Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Microbiol ; 287: 109915, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000209

RESUMO

The adjuvant and/or vector significantly affect a vaccine's efficacy. Although traditional adjuvants such as alum have contributed to vaccine development, deficiencies in the induction of cellular and mucosal immunity have limited their further promotion. Salmonella vectors have unique advantages for establishing cellular and mucosal immunity due to mucosal pathways of invasion and intracellular parasitism. In addition, Salmonella vectors can activate multiple innate immune pathways, thereby promoting adaptive immune responses. In this work, the attenuated Salmonella enterica serovar Choleraesuis (S. Choleraesuis) vector rSC0016 was used to deliver the conserved protective antigen HPS_06257 of Glaesserella parasuis (G. parasuis), generating a novel recombinant strain rSC0016(pS-HPS_06257). The rSC0016(pS-HPS_06257) can express and deliver the HPS_06257 protein to the lymphatic system of the host. In comparison to HPS_06257 adjuvanted with alum, rSC0016(pS-HPS_06257) significantly increased TLR4 and TLR5 activation in mice as well as the levels of proinflammatory cytokines. In addition, rSC0016 promoted a greater degree of maturation in bone marrow-derived dendritic cells (BMDCs) than alum. The specific humoral, mucosal, and cellular immune responses against HPS_06257 in mice immunized with rSC0016(pS-HPS_06257) were significantly higher than those of HPS_06257 adjuvanted with alum. HPS_06257 delivered by the S. Choleraesuis vector induces a Th1-biased Th1/Th2 mixed immune response, while HPS adjuvanted with alum can only induce a Th2-biased immune response. HPS_06257 adjuvanted with alum only causes opsonophagocytic activity (OPA) responses against a homologous strain (G. parasuis serotype 5, GPS5), whereas rSC0016(pS-HPS_06257) could generate cross-OPA responses against a homologous strain and a heterologous strain (G. parasuis serotype 12, GPS12). Ultimately, HPS_06257 adjuvanted with alum protected mice against lethal doses of GPS5 challenge by 60 % but failed to protect mice against lethal doses of GPS12. In contrast, mice immunized with rSC0016(pS-HPS_06257) had 100 % or 80 % survival when challenged with lethal doses of GPS5 or GPS12, respectively. Altogether, the S. Choleraesuis vector rSC0016 could potentially generate an improved innate immune response and an improved adaptive immunological response compared to the traditional alum adjuvant, offering a novel concept for the development of a universal G. parasuis vaccine.


Assuntos
Salmonella enterica , Vacinas , Camundongos , Animais , Sorogrupo , Adjuvantes Imunológicos , Imunidade Celular , Camundongos Endogâmicos BALB C
2.
Vet Sci ; 9(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35878359

RESUMO

HPS_06257 has been identified as an important protective antigen against Glaesserella parasuis infection. However, little is known about the role of HPS_06257 in the protective immune response. A whole-genome data analysis showed that among 18 isolates of Glaesserella parasuis, 11 were positive for the HPS_06257 gene, suggesting that not every strain contains this gene. We used PCR to investigate the presence of the HPS_06257 gene among 13 reference strains and demonstrated that 5 strains contained the gene. A polyclonal antibody against HPS_06257 was generated with a recombinant protein to study the expression of HPS_06257 in those 13 strains. Consistent with the PCR data, five strains expressed HPS_06257, whereas eight strains were HPS_06257 null. We also compared the protective effects of HPS_06257 against an HPS_06257-expressing strain (HPS5) and an HPS_06257-null strain (HPS11). Immunization with HPS_06257 only protected against HPS5 and not HPS11. Moreover, phagocytosis of antibody-opsonized bacteria demonstrates that the antibody against HPS_06257 increased the phagocytosis of the HPS5 strain by macrophages but not the phagocytosis of the HPS11 strain, suggesting that antibody-dependent phagocytosis is responsible for the protective role exerted by HPS_06257 in the immune response to HPS5. Our data also show that the antibody against HPS_06257 increased the phagocytosis of the other HPS_06257-expressing strains by macrophages but not that of HPS_06257-null strains. In summary, our findings demonstrate that antibody-dependent phagocytosis contributes to the protective immune response induced by immunization with HPS_06257 against HPS_06257-expressing strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA