Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Microbiol ; 9: 1430, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018605

RESUMO

Herbaspirillum seropedicae Z67 is a nitrogen-fixing endophyte that colonizes many important crops. Like in almost all organisms, vital cellular processes of this endophyte are iron dependent. In order to efficiently acquire iron to fulfill its requirements, this bacterium produces the siderophores serobactins. However, the presence in its genome of many others iron acquisition genes suggests that serobactins are not the only strategy used by H. seropedicae to overcome metal deficiency. The aim of this work was to identify genes and proteins differentially expressed by cells growing in low iron conditions in order to describe H. seropedicae response to iron limitation stress. For this purpose, and by using a transcriptomic approach, we searched and identified a set of genes up-regulated when iron was scarce. One of them, Hsero_2337, codes for a TonB-dependent transporter/transducer present in the serobactins biosynthesis genomic locus, with an unknown function. Another TonB-dependent receptor, the one encoded by Hsero_1277, and an inner membrane ferrous iron permease, coded by Hsero_2720, were also detected. By using a proteomic approach focused in membrane proteins, we identified the specific receptor for iron-serobactin internalization SbtR and two non-characterized TonB-dependent receptors (coded by genes Hsero_1277 and Hsero_3255). We constructed mutants on some of the identified genes and characterized them by in vitro growth, biofilm formation, and interaction with rice plants. Characterization of mutants in gene Hsero_2337 showed that the TonB-dependent receptor coded by this gene has a regulatory role in the biosynthesis of serobactins, probably by interacting with the alternative sigma factor PfrI, coded by gene Hsero_2338. Plant colonization of the mutant strains was not affected, since the mutant strain normally colonize the root and aerial part of rice plants. These results suggest that the strategies used by H. seropedicae to acquire iron inside plants are far more diverse than the ones characterized in this work. In vivo expression studies or colonization competition experiments between the different mutant strains could help us in future works to determine the relative importance of the different iron acquisition systems in the interaction of H. seropedicae with rice plants.

2.
Plant Mol Biol ; 90(6): 589-603, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26801330

RESUMO

Herbaspirillum seropedicae is a diazotrophic and endophytic bacterium that associates with economically important grasses promoting plant growth and increasing productivity. To identify genes related to bacterial ability to colonize plants, wheat seedlings growing hydroponically in Hoagland's medium were inoculated with H. seropedicae and incubated for 3 days. Total mRNA from the bacteria present in the root surface and in the plant medium were purified, depleted from rRNA and used for RNA-seq profiling. RT-qPCR analyses were conducted to confirm regulation of selected genes. Comparison of RNA profile of root attached and planktonic bacteria revealed extensive metabolic adaptations to the epiphytic life style. These adaptations include expression of specific adhesins and cell wall re-modeling to attach to the root. Additionally, the metabolism was adapted to the microxic environment and nitrogen-fixation genes were expressed. Polyhydroxybutyrate (PHB) synthesis was activated, and PHB granules were stored as observed by microscopy. Genes related to plant growth promotion, such as auxin production were expressed. Many ABC transporter genes were regulated in the bacteria attached to the roots. The results provide new insights into the adaptation of H. seropedicae to the interaction with the plant.


Assuntos
Regulação Bacteriana da Expressão Gênica , Herbaspirillum/citologia , Herbaspirillum/genética , Raízes de Plantas/microbiologia , Triticum/microbiologia , Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores Quimiotáticos/genética , Herbaspirillum/fisiologia , Ácidos Indolacéticos/metabolismo , Fixação de Nitrogênio/genética , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Rizosfera , Plântula/microbiologia , Análise de Sequência de RNA , Microbiologia do Solo , Transcriptoma
3.
Front Microbiol ; 6: 491, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052319

RESUMO

Herbaspirillum seropedicae is a diazotrophic bacterium which associates endophytically with economically important gramineae. Flavonoids such as naringenin have been shown to have an effect on the interaction between H. seropedicae and its host plants. We used a high-throughput sequencing based method (RNA-Seq) to access the influence of naringenin on the whole transcriptome profile of H. seropedicae. Three hundred and four genes were downregulated and seventy seven were upregulated by naringenin. Data analysis revealed that genes related to bacterial flagella biosynthesis, chemotaxis and biosynthesis of peptidoglycan were repressed by naringenin. Moreover, genes involved in aromatic metabolism and multidrug transport efllux were actived.

4.
Artigo em Inglês | VETINDEX | ID: vti-443773

RESUMO

The interaction between sugar cane plantlets and H. seropedicae was investigated using High Pressure Freezing followed by Freeze Substitution. Microscopical observation showed consistent differences between this approaches when compared with the conventional preparation, specially related to appearance of the bacteria cell and the endophytic attachment to the host cell wall.


A interação entre plântulas de cana-de-açúcar e H. seropedicae foi investigada pelo uso da técnica de congelamento por alta pressão seguida de criosubstituição. Observações microscópicas evidenciaram diferenças marcantes entre esta técnica e preparações convencionais, especialmente relacionadas a ultraestrutura da bactéria e às estruturas envolvidas na adesão à superfície da parede celular da planta hospedeira.

5.
Braz. j. microbiol ; Braz. j. microbiol;342003.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469438

RESUMO

The interaction between sugar cane plantlets and H. seropedicae was investigated using High Pressure Freezing followed by Freeze Substitution. Microscopical observation showed consistent differences between this approaches when compared with the conventional preparation, specially related to appearance of the bacteria cell and the endophytic attachment to the host cell wall.


A interação entre plântulas de cana-de-açúcar e H. seropedicae foi investigada pelo uso da técnica de congelamento por alta pressão seguida de criosubstituição. Observações microscópicas evidenciaram diferenças marcantes entre esta técnica e preparações convencionais, especialmente relacionadas a ultraestrutura da bactéria e às estruturas envolvidas na adesão à superfície da parede celular da planta hospedeira.

6.
Braz. j. microbiol ; Braz. j. microbiol;342003.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469485

RESUMO

The interaction between sugar cane plantlets and H. seropedicae was investigated using High Pressure Freezing followed by Freeze Substitution. Microscopical observation showed consistent differences between this approaches when compared with the conventional preparation, specially related to appearance of the bacteria cell and the endophytic attachment to the host cell wall.


A interação entre plântulas de cana-de-açúcar e H. seropedicae foi investigada pelo uso da técnica de congelamento por alta pressão seguida de criosubstituição. Observações microscópicas evidenciaram diferenças marcantes entre esta técnica e preparações convencionais, especialmente relacionadas a ultraestrutura da bactéria e às estruturas envolvidas na adesão à superfície da parede celular da planta hospedeira.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA