in S. miltiorrhiza are systematically summarized and future research is discussed. This article provides a scientific basis for further research, cultivation, and metabolic engineering in S. miltiorrhiza.

6.
Plants (Basel) ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891316

RESUMO

Nymphoides coronata is an endangered aquatic plant species with significant medicinal and ecological importance. To preserve N. coronata from going extinct, we need to provide seedlings and efficient multiplication techniques so that it can be extensively studied. This study aimed to identify the most suitable sterilization treatment, growth medium, and substrate for the cultivation and propagation of N. coronata. Ethanol sterilization, fungicide treatment, and sterile water washing were the most important sterilization steps. A combination of 6-benzylaminopurine (6-BA) and indoleacetic acid (IAA) was the most suitable medium for bud induction and shoot proliferation. The use of α-naphthaleneacetic acid (NAA) increased the rooting rate and rooting time compared to indole-3-butyric acid (IBA). Increasing the concentration of NAA from 0.5 to 1.0 mg/L increased the rooting rate from 78 to 100% and reduced the rooting time from 7 to 5 days. The survival rate of N. coronata seedlings was 100% in a mixture of red soil and sand (1:1, w/w). As a result, the procedure mentioned above could potentially be used to safely propagate this rare species on a large scale. These findings provide valuable insights into the optimal conditions for the successful cultivation and propagation of N. coronata, which can contribute to the conservation and sustainable use of this important rare plant species.

7.
Plants (Basel) ; 13(11)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38891359

RESUMO

The foliar application of nutrients and plant growth regulators (PGRs) at critical crop growth periods can improve the yield of field crops. Hence, the present study was conducted to quantify the effects of the combined application of nutrients and PGRs (crop-specific formulation) on maize, blackgram, greengram, groundnut, cotton, sugarcane, and coconut yield. In all the crops except coconut, the treatments included (i) a foliar spray of crop-specific nutrients and PGR combinations and (ii) an unsprayed control. In coconut, the treatments included (i) the root feeding of coconut-specific nutrients and PGR combinations and (ii) an untreated control. Crop-specific nutrient and PGR formulations were sprayed, namely, Tamil Nadu Agricultural University (TNAU) maize maxim 1.5% at the tassel initiation and grain-filling stages of maize, TNAU pulse wonder 1.0% at the peak flowering stage of green gram and black gram, TNAU groundnut-rich 1.0% at the flowering and pod-filling stages of groundnut, TNAU cotton plus 1.25% at the flowering and boll development stages of cotton, and TNAU sugarcane booster 0.5% at 45 days after planting (DAP), 0.75% at 60 DAP, and 1.0% at 75 DAP of sugarcane. The results showed that the foliar application of TNAU maize maxim, TNAU pulse wonder, TNAU groundnut-rich, TNAU cotton plus and TNAU sugarcane booster and the root feeding of TNAU coconut tonic increased the yield of maize, pulses, groundnut, cotton, sugarcane, and coconut, resulting in higher economic returns.

8.
Plants (Basel) ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931087

RESUMO

Cryopreservation is a promising method for the long-term preservation of plant germplasm, especially for vegetatively propagated species like freesias. In this study, we investigate streamlining the cryopreservation process for 'Sunny Gold' Freesia, starting from effective in vitro initiation and proliferation using various plant growth regulator combinations. We also assess the impact of subculture on regrowth rates after cryopreservation. The shoot tips were successfully initiated in vitro after sterilization. The shoots were multiplied an average of three times in media containing N6-benzyladenine and kinetin. The regrowth rates of non-cryopreserved shoot tips excised from different subculture cycles did not differ significantly, with rates of 44% observed for plants from more than five subcultures and 47% for those from three subcultures. However, only the shoot tips excised from cultures subjected to three subculture cycles were able to recover after cryopreservation, with a regrowth rate of 31%. Our findings lay the groundwork for the development of an efficient cryopreservation protocol for freesias in the future.

9.
Sci Rep ; 14(1): 14714, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926419

RESUMO

Stevia rebaudiana (stevia) is a plant in the Asteraceae that contains several biologically active compounds including the antidiabetic diterpene glycosides (e.g. stevioside, rebaudioside and dulcoside) that can serve as zero-calorie sugar alternatives. In this study, an elicitation strategy was applied using 5% polyethylene glycol (PEG), sodium chloride (NaCl; 50 and 100 mM) and gibberellic acid (2.0 and 4.0 mg/L GA3) to investigate their effect on shoot morphogenesis, and the production of phenolics, flavonoids, total soluble sugars, proline and stevioside, as well as antioxidant activity, in shoot cultures of S. rebaudiana. Herewith, the media supplemented with 2 mg/L and 4 mg/L GA3 exhibited the highest shooting response (87% and 80%). The augmentation of lower concentrations of GA3 (2 mg/L) in combination with 6-benzylaminopurine (BAP) resulted in the maximum mean shoot length (11.1 cm). The addition of 100 mM NaCl salts to the media led to the highest observed total phenolics content (TPC; 4.11 mg/g-DW compared to the control 0.52 mg/g-DW), total flavonoids content (TFC; 1.26 mg/g-DW) and polyphenolics concentration (5.39 mg/g-DW) in shoots cultured. However, the maximum antioxidant activity (81.8%) was observed in shoots raised in media treated with 50 mM NaCl. The application of 2 mg/L of GA3 resulted in the highest accumulation of proline (0.99 µg/mL) as compared to controls (0.37 µg/mL). Maximum stevioside content (71 µL/mL) was observed in cultures supplemented with 100 mM NaCl and 5% PEG, followed by the 4 mg/L GA3 treatment (70 µL/mL) as compared to control (60 µL/mL). Positive correlation was observed between GA3 and stevioside content. Notably, these two compounds are derived from a shared biochemical pathway. These results suggest that elicitation is an effective option to enhance the accumulation of steviosides and other metabolites and provides the groundwork for future industrial scale production using bioreactors.


Assuntos
Antioxidantes , Diterpenos do Tipo Caurano , Giberelinas , Glucosídeos , Brotos de Planta , Stevia , Stevia/metabolismo , Stevia/crescimento & desenvolvimento , Stevia/efeitos dos fármacos , Diterpenos do Tipo Caurano/metabolismo , Glucosídeos/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Giberelinas/metabolismo , Antioxidantes/metabolismo , Metabolismo Secundário , Flavonoides/metabolismo , Flavonoides/análise , Fenóis/metabolismo , Cloreto de Sódio/farmacologia , Purinas/metabolismo , Prolina/metabolismo , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Compostos de Benzil
10.
Sci Rep ; 14(1): 14801, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926600

RESUMO

Several factors, such as pruning and phytohormones, have demonstrated an influence on both the quantity and quality in the bell pepper. A factorial experiment using a completely randomized design was conducted on the Lumos yellow bell in a greenhouse. Treatments were the fruit pruning (0, 10, and 30%) and foliar application of phytohormones auxin (AUX) and gibberellic acid (GA3) at concentrations of 10 µM AUX, 10 µM GA3, 10 µM AUX + 10 µM GA3+, and 20 µM AUX + 10 µM GA3 along with controls. The plants were sprayed with phytohormones in four growth stages (1: flowering stage when 50% of the flowers were on the plant, 2: fruiting stage when 50% of the fruits were the size of peas, 3: fruit growth stage when 50% of the fruits had reached 50% of their growth, and 4: ripening stage when 50% of the fruits were at color break). The results of the present investigation showed that pruning rate of 30% yielded the highest flesh thickness and vitamin C content, decreased seed count and hastened fruit ripening. The use of GA3 along with AUX has been observed to augment diverse fruit quality characteristics. According to the results, the application of 10% pruning in combination with 20 µM AUX and 10 µM GA3 demonstrated the most significant levels of carotenoids, chlorophyll, and fruit length. The experimental group subjected to the combined treatment of 30% pruning and 10 µM AUX + 10 µM GA3 showed the most noteworthy levels of vitamin C, fruit weight, and fruit thickness. The groups that received the 10 µM GA3 and 20 µM AUX + 10 µM GA3 treatments exhibited the most favorable fruit flavor. According to the research results, the implementation of hormonal treatments 10 µM AUX and 10 µM AUX + 10 µM GA3 in combination with a 30% pruning strategy resulted in the most advantageous yield of bell peppers.


Assuntos
Capsicum , Frutas , Giberelinas , Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Capsicum/crescimento & desenvolvimento , Capsicum/efeitos dos fármacos , Capsicum/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia
11.
Plant Methods ; 20(1): 82, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822411

RESUMO

BACKGROUND: The process of optimizing in vitro shoot proliferation is a complicated task, as it is influenced by interactions of many factors as well as genotype. This study investigated the role of various concentrations of plant growth regulators (zeatin and gibberellic acid) in the successful in vitro shoot proliferation of three Punica granatum cultivars ('Faroogh', 'Atabaki' and 'Shirineshahvar'). Also, the utility of five Machine Learning (ML) algorithms-Support Vector Regression (SVR), Random Forest (RF), Extreme Gradient Boosting (XGB), Ensemble Stacking Regression (ESR) and Elastic Net Multivariate Linear Regression (ENMLR)-as modeling tools were evaluated on in vitro multiplication of pomegranate. A new automatic hyperparameter optimization method named Adaptive Tree Pazen Estimator (ATPE) was developed to tune the hyperparameters. The performance of the models was evaluated and compared using statistical indicators (MAE, RMSE, RRMSE, MAPE, R and R2), while a specific Global Performance Indicator (GPI) was introduced to rank the models based on a single parameter. Moreover, Non­dominated Sorting Genetic Algorithm­II (NSGA­II) was employed to optimize the selected prediction model. RESULTS: The results demonstrated that the ESR algorithm exhibited higher predictive accuracy in comparison to other ML algorithms. The ESR model was subsequently introduced for optimization by NSGA­II. ESR-NSGA­II revealed that the highest proliferation rate (3.47, 3.84, and 3.22), shoot length (2.74, 3.32, and 1.86 cm), leave number (18.18, 19.76, and 18.77), and explant survival (84.21%, 85.49%, and 56.39%) could be achieved with a medium containing 0.750, 0.654, and 0.705 mg/L zeatin, and 0.50, 0.329, and 0.347 mg/L gibberellic acid in the 'Atabaki', 'Faroogh', and 'Shirineshahvar' cultivars, respectively. CONCLUSIONS: This study demonstrates that the 'Shirineshahvar' cultivar exhibited lower shoot proliferation success compared to the other cultivars. The results indicated the good performance of ESR-NSGA-II in modeling and optimizing in vitro propagation. ESR-NSGA-II can be applied as an up-to-date and reliable computational tool for future studies in plant in vitro culture.

12.
Chemosphere ; 362: 142678, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908452

RESUMO

The excessive usage of agrochemicals, including pesticides, along with various reckless human actions, has ensued discriminating prevalence of pesticides and heavy metals (HMs) in crop plants and the environment. The enhanced exposure to these chemicals is a menace to living organisms. The pesticides may get bioaccumulated in the food chain, thereby leading to several deteriorative changes in the ecosystem health and a rise in the cases of some serious human ailments including cancer. Further, both HMs and pesticides cause some major metabolic disturbances in plants, which include oxidative burst, osmotic alterations and reduced levels of photosynthesis, leading to a decline in plant productivity. Moreover, the synergistic interaction between pesticides and HMs has a more serious impact on human and ecosystem health. Various attempts have been made to explore eco-friendly and environmentally sustainable methods of improving plant health under HMs and/or pesticide stress. Among these methods, the employment of PGPR can be a suitable and effective strategy for managing these contaminants and providing a long-term remedy. Although, the application of PGPR alone can alleviate HM-induced phytotoxicities; however, several recent reports advocate using PGPR with other micro- and macro-organisms, biochar, chelating agents, organic acids, plant growth regulators, etc., to further improve their stress ameliorative potential. Further, some PGPR are also capable of assisting in the degradation of pesticides or their sequestration, reducing their harmful effects on plants and the environment. This present review attempts to present the current status of our understanding of PGPR's potential in the remediation of pesticides and HMs-contaminated soil for the researchers working in the area.

13.
Plant Cell Environ ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752443

RESUMO

Bamboo cultivation, particularly Moso bamboo (Phyllostachys edulis), holds significant economic importance in various regions worldwide. Bamboo shoot degradation (BSD) severely affects productivity and economic viability. However, despite its agricultural consequences, the molecular mechanisms underlying BSD remain unclear. Consequently, we explored the dynamic changes of BSD through anatomy, physiology and the transcriptome. Our findings reveal ruptured protoxylem cells, reduced cell wall thickness and the accumulation of sucrose and reactive oxygen species (ROS) during BSD. Transcriptomic analysis underscored the importance of genes related to plant hormone signal transduction, sugar metabolism and ROS homoeostasis in this process. Furthermore, BSD appears to be driven by the coexpression regulatory network of senescence-associated gene transcription factors (SAG-TFs), specifically PeSAG39, PeWRKY22 and PeWRKY75, primarily located in the protoxylem of vascular bundles. Yeast one-hybrid and dual-luciferase assays demonstrated that PeWRKY22 and PeWRKY75 activate PeSAG39 expression by binding to its promoter. This study advanced our understanding of the molecular regulatory mechanisms governing BSD, offering a valuable reference for enhancing Moso bamboo forest productivity.

14.
Plants (Basel) ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794435

RESUMO

The damask rose (Rosa damascena Mill.) is an ornamental-medicinal plant from the Rosaceae family, and its aromatic compounds and essential oils are applied globally in the food, cosmetic, and pharmaceutical industries. Due to its economic value, this research aimed to establish a protocol for an efficient, rapid, and cost-effective method for in vitro shoot multiplication and rooting of the R. damascena 'Kashan' and 'Hervy Azerbaijan' genotypes. Nodal segments (as primary explants) were cultured on the Murashige and Skoog (MS) medium with combinations of various plant growth regulators (PGRs) such as gibberellic acid (GA3), 6-benzylaminopurine (BAP), and indole-3-butyric acid (IBA), as well as a PGR-like substance, phloroglucinol (PG), vitamins such as ascorbic acid (AA), and activated carbon in the form of active charcoal (AC). For the establishment stage, 0.1 mg·L-1 PG, 0.2 mg·L-1 GA3, and 1 mg·L-1 BAP were added to the media. Secondary explants (nodal segments containing axillary buds produced from primary explants) were obtained after 30 days of in vitro culture and transferred to the proliferation media supplemented with different concentrations of BAP (0, 0.5, 1, 1.5, 2, and 2.5 mg·L-1) and GA3 (0, 0.1, 0.2, 0.4, 0.8, and 1 mg·L-1) together with 0.1 mg·L-1 PG and 20 mg·L-1 of AA. The rooting media were augmented with different concentrations of BAP and GA3 with 0.1 mg·L-1 of IBA, PG and 20 mg·L-1 of AA and AC. The results showed that the highest regeneration coefficient (4.29 and 4.28) and the largest number of leaves (23.33-24.33) were obtained in the explants grown on the medium supplemented with 2 mg·L-1 BAP and 0.4 mg·L-1 GA3 for the 'Kashan' and 'Hervy Azerbaijan' genotypes, respectively. Likewise, this PGR combination provided the shortest time until bud break (approximately 6.5 days) and root emergence (approximately 10 days) in both genotypes. The highest number of shoots (4.78 per explant) and roots (3.96) was achieved in this medium in the 'Kashan' rose. Stem and root lengths, as well as stem and root fresh and dry weights, were also analyzed. In most measured traits, the lowest values were found in the PGRs-free control medium. Rooted plantlets were transferred to pots filled with perlite and peat moss in a 2:1 proportion and were acclimatized to ambient greenhouse conditions with a mean 90.12% survival rate. This research contributes significantly to our understanding of Damask rose propagation and has practical implications for the cosmetic and ornamental plant industries. By offering insights into the manipulation of regeneration processes, our study opens up new possibilities for the effective production of high-quality plant material.

16.
Biomolecules ; 14(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38785924

RESUMO

Cytokinins (CKs) and abscisic acid (ABA) play an important role in the life of both plants and pathogenic fungi. However, the role of CKs and ABA in the regulation of fungal growth, development and virulence has not been sufficiently studied. We compared the ability of two virulent isolates (SnB and Sn9MN-3A) and one avirulent isolate (Sn4VD) of the pathogenic fungus Stagonospora nodorum Berk. to synthesize three groups of hormones (CKs, ABA and auxins) and studied the effect of exogenous ABA and zeatin on the growth, sporulation and gene expression of necrotrophic effectors (NEs) and transcription factors (TFs) in them. Various isolates of S. nodorum synthesized different amounts of CKs, ABA and indoleacetic acid. Using exogenous ABA and zeatin, we proved that the effect of these hormones on the growth and sporulation of S. nodorum isolates can be opposite, depends on both the genotype of the isolate and on the concentration of the hormone and is carried out through the regulation of carbohydrate metabolism. ABA and zeatin regulated the expression of fungal TF and NE genes, but correlation analysis of these parameters showed that this effect depended on the genotype of the isolate. This study will contribute to our understanding of the role of the hormones ABA and CKs in the biology of the fungal pathogen S. nodorum.


Assuntos
Ácido Abscísico , Ascomicetos , Citocininas , Ácido Abscísico/metabolismo , Citocininas/metabolismo , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Ascomicetos/genética , Ascomicetos/efeitos dos fármacos , Virulência , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Doenças das Plantas/microbiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Zeatina/metabolismo , Zeatina/farmacologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/metabolismo , Esporos Fúngicos/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
17.
Environ Toxicol Pharmacol ; 109: 104479, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38821154

RESUMO

Plant growth regulators (PGRs) are increasingly used to promote sustainable agriculture, but their unregulated use raises concerns about potential environmental risks. Indole-3-acetic acid (IAA), a commonly used PGR, has been the subject of research on its developmental toxicity in the in-vivo zebrafish model. IAA exposure to zebrafish embryos caused oxidative stress, lipid peroxidation, and cellular apoptosis. The study also revealed that critical antioxidant genes including sod, cat, and bcl2 were downregulated, while pro-apoptotic genes such as bax and p53 were upregulated. IAA exposure also hampered normal cardiogenesis by downregulating myl7, amhc, and vmhc genes and potentially influencing zebrafish neurobehavior. The accumulation of IAA was confirmed by HPLC analysis of IAA-exposed zebrafish tissues. These findings underscore the need for further study on the potential ecological consequences of IAA use and the need for sustainable agricultural practices.


Assuntos
Regulação para Baixo , Embrião não Mamífero , Ácidos Indolacéticos , Estresse Oxidativo , Peixe-Zebra , Animais , Estresse Oxidativo/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Coração/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Reguladores de Crescimento de Plantas/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
Sci Total Environ ; 932: 173029, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38719039

RESUMO

Plant growth regulators (PGR) and plant growth-promoting bacteria (PGPB) have the potential in phytoremediation of heavy metals (HMs) contaminated soils. However, their sole application may not yield the optimal results, thus necessitating the combined application. The present study aimed to enhance the phytoremediation efficiency of Sedum alfredii Hance (S. alfredii) in acidic and alkaline soils through the combination of PGR (Brassinolide, BR) and PGPB (Pseudomonas fluorescens, P. fluorescens). The combination of BR and P. fluorescens (BRB treatment) effectively increased the removal efficiency of S. alfredii for Cd, Pb, and Zn by 355.2 and 155.3 %, 470.1 and 128.9 %, and 408.4 and 209.6 %, in acidic and alkaline soils, respectively. Moreover, BRB treatment led to a substantial increase in photosynthetic pigments contents and antioxidant enzymes activities, resulting in a remarkable increase in biomass (86.71 and 47.22 %) and dry mass (101.49 and 42.29 %) of plants grown in acidic and alkaline soils, respectively. Similarly, BRB treatment significantly elevated the Cd (109.4 and 71.36 %), Pb (174.9 and 48.03 %), and Zn levels (142.8 and 104.3 %) in S. alfredii shoots, along with cumulative accumulation of Cd (122.7 and 79.47 %), Pb (183.8 and 60.49 %), and Zn (150.7 and 117.9 %), respectively. In addition, the BRB treatment lowered the soil pH and DTPA-HMs contents, while augmenting soil enzymatic activities, thereby contributing soil microecology and facilitating the HMs absorption and translocation by S. alfredii to over-ground tissues. Furthermore, the evaluation of microbial community structure in phyllosphere and rhizosphere after remediation revealed the shift in microbial abundance. The combined treatment altered the principal effects on S. alfredii HMs accumulation from bacterial diversity to the soil HMs availability. In summary, our findings demonstrated that synergistic application of BR and P. fluorescens represents a viable approach to strengthen the phytoextraction efficacy of S. alfredii in varying soils.


Assuntos
Biodegradação Ambiental , Metais Pesados , Reguladores de Crescimento de Plantas , Pseudomonas fluorescens , Sedum , Poluentes do Solo , Solo , Sedum/metabolismo , Poluentes do Solo/metabolismo , Metais Pesados/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Solo/química , Pseudomonas fluorescens/metabolismo , Microbiologia do Solo
19.
Mol Biol Rep ; 51(1): 501, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598057

RESUMO

BACKGROUND: Dendrocalamus strictus (Roxb.) Nees, generally referred to as 'Male bamboo,' is a globally prevalent and highly significant species of bamboo. It is a versatile species and possesses notable industrial significance. However, despite its numerous applications, the production of this plant is insufficient to fulfill the worldwide demand. The challenges that impede the dissemination of D. strictus encompass the unpredictable blooming pattern (30-70 years), low seed production, and limited seed viability. Therefore, tissue culture presents a reliable and effective option for the mass production of standardized planting material. METHODOLOGY AND RESULTS: This study investigated the effects of silver nanoparticles (AgNPs) at a concentration of 6.0 mg L- 1 in the Murashige and Skoog (MS) nutrient medium fortified with pre-optimized plant growth regulators (3.0 mg L- 1 6-benzylaminopurine + 0.5 mg L- 1 α-naphthalene acetic acid) on the induction of flowering in a controlled environment in D. strictus. The use of AgNPs in the media induced a maximum of 14 inflorescences per culture vessel, 9 flowers per inflorescence, and improved the performance of the micropropagated plantlets during acclimatization in the greenhouse and field. The ISSR and SCoT amplified polymorphic DNA analysis of the regenerants resulted in the formation of 49 bands (300 to 2000 bp size) and 36 scorable bands (350 to 2000 bp) respectively. All the PCR amplicons produced by SCoT and ISSR were monomorphic confirming the genetic uniformity of the tissue cultured plants of D. strictus with the mother plant. CONCLUSIONS: It can be inferred that the incorporation of AgNPs during the shoot proliferation phase has the potential to stimulate in vitro flowering in D. strictus. This finding could provide valuable insights into innovative strategies for enhancing crop productivity and genetic manipulation for accelerated breeding and agricultural advancement.


Assuntos
Nanopartículas Metálicas , Prata/farmacologia , Melhoramento Vegetal , Biomarcadores , Aclimatação
20.
Plants (Basel) ; 13(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611486

RESUMO

Drought stress is one of the key factors restricting crop yield. The beneficial effects of exogenous proline on crop growth under drought stress have been demonstrated in maize, rice, and other crops. However, little is known about its effects on wheat under drought stress. Especially, the water-holding capacity of leaves were overlooked in most studies. Therefore, a barrel experiment was conducted with wheat at two drought levels (severe drought: 45% field capacity, mild drought: 60% field capacity), and three proline-spraying levels (0 mM, 25 mM, and 50 mM). Meanwhile, a control with no stress and no proline application was set. The anatomical features, water-holding capacity, antioxidant capacity, and proline content of flag leaves as well as grain yields were measured. The results showed that drought stress increased the activity of catalase and peroxidase and the content of proline in flag leaves, lessened the content of chlorophyll, deformed leaf veins, and decreased the grain yield. Exogenous proline could regulate the osmotic-regulation substance content, chlorophyll content, antioxidant enzyme activity, water-holding capacity, and tissue structure of wheat flag leaves under drought stress, ultimately alleviating the impact of drought stress on wheat yield. The application of proline (25 mM and 50 mM) increased the yield by 2.88% and 10.81% under mild drought and 33.90% and 52.88% under severe drought compared to wheat without proline spray, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA