RESUMO
In this study, in silico approaches are employed to investigate the binding mechanism of peptides derived from cowpea ß-vignin and HMG-CoA reductase. With the obtained information, we designed synthetic peptides to evaluate their in vitro enzyme inhibitory activity. In vitro, the total protein extract and <3 kDa fraction, at 5000 µg, support this hypothesis (95% and 90% inhibition of HMG-CoA reductase, respectively). Ile-Ala-Phe, Gln-Gly-Phe, and Gln-Asp-Phe peptides were predicted to bind to the substrate binding site of HMGCR via HMG-CoAR. In silico, it was established that the mechanism of HMG-CoA reductase inhibition largely entailed mimicking the interactions of the decalin ring of simvastatin and via H-bonding; in vitro studies corroborated the predictions, whereby the HMG-CoA reductase activity was decreased by 69%, 77%, and 78%, respectively. Our results suggest that Ile-Ala-Phe, Gln-Gly-Phe, and Gln-Asp-Phe peptides derived from cowpea ß-vignin have the potential to lower cholesterol synthesis through a statin-like regulation mechanism.
Assuntos
Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Peptídeos/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Meia-Vida , Ligação de Hidrogênio , Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Simulação de Acoplamento Molecular , Peptídeos/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sinvastatina/química , Sinvastatina/metabolismo , Vigna/metabolismoRESUMO
Previous studies have shown that cowpea protein positively interferes with cholesterol metabolism. In this study, we evaluated the ability of the fraction containing peptides of <3â¯kDa, as well as that of the Gln-Asp-Phe (QDF) peptide, derived from cowpea ß-vignin protein, to inhibit HMG-CoA reductase activity. We established isolation and chromatography procedures to effectively obtain the protein with a purity above 95%. In silico predictions were performed to identify peptide sequences capable of interacting with HMG-CoA reductase. In vitro experiments showed that the fraction containing peptides of <3â¯kDa displayed inhibition of HMG-CoA reductase activity. The tripeptide QDF inhibits HMG-CoA reductase (IC50â¯=â¯12.8⯵M) in a dose-dependent manner. Furthermore, in silico studies revealed the binding profile of the QDF peptide and hinted at the molecular interactions that are responsible for its activity. Therefore, this study shows, for the first time, a peptide from cowpea ß-vignin protein that inhibits HMG-CoA reductase and the chemical modifications that should be investigated to evaluate its binding profile.
Assuntos
Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Peptídeos/metabolismo , Vigna/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Humanos , Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Simulação de Acoplamento Molecular , Peptídeos/análise , Peptídeos/químicaRESUMO
PURPOSE OF REVIEW: This clinical update is intended to focus in relationship between HIV infection and use of antiretroviral therapy (ART) and statin. RECENT FINDINGS: Though ART significantly changed the course of HIV infection, it is related to numerous side effects principally to the lipid profile. In this way, statins became one of the most used lipid-lowering therapies in this population. In our clinical update, we evaluated studies that demonstrate the relationship and molecular mechanisms that HIV infection and ART use trigger dyslipidemia and also the use of statin to reduce this condition. We have demonstrated that use of statin can be used in dyslipidemic HIV-infected people as long as there is no drug interaction with ART. Recently, studies using rosuvastatin have shown greater effects when compared to the other statins.