Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37959751

RESUMO

A raspberry-like SiO2@TiO2 new material supported on functionalized graphene oxide was prepared to reduce titania's band gap value. The material was characterized through different analytical methods such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HR-TEM). The band gap value was studied via UV-Vis absorption spectra and determined through the Kubelka-Munk equation. A theoretical study was also carried out to analyze the interaction between the species.

2.
Microsc Res Tech ; 86(1): 41-52, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36314569

RESUMO

The ectopic calcifications of non-mineralized tissues can occur in several forms throughout life, such as pulpal calcification. The presence of pulp stones is a challenge in endodontic treatment because they partially or fully obliterate the pulp chamber hindering access to root canals and their subsequent shaping. This study aimed to determine their crystallographic properties and evaluate the capacity of citric acid (CA) and ethylenediaminetetraacetic acid (EDTA) to promote the demineralization of pulp calcifications. The samples were obtained from patients with indications of endodontic treatment, and the radiographic examination was suggestive of pulp stone in at least one permanent tooth. The samples were isolated and analyzed by scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDX). The Fourier Transform by high resolution-transmission electron microscopy, Raman microscopy, and X-ray diffraction (XRD) were used to identify the mineral phase and crystallographic characteristics. To evaluate the effect of CA and EDTA on the crystallinity of calcifications, they were submerged into these two individual solutions and the changes were assessed in situ by Raman spectroscopy. The SEM images obtained from calcifications demonstrated irregular morphologies. EDX of sample surfaces shows a high presence of oxygen, carbon, calcium, and phosphorous, however, other elements such as sodium, magnesium, nitrogen, chlorine, potassium, sulfur, and zinc were identified in less quantity. According to Raman, XRD, and high-resolution transmission electron microscopy, the predominant mineral phase identified in the pulpal calcification was a poor crystallinity apatite. According to in situ analyses, the effect of CA and EDTA was observed on the signals of PO4 3- and CH2 groups corresponding to inorganic and organic components. The changes with CA were evident at 7 min while the effect of EDTA was observed until 15 min of treatment. All results indicate that pulp stones have a heterogeneous composition principally composed of apatite with low crystallinity. The solubility of these pathological minerals is adequate using solutions such as EDTA or CA; however, the effectivity depends on the mineralization grade of calcifications, time, and concentration of exposition to this chemical.


Assuntos
Calcinose , Calcificações da Polpa Dentária , Humanos , Ácido Edético/farmacologia , Ácido Cítrico , Microscopia Eletrônica de Varredura , Minerais/análise , Apatitas
3.
Methods Mol Biol ; 2469: 183-191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508839

RESUMO

Adjuvants are essential components of subunit, recombinant, nonreplicating and killed vaccines, as they are substances that boost, shape, and/or enhance the immune response triggered by vaccination. Saponins obtained from the Chilean Q. saponaria tree are used as vaccine adjuvants in commercial vaccines, although they are scarce and difficult to obtain. In addition, tree felling is needed during its extraction, which has ecological impact. Q. brasiliensis leaf-extracted saponins arise as a more sustainable alternative, although its use is still limited to preclinical studies. Despite the remarkable immunostimulating properties of saponins, they are toxic to mammalian cells, due to their intrinsic characteristics. For these reasons they are mostly used in veterinary vaccines, although recently the Q. saponaria purified saponin QS-21 has been included in adjuvant systems for human vaccines, such as Mosquirix and Shingrix (GSK). In order to abrogate the toxicity of the saponins fractions, they can be formulated as immunostimulating complexes (ISCOMs). ISCOM-matrices are cage-like nanoparticles of approximately 40 nm, formulated combining saponins and lipids, without antigen, and are great adjuvants able to promote Th1-biased immune responses in a safe manner. Herein we describe how to formulate ISCOM-matrices nanoparticles using Q. brasiliensis purified saponin fractions (IMXQB) by the dialysis method. In addition, we indicate how to verify the appropriate size and homogeneity of the formulated nanoparticles.


Assuntos
ISCOMs , Nanopartículas , Saponinas , Adjuvantes Imunológicos/farmacologia , Adjuvantes de Vacinas , Animais , Humanos , ISCOMs/farmacologia , Vacinas Antimaláricas , Mamíferos , Quillaja , Saponinas de Quilaia , Saponinas/farmacologia
4.
Materials (Basel) ; 10(2)2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28772507

RESUMO

We present a series of computer-assisted high-resolution transmission electron (HRTEM) simulations to determine Moiré patters by induced twisting effects between slabs at rotational angles of 3°, 5°, 8°, and 16°, for molybdenum disulfide, graphene, tungsten disulfide, and tungsten selenide layered materials. In order to investigate the electronic structure, a series of numerical simulations using density functional methods (DFT) methods was completed using Cambridge serial total energy package (CASTEP) with a generalized gradient approximation to determine both the band structure and density of states on honeycomb-like new superlattices. Our results indicated metallic transitions when the rotation approached 8° with respect to each other laminates for most of the two-dimensional systems that were analyzed.

5.
Materials (Basel) ; 10(2)2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28772559

RESUMO

Though tungsten trioxide (WO3) in bulk, nanosphere, and thin film samples has been extensively studied, few studies have been dedicated to the crystallographic structure of WO3 thin films. In this work, the evolution from amorphous WO3 thin films to crystalline WO3 thin films is discussed. WO3 thin films were fabricated on silicon substrates (Si/SiO2) by RF reactive magnetron sputtering. Once a thin film was deposited, two successive annealing treatments were made: an initial annealing at 400 °C for 6 h was followed by a second annealing at 350 °C for 1 h. Film characterization was carried out by X-ray diffraction (XRD), high-resolution electron transmission microscopy (HRTEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM) techniques. The ß-WO3 final phase grew in form of columnar crystals and its growth plane was determined by HRTEM.

6.
Sensors (Basel) ; 17(5)2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28467372

RESUMO

In this work, we report the synthesis of Cu, Pt and Pd doped SnO2 powders and a comparative study of their CO gas sensing performance. Dopants were incorporated into SnO2 nanostructures using chemical and impregnation methods by using urea and ammonia as precipitation agents. The synthesized samples were characterized using X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM). The presence of dopants within the SnO2 nanostructures was evidenced from the HR-TEM results. Powders doped utilizing chemical methods with urea as precipitation agent presented higher sensing responses compared to the other forms, which is due to the formation of uniform and homogeneous particles resulting from the temperature-assisted synthesis. The particle sizes of doped SnO2 nanostructures were in the range of 40-100 nm. An enhanced sensing response around 1783 was achieved with Cu-doped SnO2 when compared with two other dopants i.e., Pt (1200) and Pd:SnO2 (502). The high sensing response of Cu:SnO2 is due to formation of CuO and its excellent association and dissociation with adsorbed atmospheric oxygen in the presence of CO at the sensor operation temperature, which results in high conductance. Cu:SnO2 may thus be an alternative and cost effective sensor for industrial applications.

7.
Sci Total Environ ; 539: 560-565, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26383858

RESUMO

Understanding the geochemistry of basalt alteration is central to the study of agriculture systems. Various nano-minerals play an important role in the mobilization of contaminants and their subsequent uptake by plants. We present a new analytical experimental approach in combination with an integrated analytical protocol designed to study basalt alteration processes. Recently, throughout the world, ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been of great concern for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the Nova Prata mining district in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/Energy Dispersive Spectroscopy (EDS)/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM/EDS), and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3, and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition, we have identified a number of trace metals such as Cd, Cu, Cr, and Zn, that are preferentially concentrated into the finer, inhalable, dust fraction and, thus, could present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimize exposure to these natural fertilizing basalt dust wastes and is, thus, of direct relevance to both the industrial sector of basalt mining and to agriculture in the region.


Assuntos
Monitoramento Ambiental , Nanopartículas/química , Silicatos/análise , Poluentes do Solo/química , Resíduos/análise , Brasil , Poeira/análise , Mineração , Nanopartículas/análise , Tamanho da Partícula , Solo , Poluentes do Solo/análise
8.
Int. j. high dilution res ; 14(3): 3-9, 2015. ilus, tab
Artigo em Inglês | LILACS | ID: lil-783286

RESUMO

As a therapeutic tool high dilutions (HDs) are always at the center of controversies due to problems to validate them as a function of Avogadro’s number. Nevertheless, homeopathy is practiced around the world as a complementary and alternative medicine. The present study sought to evaluate HDs of homeopathic drug Ferrum metallicum (Ferr) 6, 30, 200, 1M, 10Mc and 50Mc, all of which except for 6c surpass Avogadro’s number. Using HRTEM and EDS it was conclusively shown that: 1) all the investigated HDs of Ferr contained plenty of nanoparticles (NPs); 2) the size of NPs were within the quantum dots (QD) size range, except for 50Mc, in which larger particles were found (12.61nm); 3) NPs contained iron in various weight percentages; 4) the weight percentage of iron was highest in HDs 10Mc and 50Mc...


Assuntos
Humanos , Altas Potências , Ferrum/uso terapêutico , Limites de Avogadro , Nanopartículas , Pontos Quânticos , Espectrometria por Raios X , Microscopia Eletrônica de Transmissão
9.
Int. j. high dilution res ; 14(3): 3-9, 2015. ilus, tab
Artigo em Inglês | HomeoIndex - Homeopatia | ID: hom-11143

RESUMO

As a therapeutic tool high dilutions (HDs) are always at the center of controversies due to problems to validate them as a function of Avogadro’s number. Nevertheless, homeopathy is practiced around the world as a complementary and alternative medicine. The present study sought to evaluate HDs of homeopathic drug Ferrum metallicum (Ferr) 6, 30, 200, 1M, 10Mc and 50Mc, all of which except for 6c surpass Avogadro’s number. Using HRTEM and EDS it was conclusively shown that: 1) all the investigated HDs of Ferr contained plenty of nanoparticles (NPs); 2) the size of NPs were within the quantum dots (QD) size range, except for 50Mc, in which larger particles were found (12.61nm); 3) NPs contained iron in various weight percentages; 4) the weight percentage of iron was highest in HDs 10Mc and 50Mc. (AU)


Assuntos
Limites de Avogadro , Ferrum/uso terapêutico , Altas Potências , Nanopartículas , Pontos Quânticos , Microscopia Eletrônica de Transmissão , Espectrometria por Raios X
10.
Nanoscale Res Lett ; 9(1): 507, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25276105

RESUMO

In systems in atomic scale and nanoscale such as clusters or agglomerates constituted by particles from a few to less than 100 atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nanostructures display optical and electronic properties significantly different to those found in corresponding bulk materials. Silicon agglomerates embedded in silicon rich oxide (SRO) films have optical properties, which have been reported to be directly dependent on silicon nanocrystal size. Furthermore, the room temperature photoluminescence (PL) of SRO has repeatedly generated a huge interest due to its possible applications in optoelectronic devices. However, a plausible emission mechanism has not been widely accepted in the scientific community. In this work, we present a short review about the experimental results on silicon nanoclusters in SRO considering different techniques of growth. We focus mainly on their size, Raman spectra, and photoluminescence spectra. With this as background, we employed the density functional theory with a functional B3LYP and a basis set 6-31G* to calculate the optical and electronic properties of clusters of silicon (constituted by 15 to 20 silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism, experimentally found in thin SRO films.

11.
Materials (Basel) ; 6(1): 198-205, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-28809302

RESUMO

The chemical synthesis of gold nanoparticles (NP) by using gold (III) chloride trihydrate (HAuCl∙3H2O) and sodium citrate as a reducing agent in aqueous conditions at 100 °C is presented here. Gold nanoparticles areformed by a galvanic replacement mechanism as described by Lee and Messiel. Morphology of gold-NP was analyzed by way of high-resolution transmission electron microscopy; results indicate a six-fold icosahedral symmetry with an average size distribution of 22 nm. In order to understand the mechanical behaviors, like hardness and elastic moduli, gold-NP were subjected to nanoindentation measurements-obtaining a hardness value of 1.72 GPa and elastic modulus of 100 GPa in a 3-5 nm of displacement at the nanoparticle's surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA