Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Plant ; 16(11): 1847-1865, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37822080

RESUMO

Histone H2A monoubiquitination is associated with transcriptional repression and needs to be removed by deubiquitinases to facilitate gene transcription in eukaryotes. However, the deubiquitinase responsible for genome-wide H2A deubiquitination in plants has yet to be identified. In this study, we found that the previously identified PWWP-EPCR-ARID-TRB (PEAT) complex components interact with both the ubiquitin-specific protease UBP5 and the redundant histone acetyltransferases HAM1 and HAM2 (HAM1/2) to form a larger version of PEAT complex in Arabidopsis thaliana. UBP5 functions as an H2A deubiquitinase in a nucleosome substrate-dependent manner in vitro and mediates H2A deubiquitination at the whole-genome level in vivo. HAM1/2 are shared subunits of the PEAT complex and the conserved NuA4 histone acetyltransferase complex, and are responsible for histone H4K5 acetylation. Within the PEAT complex, the PWWP components (PWWP1, PWWP2, and PWWP3) directly interact with UBP5 and are necessary for UBP5-mediated H2A deubiquitination, while the EPCR components (EPCR1 and EPCR2) directly interact with HAM1/2 and are required for HAM1/2-mediated H4K5 acetylation. Collectively, our study not only identifies dual roles of the PEAT complex in H2A deubiquitination and H4K5 acetylation but also illustrates how these processes collaborate at the whole-genome level to regulate the transcription and development in plants.


Assuntos
Arabidopsis , Histonas , Histonas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Receptor de Proteína C Endotelial , Acetilação , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Enzimas Desubiquitinantes , Solo
2.
J Integr Plant Biol ; 64(4): 901-914, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35043580

RESUMO

Although two Enhancer of Polycomb-like proteins, EPL1A and EPL1B (EPL1A/B), are known to be conserved and characteristic subunits of the NuA4-type histone acetyltransferase complex in Arabidopsis thaliana, the biological function of EPL1A/B and the mechanism by which EPL1A/B function in the complex remain unknown. Here, we report that EPL1A/B are required for the histone acetyltransferase activity of the NuA4 complex on the nucleosomal histone H4 in vitro and for the enrichment of histone H4K5 acetylation at thousands of protein-coding genes in vivo. Our results suggest that EPL1A/B are required for linking the NuA4 catalytic subunits HISTONE ACETYLTRANSFERASE OF THE MYST FAMILY 1(HAM1) and HAM2 with accessory subunits in the NuA4 complex. EPL1A/B function redundantly in regulating plant development especially in chlorophyll biosynthesis and de-etiolation. The EPL1A/B-dependent transcription and H4K5Ac are enriched at genes involved in chlorophyll biosynthesis and photosynthesis. We also find that EAF6, another characteristic subunit of the NuA4 complex, contributes to de-etiolation. These results suggest that the Arabidopsis NuA4 complex components function as a whole to mediate histone acetylation and transcriptional activation specifically at light-responsive genes and are critical for photomorphogenesis.


Assuntos
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Fotossíntese/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
3.
Endocr Pathol ; 30(4): 262-269, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31468286

RESUMO

Long non-coding RNAs (lncRNAs) participate in transcription and in epigenetic or post-transcriptional regulation of gene expression. They also have roles in epithelial to mesenchymal transition and in carcinogenesis. Because lncRNAs may also have a role in thyroid cancer progression, we examined a group of thyroid tumors which included papillary thyroid carcinomas and anaplastic thyroid carcinomas to determine the specific lncRNAs that were upregulated during thyroid tumor progression. An RT2 Profiler PCR Array Human Cancer Pathway Finder consisting of 84 lncRNAs (Qiagen) and fresh tissues of normal thyroid, PTCs, and ATCs with gene expression profiling was used to determine genes upregulated and downregulated in ATCs. Two of the most highly upregulated genes, prostate cancer antigen 3 (PCA3) and HOX antisense intergenic RNA myeloid 1 (HOTAIRM1 or HAM-1), were selected for further studies using a thyroid tissue microarray(TMA) with formalin-fixed paraffin-embedded tissues of normal thyroid (NT, n = 10), nodular goiters (NG, n = 10), follicular adenoma (FA, n = 32), follicular carcinoma (FCA, n = 28), papillary thyroid carcinoma (PTC, n = 28), follicular variant of papillary thyroid carcinoma (FVPTC, n = 28), and anaplastic thyroid carcinoma (ATC, n = 10). TMA sections were analyzed by in situ hybridization (ISH) using RNAscope technology. The results of ISH analyses were imaged with Vectra imaging technology and quantified with Nuance® and inForm® software. The TMA analysis was validated by qRT-PCR using FFPE tissues for RNA preparation. Cultured thyroid carcinoma cell lines (n = 7) were also used to analyze for lncRNAs by qRT-PCR. The results showed 11 lncRNAs upregulated and 7 downregulated lncRNAs more than twofold in the ATCS compared with PTCs. Two of the upregulated lncRNAs, PCA3 and HAM-1, were analyzed on a thyroid carcinoma TMA. There was increased expression of both lncRNAs in ATCs and PTCs compared with NT after TMA analysis. qRT-PCR analyses showed increased expression of both lncRNAs in ATCs compared with NT and PTCs. Analyses of these lncRNAs from cultured thyroid carcinoma cell lines by qRT-PCR showed the highest levels of lncRNA expression in ATCs. TGF-ß treatment of cultured PTC and ATC cells for 21 days led to increased expression of PCA3 lncRNA in both cell lines by day 14. These results show that the lncRNAs PCA3 and HAM-1 are upregulated during thyroid tumor development and progression and may function as oncogenes during tumor progression.


Assuntos
Antígenos de Neoplasias/biossíntese , MicroRNAs/biossíntese , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oncogenes/genética , Carcinoma Anaplásico da Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Regulação para Cima
4.
Plant Mol Biol ; 96(6): 627-640, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29574557

RESUMO

KEY MESSAGE: miR171a controls HAM1 functions within the protodermal cells of the embryo, and these controls are essential for normal embryogenesis in Arabidopsis. Arabidopsis thaliana miR171a is known to bind to and cleave mRNAs of three HAIRY MERISTEM (HAM) genes that encode members of the GRAS family transcriptional regulators. The molecular functions of the HAM genes are still being elucidated in Arabidopsis. However, detailed expression patterns of miR171a and the effects of the failure of miR171a to suppress HAM genes were unknown till now. Here, we show the detailed expression patterns of miR171a and HAM1 using green fluorescent protein and confocal scanning microscopy. Our observations revealed that miR171a was expressed in the surface cell layer of the embryo and shoot apical meristem, and it controlled HAM1 functions. To determine the impact of the failure of miR171a to suppress of HAM1, we introduced seven synonymous mutations into the miR171a target site of the HAM1 gene (modified HAM1, mHAM1) and generated transgenic plants that had mHAM1 driven by HAM1 native promoter. The mHAM1 transgenic plants showed organogenic defects. These results indicate that the control of HAM1 functions at the single-cell-layer level by miR171a is essential for proper organ formation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Sementes/genética , Arabidopsis/citologia , Arabidopsis/embriologia , Sequência de Bases , Sítios de Ligação/genética , Meristema/genética , Mutação , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Sementes/citologia , Sementes/embriologia , Homologia de Sequência do Ácido Nucleico
5.
J Mol Model ; 22(11): 256, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27709438

RESUMO

Histone lysine acetylation is a reversible post-translational modification that does not involve changes in DNA sequences. Enzymes play an important role in developmental processes and their deregulation has been linked to the progression of diverse disorders. The HAT enzyme family fulfills an important role in various developmental processes mediated by the state of chromatin, and have been attributed to its deregulation. To understand acetylation mechanisms and their role in cell signaling, transcriptional regulation, and apoptosis, it is crucial to identify and analyze acetylation sites. Bioinformatics methods can be used to generate relatively precise predictions. Here we applied classical bioinformatics methods-sequence alignment, homology modeling, and docking-to compare approved and predicted lysine acetylation processes in different organisms. HAM1 and HAM2 are analogs of KAT8 and KAT7 (MYST1 and MYST2), members of the MYST histone acetyltransferase family, and our results show that HAM1 and HAM2 have much in common with other representatives of MYST families from various organisms. One function of acetyl-CoA binding was predicted with a high level of probability by computational methods. Based on our data, we conclude that, despite huge genetic distances and some structural differences between animal and plant species, a closer look at acetylation mechanism shows that they have much in common.


Assuntos
Acetilcoenzima A/química , Proteínas de Arabidopsis , Arabidopsis , Histona Acetiltransferases , Acetilação , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Domínios Proteicos , Análise de Sequência de Proteína
6.
Dev Biol ; 410(1): 56-69, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26703426

RESUMO

All 302 neurons in the C. elegans hermaphrodite arise through asymmetric division of neuroblasts. During embryogenesis, the C. elegans ham-1 gene is required for several asymmetric neuroblast divisions in lineages that generate both neural and apoptotic cells. By antibody staining, endogenous HAM-1 is found exclusively at the cell cortex in many cells during embryogenesis and is asymmetrically localized in dividing cells. Here we show that in transgenic embryos expressing a functional GFP::HAM-1 fusion protein, GFP expression is also detected in the nucleus, in addition to the cell cortex. Consistent with the nuclear localization is the presence of a putative DNA binding winged-helix domain within the N-terminus of HAM-1. Through a deletion analysis we determined that the C-terminus of the protein is required for nuclear localization and we identified two nuclear localization sequences (NLSs). A subcellular fractionation experiment from wild type embryos, followed by Western blotting, revealed that endogenous HAM-1 is primarily found in the nucleus. Our analysis also showed that the N-terminus is necessary for cortical localization. While ham-1 function is essential for asymmetric division in the lineage that generates the PLM mechanosensory neuron, we showed that cortical localization may not required. Thus, our results suggest that there is a nuclear function for HAM-1 in regulating asymmetric neuroblast division and that the requirement for cortical localization may be lineage dependent.


Assuntos
Divisão Celular Assimétrica , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Núcleo Celular/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/citologia , Linhagem da Célula , Dados de Sequência Molecular , Neurônios/citologia
7.
Mutat Res ; 753(2): 131-146, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23969025

RESUMO

Cellular nucleotide pools are often contaminated by base analog nucleotides which interfere with a plethora of biological reactions, from DNA and RNA synthesis to cellular signaling. An evolutionarily conserved inosine triphosphate pyrophosphatase (ITPA) removes the non-canonical purine (d)NTPs inosine triphosphate and xanthosine triphosphate by hydrolyzing them into their monophosphate form and pyrophosphate. Mutations in the ITPA orthologs in model organisms lead to genetic instability and, in mice, to severe developmental anomalies. In humans there is genetic polymorphism in ITPA. One allele leads to a proline to threonine substitution at amino acid 32 and causes varying degrees of ITPA deficiency in tissues and plays a role in patients' response to drugs. Structural analysis of this mutant protein reveals that the protein is destabilized by the formation of a cavity in its hydrophobic core. The Pro32Thr allele is thought to cause the observed dominant negative effect because the resulting active enzyme monomer targets both homo- and heterodimers to degradation.


Assuntos
Pirofosfatases/metabolismo , Animais , Escherichia coli/enzimologia , Humanos , Camundongos , Modelos Moleculares , Farmacogenética , Polimorfismo Genético , Pirofosfatases/química , Pirofosfatases/deficiência , Pirofosfatases/genética , Leveduras/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA