Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 271
Filtrar
1.
ACS Infect Dis ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096289

RESUMO

SARS-CoV-2 and HCoV-OC43 belong to the same ß genus of the Coronaviridae family. SARS-CoV-2 was responsible for the recent COVID-19 pandemic, and HCoV-OC43 is the etiological agent of mild upper respiratory tract infections. SARS-COV-2 and HCoV-OC43 co-infections were found in children with respiratory symptoms during the COVID-19 pandemic. The two ß-coronaviruses share a high degree of homology between the 3CLpro active sites, so much so that the safer HCoV-OC43 has been suggested as a tool for the identification of new anti-SARS-COV-2 agents. Compounds 5 and 24 inhibited effectively both Wuhan and British SARS-CoV-2 patient isolates in Vero E6 cells and the HCoV-OC43 in MRC-5 cells at low micromolar concentrations. The inhibition was apparently exerted via targeting the 3CLpro active sites of both viruses. Compounds 5 and 24 at 100 µM inhibited the SARS-CoV-2 3CLpro activity of 61.78 and 67.30%, respectively. These findings highlight 5 and 24 as lead compounds of a novel class of antiviral agents with the potential to treat SARS-COV-2 and HCoV-OC43 infections.

2.
Proc Natl Acad Sci U S A ; 121(29): e2310421121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38976733

RESUMO

We generated a replication-competent OC43 human seasonal coronavirus (CoV) expressing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike in place of the native spike (rOC43-CoV2 S). This virus is highly attenuated relative to OC43 and SARS-CoV-2 in cultured cells and animals and is classified as a biosafety level 2 (BSL-2) agent by the NIH biosafety committee. Neutralization of rOC43-CoV2 S and SARS-CoV-2 by S-specific monoclonal antibodies and human sera is highly correlated, unlike recombinant vesicular stomatitis virus-CoV2 S. Single-dose immunization with rOC43-CoV2 S generates high levels of neutralizing antibodies against SARS-CoV-2 and fully protects human ACE2 transgenic mice from SARS-CoV-2 lethal challenge, despite nondetectable replication in respiratory and nonrespiratory organs. rOC43-CoV2 S induces S-specific serum and airway mucosal immunoglobulin A and IgG responses in rhesus macaques. rOC43-CoV2 S has enormous value as a BSL-2 agent to measure S-specific antibodies in the context of a bona fide CoV and is a candidate live attenuated SARS-CoV-2 mucosal vaccine that preferentially replicates in the upper airway.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19 , Testes de Neutralização , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Humanos , Anticorpos Neutralizantes/imunologia , Camundongos , COVID-19/imunologia , COVID-19/virologia , COVID-19/prevenção & controle , Anticorpos Antivirais/imunologia , Testes de Neutralização/métodos , Camundongos Transgênicos , Coronavirus Humano OC43/imunologia , Coronavirus Humano OC43/genética , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/imunologia , Chlorocebus aethiops , Células Vero , Macaca mulatta
3.
J Virol ; 98(7): e0085024, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38953378

RESUMO

Viruses are obligate parasites that depend on the cellular machinery for their propagation. Several viruses also incorporate cellular proteins that facilitate viral spread. Defining these cellular proteins is critical to decipher viral life cycles and delineate novel therapeutic strategies. While numerous studies have explored the importance of host proteins in coronavirus spread, information about their presence in mature virions is limited. In this study, we developed a protocol to highly enrich mature HCoV-OC43 virions and characterize them by proteomics. Recognizing that cells release extracellular vesicles whose content is modulated by viruses, and given our ability to separate virions from these vesicles, we also analyzed their protein content in both uninfected and infected cells. We uncovered 69 unique cellular proteins associated with virions including 31 high-confidence hits. These proteins primarily regulate RNA metabolism, enzymatic activities, vesicular transport, cell adhesion, metabolite interconversion, and translation. We further discovered that the virus had a profound impact on exosome composition, incorporating 47 novel cellular proteins (11 high confidence) and excluding 92 others (61 high confidence) in virus-associated extracellular vesicles compared to uninfected cells. Moreover, a dsiRNA screen revealed that 11 of 18 select targets significantly impacted viral yields, including proteins found in virions or extracellular vesicles. Overall, this study provides new and important insights into the incorporation of numerous host proteins into HCoV-OC43 virions, their biological significance, and the ability of the virus to modulate extracellular vesicles. IMPORTANCE: In recent years, coronaviruses have dominated global attention, making it crucial to develop methods to control them and prevent future pandemics. Besides viral proteins, host proteins play a significant role in viral propagation and offer potential therapeutic targets. Targeting host proteins is advantageous because they are less likely to mutate and develop resistance compared to viral proteins, a common issue with many antiviral treatments. In this study, we examined the protein content of the less virulent biosafety level 2 HCoV-OC43 virus as a stand-in for the more virulent SARS-CoV-2. Our findings reveal that several cellular proteins incorporated into the virion regulate viral spread. In addition, we report that the virus extensively modulates the content of extracellular vesicles, enhancing viral dissemination. This underscores the critical interplay between the virus, host proteins, and extracellular vesicles.


Assuntos
Coronavirus Humano OC43 , Vesículas Extracelulares , Proteômica , Vírion , Vírion/metabolismo , Humanos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/virologia , Coronavirus Humano OC43/fisiologia , Coronavirus Humano OC43/metabolismo , Proteômica/métodos , Proteoma/metabolismo , Proteoma/análise , Exossomos/metabolismo , Exossomos/virologia , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Linhagem Celular , Interações Hospedeiro-Patógeno
4.
Cureus ; 16(6): e62229, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-39006646

RESUMO

Human coronavirus NL63 (HCoV-NL63) belongs to the human coronavirus family but is distinct from other common coronaviruses such as HCoV-043, HCoV-229E, and SARS-CoV-1 and SARS-CoV-2 viruses. It causes a mild upper respiratory tract infection, affecting children and adults. The usual symptoms associated with the HCoV-NL63 infection are vomiting, a runny nose, and a sore throat. In vivo, HCoV-NL63 showed neurotropism as it can be detected in the CSF, through which it disseminates into the brain and the spinal column. Herein, we describe the case of a 14-year-old female patient who initially presented with disorientation and a drop in consciousness level and was admitted as a case of encephalitis to the pediatric intensive care unit.

5.
Cell ; 187(16): 4261-4271.e17, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38964329

RESUMO

The entry of coronaviruses is initiated by spike recognition of host cellular receptors, involving proteinaceous and/or glycan receptors. Recently, TMPRSS2 was identified as the proteinaceous receptor for HCoV-HKU1 alongside sialoglycan as a glycan receptor. However, the underlying mechanisms for viral entry remain unknown. Here, we investigated the HCoV-HKU1C spike in the inactive, glycan-activated, and functionally anchored states, revealing that sialoglycan binding induces a conformational change of the NTD and promotes the neighboring RBD of the spike to open for TMPRSS2 recognition, exhibiting a synergistic mechanism for the entry of HCoV-HKU1. The RBD of HCoV-HKU1 features an insertion subdomain that recognizes TMPRSS2 through three previously undiscovered interfaces. Furthermore, structural investigation of HCoV-HKU1A in combination with mutagenesis and binding assays confirms a conserved receptor recognition pattern adopted by HCoV-HKU1. These studies advance our understanding of the complex viral-host interactions during entry, laying the groundwork for developing new therapeutics against coronavirus-associated diseases.


Assuntos
Serina Endopeptidases , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Humanos , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Polissacarídeos/metabolismo , Polissacarídeos/química , Células HEK293 , Ligação Proteica , Receptores Virais/metabolismo , Receptores Virais/química , Coronavirus/metabolismo , Modelos Moleculares
6.
Eur J Med Chem ; 275: 116629, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38941718

RESUMO

The family of human-infecting coronaviruses (HCoVs) poses a serious threat to global health and includes several highly pathogenic strains that cause severe respiratory illnesses. It is essential that we develop effective broad-spectrum anti-HCoV agents to prepare for future outbreaks. In this study, we used PROteolysis TArgeting Chimera (PROTAC) technology focused on degradation of the HCoV main protease (Mpro), a conserved enzyme essential for viral replication and pathogenicity. By adapting the Mpro inhibitor GC376, we produced two novel PROTACs, P2 and P3, which showed relatively broad-spectrum activity against the human-infecting CoVs HCoV-229E, HCoV-OC43, and SARS-CoV-2. The concentrations of these PROTACs that reduced virus replication by 50 % ranged from 0.71 to 4.6 µM, and neither showed cytotoxicity at 100 µM. Furthermore, mechanistic binding studies demonstrated that P2 and P3 effectively targeted HCoV-229E, HCoV-OC43, and SARS-CoV-2 by degrading Mpro within cells in vitro. This study highlights the potential of PROTAC technology in the development of broad-spectrum anti-HCoVs agents, presenting a novel approach for dealing with future viral outbreaks, particularly those stemming from CoVs.


Assuntos
Antivirais , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteólise/efeitos dos fármacos , Coronavirus Humano 229E/efeitos dos fármacos , Coronavirus Humano OC43/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Desenvolvimento de Medicamentos , Lactamas , Leucina/análogos & derivados , Ácidos Sulfônicos
7.
Biochem Biophys Res Commun ; 724: 150231, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38852502

RESUMO

Human coronaviruses are a group of pathogens that primarily cause respiratory and intestinal diseases. Infection can easily cause respiratory symptoms, as well as a variety of serious complications. There are several types of human coronaviruses, such as SARS-CoV, MERS-CoV, HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, and SARS-CoV-2. The prevalence of COVID-19 has led to a growing focus on drug research against human coronaviruses. The main protease (Mpro) from human coronaviruses is a relatively conserved that controls viral replication. X77 was discovered to have extremely high inhibitory activity against SARS-CoV-2 Mpro through the use of computer-simulated docking. In this paper, we have resolved the crystal structure of the HCoV-NL63 Mpro complexed with X77 and analyzed their interaction in detail. This data provides essential information for solving their binding modes and their structural determinants. Then, we compared the binding modes of X77 with SARS-CoV-2 Mpro and HCoV-NL63 Mpro in detail. This study illustrates the structural basis of HCoV-NL63 Mpro binding to the inhibitor X77. The structural insights derived from this study will inform the development of new drugs with broad-spectrum resistance to human coronaviruses.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Coronavirus Humano NL63 , SARS-CoV-2 , Humanos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Cristalografia por Raios X , Antivirais/química , Antivirais/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Inibidores de Proteases/metabolismo , Ligação Proteica , Modelos Moleculares , Sítios de Ligação , COVID-19/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/antagonistas & inibidores , Betacoronavirus/enzimologia , Conformação Proteica
8.
Microbiol Spectr ; 12(7): e0422023, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38864599

RESUMO

The emergence of the COVID-19 pandemic prompted an increased interest in seasonal human coronaviruses. OC43, 229E, NL63, and HKU1 are endemic seasonal coronaviruses that cause the common cold and are associated with generally mild respiratory symptoms. In this study, we identified cell lines that exhibited cytopathic effects (CPE) upon infection by three of these coronaviruses and characterized their viral replication kinetics and the effect of infection on host surface receptor expression. We found that NL63 produced CPE in LLC-MK2 cells, while OC43 produced CPE in MRC-5, HCT-8, and WI-38 cell lines, while 229E produced CPE in MRC-5 and WI-38 by day 3 post-infection. We observed a sharp increase in nucleocapsid and spike viral RNA (vRNA) from day 3 to day 5 post-infection for all viruses; however, the abundance and the proportion of vRNA copies measured in the supernatants and cell lysates of infected cells varied considerably depending on the virus-host cell pair. Importantly, we observed modulation of coronavirus entry and attachment receptors upon infection. Infection with 229E and OC43 led to a downregulation of CD13 and GD3, respectively. In contrast, infection with NL63 and OC43 leads to an increase in ACE2 expression. Attempts to block entry of NL63 using either soluble ACE2 or anti-ACE2 monoclonal antibodies demonstrated the potential of these strategies to greatly reduce infection. Overall, our results enable a better understanding of seasonal coronaviruses infection kinetics in permissive cell lines and reveal entry receptor modulation that may have implications in facilitating co-infections with multiple coronaviruses in humans.IMPORTANCESeasonal human coronavirus is an important cause of the common cold associated with generally mild upper respiratory tract infections that can result in respiratory complications for some individuals. There are no vaccines available for these viruses, with only limited antiviral therapeutic options to treat the most severe cases. A better understanding of how these viruses interact with host cells is essential to identify new strategies to prevent infection-related complications. By analyzing viral replication kinetics in different permissive cell lines, we find that cell-dependent host factors influence how viral genes are expressed and virus particles released. We also analyzed entry receptor expression on infected cells and found that these can be up- or down-modulated depending on the infecting coronavirus. Our findings raise concerns over the possibility of infection enhancement upon co-infection by some coronaviruses, which may facilitate genetic recombination and the emergence of new variants and strains.


Assuntos
Coronavirus Humano 229E , Coronavirus Humano NL63 , Coronavirus Humano OC43 , Internalização do Vírus , Replicação Viral , Humanos , Coronavirus Humano NL63/fisiologia , Coronavirus Humano NL63/genética , Coronavirus Humano 229E/fisiologia , Coronavirus Humano 229E/genética , Coronavirus Humano OC43/fisiologia , Coronavirus Humano OC43/genética , Linhagem Celular , Estações do Ano , Cinética , Receptores Virais/metabolismo , Receptores Virais/genética , Resfriado Comum/virologia , Resfriado Comum/metabolismo , SARS-CoV-2/fisiologia , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , RNA Viral/metabolismo , RNA Viral/genética , Animais , COVID-19/virologia , COVID-19/metabolismo , Coronavirus/fisiologia , Coronavirus/genética
9.
J Ethnopharmacol ; 333: 118490, 2024 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38925321

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Dryopteris crassirhizoma Nakai (Dryopteridaceae, RDC), a traditional East Asian herbal medicine, possesses a broad spectrum of medicinal properties, including anti-inflammatory, anticancer, antibacterial, and antiviral activities. AIM OF THE STUDY: This study investigates the 30% ethanolic extract of RDC's antiviral potential against human coronavirus OC43 (HCoV-OC43), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and its variants infections. MATERIALS AND METHODS: A 30% ethanolic extract of RDC or its components, filixic acid ABA (PubChem CID: 15081408) and dryocrassin ABBA (PubChem CID: 3082025) were treated with Human Coronavirus infection (HCoV-OC43, SARS-CoV-2 and its variants). The base peak chromatogram of RDC was evaluated using UPLC-Q/TOF Mass to identify the RDC, and the quantitative analysis of RDC compounds was performed using LC-MS/MS. A cytopathic effect (CPE) reduction assay, Western blot, immunofluorescence staining of viral protein expression, and qRT-PCR were performed to quantify the viral RNA copy numbers and determine the antiviral activity. The time-of-addition assay, the virus attachment, penetration, and virucidal assays, and SARS-CoV-2 Mpro and PLpro activity assay were used to elucidate the mode of action. RESULTS: RDC exhibited dose-dependent inhibition of HCoV-OC43-induced cytopathic effects, reducing viral RNA copy numbers and viral protein levels. Time-of-addition assays indicated that RDC targets the early stages of the HCoV-OC43 life cycle, inhibiting virion attachment and penetration with virucidal activity. Notably, filixic acid ABA and dryocrassin ABBA, constituents of RDC, reduced HCoV-OC43 viral RNA loads. Furthermore, RDC effectively blocked viral entry in pseudotyped lentivirus assays, involving spike proteins of SARS-CoV-2 Delta plus and South Africa variants, as well as control lentiviral particles expressing vesicular stomatitis virus glycoprotein G. Additionally, RDC demonstrated inhibition of SARS-CoV-2 infection and its variants by targeting viral proteases, namely main protease (Mpro) and papain-like protease (PLpro). CONCLUSIONS: These findings underscore RDC's multistage approach to targeting viral infections by impeding virus entry and inhibiting viral protease activity. Therefore, RDC holds promise as a potent, broad-spectrum anticoronaviral therapeutic agent.


Assuntos
Antivirais , Dryopteris , Extratos Vegetais , Rizoma , SARS-CoV-2 , Internalização do Vírus , Antivirais/farmacologia , Antivirais/isolamento & purificação , Internalização do Vírus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Dryopteris/química , Humanos , SARS-CoV-2/efeitos dos fármacos , Coronavirus Humano OC43/efeitos dos fármacos , Animais , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Chlorocebus aethiops , Células Vero
10.
Viruses ; 16(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38932190

RESUMO

Human coronavirus 229E (HCoV-229E) is associated with upper respiratory tract infections and generally causes mild respiratory symptoms. HCoV-229E infection can cause cell death, but the molecular pathways that lead to virus-induced cell death as well as the interplay between viral proteins and cellular cell death effectors remain poorly characterized for HCoV-229E. Studying how HCoV-229E and other common cold coronaviruses interact with and affect cell death pathways may help to understand its pathogenesis and compare it to that of highly pathogenic coronaviruses. Here, we report that the main protease (Mpro) of HCoV-229E can cleave gasdermin D (GSDMD) at two different sites (Q29 and Q193) within its active N-terminal domain to generate fragments that are now unable to cause pyroptosis, a form of lytic cell death normally executed by this protein. Despite GSDMD cleavage by HCoV-229E Mpro, we show that HCoV-229E infection still leads to lytic cell death. We demonstrate that during virus infection caspase-3 cleaves and activates gasdermin E (GSDME), another key executioner of pyroptosis. Accordingly, GSDME knockout cells show a significant decrease in lytic cell death upon virus infection. Finally, we show that HCoV-229E infection leads to increased lytic cell death levels in cells expressing a GSDMD mutant uncleavable by Mpro (GSDMD Q29A+Q193A). We conclude that GSDMD is inactivated by Mpro during HCoV-229E infection, preventing GSDMD-mediated cell death, and point to the caspase-3/GSDME axis as an important player in the execution of virus-induced cell death. In the context of similar reported findings for highly pathogenic coronaviruses, our results suggest that these mechanisms do not contribute to differences in pathogenicity among coronaviruses. Nonetheless, understanding the interactions of common cold-associated coronaviruses and their proteins with the programmed cell death machineries may lead to new clues for coronavirus control strategies.


Assuntos
Morte Celular , Coronavirus Humano 229E , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Ligação a Fosfato , Piroptose , Humanos , Proteínas de Ligação a Fosfato/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Coronavirus Humano 229E/fisiologia , Coronavirus Humano 229E/genética , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Linhagem Celular , Interações Hospedeiro-Patógeno , Células HEK293 , Gasderminas
11.
Fitoterapia ; 177: 106077, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38906387

RESUMO

The screening of based target compounds supported by LC/MS, MS/MS and Global Natural Products Social (GNPS) used to identify the compounds 1-10 of Butea monsperma. They were evaluated in human malignant embryonic rhabdomyoma cells (RD cells) infected with Human coronavirus OC43 (HCoV-OC43) and showed significant inhibitory activity. Target inhibition tests showed that compounds 6 and 8 inhibited the proteolytic enzyme 3CLpro, which is widely present in coronavirus and plays an important role in the replication process, with an effective IC50 value. The study confirmed that dioxymethylene of compound 8 may be a key active fragment in inhibiting coronavirus (EC50 7.2 µM, SI > 139.1). The results have led to identifying natural bioactive compounds for possible inhibiting HCoV-OC43 and developing drug for Traditional Chinese Medicine (TCM).


Assuntos
Antivirais , Coronavirus Humano OC43 , Flavonoides , Humanos , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Flavonoides/química , Cromatografia Líquida , Estrutura Molecular , Coronavirus Humano OC43/isolamento & purificação , Coronavirus Humano OC43/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/isolamento & purificação , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Proteases 3C de Coronavírus/antagonistas & inibidores , Produtos Biológicos/farmacologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/química
12.
Artigo em Inglês | MEDLINE | ID: mdl-38753464

RESUMO

Novel class of triazine sulfonamide thioglycosides was designed and synthesized. Those novel structures comprising three essential and pharmacological significant moieties such as the triazine, sulfonamide, and thioglycosidic scaffolds. The triazine sulfonamides were furnished via a direct approach starting from potassium cyanocarbonimidodithioate, then the corresponding triazine sulfonamide thioglycosides were generated using the peracylated α-d-gluco- and galacto-pyranosyl bromides. Anti-viral evaluation of compounds in vitro against HCoV-229E virus revealed that some compounds possess promising activity. Compounds 4a, 4b, 4d, 6d and 6e indicate from moderate to low antiviral activity against low pathogenic coronavirus 229E in comparison with remdesivir at a concentration of 100 µg/mL. Additionally their in vitro anti-proliferative effects against NCI 60 cancer cell lines cell lines were also investigated. Compound 4a, the most potent compound among the estimated compounds, revealed remarkably lowest cell growth promotion against CNS cancer SNB-75, and renal cancer UO-31.

13.
Front Immunol ; 15: 1382911, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807606

RESUMO

Introduction: COVID-19 vaccines are highly effective in inducing protective immunity. While the serum antibody response to COVID-19 vaccination has been studied in depth, our knowledge of the underlying plasmablast and memory B cell (Bmem) responses is still incomplete. Here, we determined the antibody and B cell response to COVID-19 vaccination in a naïve population and contrasted it with the response to a single influenza vaccination in a primed cohort. In addition, we analyzed the antibody and B cell responses against the four endemic human coronaviruses (HCoVs). Methods: Measurement of specific plasma IgG antibodies was combined with functional analyses of antibody-secreting plasmablasts and Bmems. SARS-CoV-2- and HCoV-specific IgG antibodies were quantified with an in-house bead-based multiplexed immunoassay. Results: The antibody and B cell responses to COVID-19 vaccination reflected the kinetics of a prime-boost immunization, characterized by a slow and moderate primary response and a faster and stronger secondary response. In contrast, the influenza vaccinees possessed robust immune memory for the vaccine antigens prior to vaccination, and the recall vaccination moderately boosted antibody production and Bmem responses. Antibody levels and Bmem responses waned several months after the 2nd COVID-19 vaccination, but were restored upon the 3rd vaccination. The COVID-19 vaccine-induced antibodies mainly targeted novel, non-cross-reactive S1 epitopes of the viral spike protein, while cross-reactive S2 epitopes were less immunogenic. Booster vaccination not only strongly enhanced neutralizing antibodies against an original SARS-CoV-2 strain, but also induced neutralizing antibodies against the Omicron BA.2 variant. We observed a 100% plasma antibody prevalence against the S1 subunits of HCoVs, which was not affected by vaccination. Discussion: Overall, by complementing classical serology with a functional evaluation of plasmablasts and memory B cells we provide new insights into the specificity of COVID-19 vaccine-induced antibody and B cell responses.


Assuntos
Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Reações Cruzadas , Imunidade Humoral , Imunoglobulina G , Células B de Memória , Plasmócitos , SARS-CoV-2 , Humanos , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/prevenção & controle , Células B de Memória/imunologia , SARS-CoV-2/imunologia , Vacinas contra COVID-19/imunologia , Masculino , Adulto , Reações Cruzadas/imunologia , Feminino , Plasmócitos/imunologia , Pessoa de Meia-Idade , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Vacinação , Vacinas contra Influenza/imunologia , Memória Imunológica/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Epitopos de Linfócito B/imunologia , Linfócitos B/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Cinética
14.
Arch Microbiol ; 206(6): 269, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767708

RESUMO

Bacteriocins are ribosomally synthesized bacterial peptides endowed with antibacterial, antiprotozoal, anticancer and antiviral activities. In the present study, we evaluated the antiviral activities of two bacteriocins, enterocin DD14 (EntDD14) and lacticaseicin 30, against herpes simplex virus type 1 (HSV-1), human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Vero, Huh7 and Vero E6 cells, respectively. In addition, the interactions of these bacteriocins with the envelope glycoprotein D of HSV-1 and the receptor binding domains of HCoV-229E and SARS-CoV-2 have been computationally evaluated using protein-protein docking and molecular dynamics simulations. HSV-1 replication in Vero cells was inhibited by EntDD14 and, to a lesser extent, by lacticaseicin 30 added to cells after virus inoculation. EntDD14 and lacticaseicin 30 had no apparent antiviral activity against HCoV-229E; however, EntDD14 was able to inhibit SARS-CoV-2 in Vero E6 cells. Further studies are needed to elucidate the antiviral mechanism of these bacteriocins.


Assuntos
Antivirais , Bacteriocinas , SARS-CoV-2 , Bacteriocinas/farmacologia , Chlorocebus aethiops , Animais , Antivirais/farmacologia , Células Vero , Humanos , SARS-CoV-2/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Hidrocarbonetos Aromáticos com Pontes
15.
Microbiol Res ; 285: 127750, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761489

RESUMO

The progress of viral infection involves numerous transcriptional regulatory events. The identification of the newly synthesized transcripts helps us to understand the replication mechanisms and pathogenesis of the virus. Here, we utilized a time-resolved technique called metabolic RNA labeling approach called thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) to differentially elucidate the levels of steady-state and newly synthesized RNAs of BHK21 cell line in response to human coronavirus OC43 (HCoV-OC43) infection. Our results showed that the Wnt/ß-catenin signaling pathway was significantly enriched with the newly synthesized transcripts of BHK21 cell line in response to HCoV-OC43 infection. Moreover, inhibition of the Wnt pathway promoted viral replication in the early stage of infection, but inhibited it in the later stage of infection. Furthermore, remdesivir inhibits the upregulation of the Wnt/ß-catenin signaling pathway induced by early infection with HCoV-OC43. Collectively, our study showed the diverse roles of Wnt/ß-catenin pathway at different stages of HCoV-OC43 infection, suggesting a potential target for the antiviral treatment. In addition, although infection with HCoV-OC43 induces cytopathic effects in BHK21 cells, inhibiting apoptosis does not affect the intracellular replication of the virus. Monitoring newly synthesized RNA based on such time-resolved approach is a highly promising method for studying the mechanism of viral infections.


Assuntos
Monofosfato de Adenosina , Alanina , Antivirais , Coronavirus Humano OC43 , Transcriptoma , Replicação Viral , Via de Sinalização Wnt , Coronavirus Humano OC43/genética , Coronavirus Humano OC43/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Humanos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/metabolismo , Antivirais/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/metabolismo , Animais , Infecções por Coronavirus/virologia , Infecções por Coronavirus/tratamento farmacológico
16.
Daru ; 32(1): 215-235, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38652363

RESUMO

PURPOSE: Identifying the molecular mechanisms behind SARS-CoV-2 disparities and similarities will help find new treatments. The present study determines networks' shared and non-shared (specific) crucial elements in response to HCoV-229E and SARS-CoV-2 viruses to recommend candidate medications. METHODS: We retrieved the omics data on respiratory cells infected with HCoV-229E and SARS-CoV-2, constructed PPIN and GRN, and detected clusters and motifs. Using a drug-gene interaction network, we determined the similarities and disparities of mechanisms behind their host response and drug-repurposed. RESULTS: CXCL1, KLHL21, SMAD3, HIF1A, and STAT1 were the shared DEGs between both viruses' protein-protein interaction network (PPIN) and gene regulatory network (GRN). The NPM1 was a specific critical node for HCoV-229E and was a Hub-Bottleneck shared between PPI and GRN in HCoV-229E. The HLA-F, ADCY5, TRIM14, RPF1, and FGA were the seed proteins in subnetworks of the SARS-CoV-2 PPI network, and HSPA1A and RPL26 proteins were the seed in subnetworks of the PPI network of HCOV-229E. TRIM14, STAT2, and HLA-F played the same role for SARS-CoV-2. Top enriched KEGG pathways included cell cycle and proteasome in HCoV-229E and RIG-I-like receptor, Chemokine, Cytokine-cytokine, NOD-like receptor, and TNF signaling pathways in SARS-CoV-2. We suggest some candidate medications for COVID-19 patient lungs, including Noscapine, Isoetharine mesylate, Cycloserine, Ethamsylate, Cetylpyridinium, Tretinoin, Ixazomib, Vorinostat, Venetoclax, Vorinostat, Ixazomib, Venetoclax, and epoetin alfa for further in-vitro and in-vivo investigations. CONCLUSION: We suggested CXCL1, KLHL21, SMAD3, HIF1A, and STAT1, ADCY5, TRIM14, RPF1, and FGA, STAT2, and HLA-F as critical genes and Cetylpyridinium, Cycloserine, Noscapine, Ethamsylate, Epoetin alfa, Isoetharine mesylate, Ribavirin, and Tretinoin drugs to study further their importance in treating COVID-19 lung complications.


Assuntos
Antivirais , Coronavirus Humano 229E , Reposicionamento de Medicamentos , Mapas de Interação de Proteínas , SARS-CoV-2 , Biologia de Sistemas , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/efeitos dos fármacos , Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Nucleofosmina , Mucosa Respiratória/metabolismo , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/virologia , Redes Reguladoras de Genes/efeitos dos fármacos , COVID-19
17.
Bioorg Chem ; 147: 107317, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583252

RESUMO

By inducing steric activation of the 10CH bond with a 12-acyl group to form a key imine oxime intermediate, 20 novel (10S)-10,12-disubstituted aloperine derivatives were successfully synthesized and assessed for their antiviral efficacy against HCoV-OC43. Of them, compound 3i exhibited the moderate activities against HCoV-OC43, as well as against the SARS-CoV-2 variant EG.5.1 with the comparable EC50 values of 4.7 and 4.1 µM. A mechanism study revealed that it inhibited the protease activity of host TMPRSS2 by binding to an allosteric site, rather than the known catalytic center, different from that of camostat. Also, the combination of compound 3i and molnupiravir, as an RdRp inhibitor, showed an additive antiviral effect against HCoV-OC43. The results provide a new binding mode and lead compound for targeting TMPRSS2, with an advantage in combating broad-spectrum coronavirus.


Assuntos
Sítio Alostérico , Antivirais , Coronavirus Humano OC43 , Quinolizidinas , Serina Endopeptidases , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Serina Endopeptidases/metabolismo , Humanos , Coronavirus Humano OC43/efeitos dos fármacos , Coronavirus Humano OC43/química , Quinolizidinas/química , Quinolizidinas/farmacologia , Quinolizidinas/síntese química , Sítio Alostérico/efeitos dos fármacos , Relação Estrutura-Atividade , Descoberta de Drogas , SARS-CoV-2/efeitos dos fármacos , Estrutura Molecular , Testes de Sensibilidade Microbiana , Relação Dose-Resposta a Droga
18.
J Ethnopharmacol ; 328: 118070, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521430

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In Senegal, upper and lower respiratory tract infections constitute a real health problem. To manage these disorders, most people rely on the use of local medicinal plants. This is particularly the case for species belonging to the botanical families, Combretaceae, Fabaceae, Myrtaceae and Rubiaceae, which are widely used to treat various respiratory problems such as colds, flu, rhinitis, sinusitis, otitis, angina, bronchitis, bronchiolitis and also pneumonia. AIM OF THE STUDY: The aim of this study was to identify medicinal plants traditionally used for the management of infectious diseases, in particular those of the respiratory tract. On the basis of these ethnopharmacological uses, this study made it possible to highlight the antibacterial, antiviral and cytotoxic activities of selected plant species. MATERIALS AND METHODS: An ethnobotanical survey was conducted in Senegal among informants, including herbalists, traditional healers, and households, using medicinal plants in the management of infectious diseases, with a focus on respiratory tract infections. The most cited plant species were evaluated in vitro on a panel of 18 human pathogenic bacteria may be involved in respiratory infections and against the human coronavirus HCoV-229E in Huh-7 cells. The antiviral activity of the most active extracts against HCoV-229E was also evaluated on COVID-19 causing agent, SARS-CoV-2 in Vero-81 cells. In parallel, cytotoxic activities were evaluated on Huh-7 cells. RESULTS: A total of 127 informants, including 100 men (78.74%) and 27 women (21.26%) participated in this study. The ethnobotanical survey led to the inventory of 41 plant species belonging to 19 botanical families used by herbalists and/or traditional healers and some households to treat infectious diseases, with a specific focus on upper respiratory tract disorders. Among the 41 plant species, the most frequently mentioned in the survey were Guiera senegalensis J.F. Gmel. (95.2%), Combretum glutinosum Perr. Ex DC. (93.9%) and Eucalyptus spp. (82.8%). Combretaceae (30.2%) represented the most cited botanical family with six species, followed by Fabaceae (29.3%, 12 species). A total of 33 crude methanolic extracts of the 24 plant species selected for their number of citations were evaluated in vitro for their antimicrobial and cytotoxic activities. Guiera senegalensis, Combretum glutinosum, Vachellia nilotica subsp. tomentosa (Benth.) Kyal. & Boatwr, Eucalyptus camaldulensis Dehnh., and Terminalia avicennioides Guill. & Perr., showed antibacterial activities. The most active plants against HCoV-229E were: Ficus sycomorus L., Mitragyna inermis (Willd.) Kuntze, Pterocarpus erinaceus Poir., and Spermacoce verticillata L. One of these plants, Mitragyna inermis, was also active against SARS-CoV-2. CONCLUSION: This work confirmed the anti-infective properties of plant species traditionally used in Senegal. Overall, the most frequently cited plant species showed the best antibacterial activities. Moreover, some of the selected plant species could be considered as a potential source for the management of coronavirus infections. This new scientific data justified the use of these plants in the management of some infectious pathologies, especially those of the respiratory tract.


Assuntos
Anti-Infecciosos , COVID-19 , Combretaceae , Combretum , Doenças Transmissíveis , Coronavirus Humano 229E , Plantas Medicinais , Masculino , Humanos , Feminino , Fitoterapia , Medicinas Tradicionais Africanas , Etnobotânica , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico
19.
BMC Complement Med Ther ; 24(1): 115, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454377

RESUMO

INTRODUCTION: Silybum marianum commonly known as milk thistle is one of the most imperative medicinal plants due to its remarkable pharmacological activities. Lately, the antiviral activities of S. marianum extract have been studied and it showed effectiveness against many viruses. OBJECTIVE: Although most previous studies were concerned mainly with silymarin content of the fruit, the present study provides comprehensive comparative evaluation of S. marianum different organs' chemical profiles using UPLC-MS/MS coupled to chemometrics to unravel potentially selective antiviral compounds against human coronavirus (HCoV-229E). METHODOLOGY: UPLC-ESI-TQD-MS/MS analysis was utilized to establish metabolic fingerprints for S. marianum organs namely fruits, roots, stems and seeds. Multivariate analysis, using OPLS-DA and HCA-heat map was applied to explore the main discriminatory phytoconstituents between organs. Selective virucidal activity of organs extracts against coronavirus (HCoV-229E) was evaluated for the first time using cytopathic effect (CPE) inhibition assay. Correlation coefficient analysis was implemented for detection of potential constituents having virucidal activity. RESULTS: UPLC-MS/MS analysis resulted in 87 identified metabolites belonging to different classes. OPLS-DA revealed in-between class discrimination between milk thistle organs proving their significantly different metabolic profiles. The results of CPE assay showed that all tested organ samples exhibited dose dependent inhibitory activity in nanomolar range. Correlation analysis disclosed that caffeic acid-O-hexoside, gadoleic and linolenic acids were the most potentially selective antiviral phytoconstituents. CONCLUSION: This study valorizes the importance of different S. marianum organs as wealthy sources of selective and effective antiviral candidates. This approach can be extended to unravel potentially active constituents from complex plant matrices.


Assuntos
Silybum marianum , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Análise Multivariada , Antivirais/farmacologia
20.
Heliyon ; 10(6): e27829, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533054

RESUMO

Background: Denglao Qingguan decoction (DLQGD) has been extensively utilized for the treatment of colds, demonstrating significant therapeutic efficacy. Human Coronavirus 229E (HCoV-229E) is considered a crucial etiological agent of influenza. However, the specific impact and underlying mechanisms of DLQGD on HCoV-229E remain poorly understood. Methods: Active ingredients and targets information of DLQGD were collected from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), literature search, and Swiss ADEM database. The Genecard database was used to collect HCoV-229E related targets. We built an "ingredient-target network" through Cytoscape. Protein - Protein interaction (PPI) networks were mapped using the String database. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) were enriched using the DAVID database. Then, we used molecular docking techniques to verify the binding activity between the core compounds and the core gene targets. Finally, in vitro experiments were conducted to validate DLQGD's antiviral activity against HCoV-229E and assess its anti-inflammatory effects. Results: In total, we identified 227 active components in DLQGD. 18 key targets involved in its activity against HCoV-229E. Notably, the core active ingredients including quercetin, luteolin, kaempferol, ß-sitosterol, and apigenin, and the core therapeutic targets were CXCL8, RELA, MAPK14, NFKB1, and CXCL10, all associated with HCoV-229E. KEGG enrichment results included IL-17 signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and so on. The core active ingredients and the core therapeutic targets and Human Aminopeptidase N (ANPEP) all showed good binding activity by molecular docking verification. In vitro, DLQGD exhibited anti-HCoV-229E activity and anti-inflammatory effects. Conclusion: Our study suggests that DLQGD has both effects of anti-HCoV-229E and anti-inflammatory. The core active ingredients (quercetin, luteolin, kaempferol, ß-sitosterol, apigenin) and the core therapeutic targets (CXCL8, RELA, MAPK14, NFKB1, CXCL10) may play key roles in the pharmacological action of DLQGD against HCoV-229E.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA