Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 409
Filtrar
1.
Food Chem X ; 23: 101543, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022783

RESUMO

Dushan shrimp sour paste (DSSP), a traditional Guizhou condiment, and its unique flavor is determined by the fermentation microbiota. However, the relationship between the microbiota structure and its flavor remains unclear. This study identified 116 volatile flavor compounds using electronic nose and headspace solid-phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC-MS) techniques, of which 19 were considered as key flavor compounds, mainly consisting of 13 esters and 1 alcohol. High-throughput sequencing technique, the bacterial community structure of nine groups of DSSPs was determined. Further analysis revealed Vagococcus, Lactococcus, and Tepidimicrobium as key bacteria involved in flavor formation. This study contributes to our understanding of the relationship between bacterial communities and the flavor formation, and provides guidance for screening starter culture that enhance the flavor of DSSP in industrial production.

2.
Food Chem ; 457: 140128, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38959682

RESUMO

Headspace-solid phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) and electronic nose (E-nose) technologies were implemented to characterize the volatile profile of aerial part from 40 coriander varieties. A total of 207 volatile compounds were identified and quantified, including aldehydes, alcohols, terpenes, hydrocarbons, esters, ketones, acids, furans, phenols and others. E-nose results showed that W5S and W2W were representative sensors responding to coriander odor. Among all varieties, the number (21-30 species) and content (449.94-1050.55 µg/g) of aldehydes were the highest, and the most abundant analytes were (Z)-9-hexadecenal or (E)-2-tetratecenal, which accounted for approximately one-third of the total content. In addition, 37 components were determined the characteristic constituents with odor activity values (OAVs) ≥ 1, mainly presenting citrusy, fatty, soapy and floral smells. Hierarchical cluster analysis (HCA) and principal component analysis (PCA) could effectively distinguish different varieties. This study provided a crucial theoretical basis for flavor evaluation and quality improvement of coriander germplasm resources.

3.
Food Chem ; 459: 140431, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39018618

RESUMO

Insight investigation on both edible pulps and inedible parts involving inflorescence axis and shreds of Artocarpus heterophyllus Lam were carried out, a total of 98 VOCs and 201 masses were identified by the combination of HS-SPME-GC-MS and PTR-TOF-MS. Among them, according to the consistency of OAV and results of VIP > 1, p < 0.05, compounds methyl isovalerate (A2), 3-methylbutyl acetate (A5) and octanoic acid, ethyl ester (A21) were recognized as aroma markers to distinguish the pulps, shreds and inflorescence axis. Meanwhile, the inflorescence axis (IC50: 1.82 mg/mL) and shreds (IC50: 16.74 mg/mL) exhibited more excellent antioxidant potency than pulps (IC50: 17.43 mg/mL) in vitro. These findings validated the feasibility of coupling HS-SPME-GC-MS and PTR-TOF-MS for rapid detection of characteristic VOCs of this plant, and offered new prospect of fragrance utilization and waste management of the edible and inedible parts of A. heterophyllus fruit.

4.
Plants (Basel) ; 13(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999702

RESUMO

Monoterpenes are a class of volatile organic compounds that play crucial roles in imparting floral and fruity aromas to Muscat-type grapes. However, our understanding of the regulatory mechanisms underpinning monoterpene biosynthesis in grapes, particularly following abscisic acid (ABA) treatment, remains elusive. This study aimed to explore the impact of exogenous ABA on monoterpene biosynthesis in Ruiduhongyu grape berries by employing Headspace Solid-Phase Micro-Extraction Gas Chromatography-Mass Spectrometry (HS-SPME/GC-MS) analysis and transcriptome sequencing. The results suggested significant differences in total soluble solids (TSS), pH, and total acid content. ABA treatment resulted in a remarkable increase in endogenous ABA levels, with concentrations declining from veraison to ripening stages. ABA treatment notably enhanced monoterpene concentrations, particularly at the E_L37 and E_L38 stages, elevating the overall floral aroma of grape berries. According to the variable gene expression patterns across four developmental stages in response to ABA treatment, the E_L37 stage had the largest number of differential expressed genes (DEGs), which was correlated with a considerable change in free monoterpenes. Furthermore, functional annotation indicated that the DEGs were significantly enriched in primary and secondary metabolic pathways, underlining the relationship between ABA, sugar accumulation, and monoterpene biosynthesis. ABA treatment upregulated key genes involved in the methylerythritol phosphate (MEP) pathway, enhancing carbon allocation and subsequently impacting terpene synthesis. This study also identified transcription factors, including MYB and AP2/ERF families, potentially modulating monoterpene and aroma-related genes. Weighted gene co-expression network analysis (WGCNA) linked ABA-induced gene expression to monoterpene accumulation, highlighting specific modules enriched with genes associated with monoterpene biosynthesis; one of these modules (darkgreen) contained genes highly correlated with most monoterpenes, emphasizing the role of ABA in enhancing grape quality during berry maturation. Together, these findings provide valuable insights into the multifaceted effects of exogenous ABA on monoterpene compounds and grape berry flavor development, offering potential applications in viticulture and enology.

5.
Foods ; 13(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38998629

RESUMO

By employing headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS), this study displayed the compositional changes in volatile organic compounds (VOCs) in Tricholoma matsutake samples subjected to hot-air drying (HAD) and vacuum freeze-drying (VFD) processes from their fresh samples. A total of 99 VOCs were detected, including 2 acids, 10 aldehydes, 10 alcohols, 13 esters, 12 ketones, 24 alkanes, 14 olefins, 7 aromatic hydrocarbons, and 7 heterocyclic compounds. Notably, the drying process led to a decrease in most alcohols and aldehydes, but an increase in esters, ketones, acids, alkanes, olefins, aromatic, and heterocyclic compounds. Venn diagram (Venn), principal component analysis (PCA), and partial least squares-discriminant analysis (PLS-DA) analyses enabled an easy and rapid distinction between the VOC profiles of T. matsutake subjected to different drying methods. Among the identified VOCs, 30 were designated as marker VOCs indicative of the employed drying process. And the VFD method was more capable of preserving the VOCs of fresh T. matsutake samples than the HAD method. Benzaldehyde, 1-Octen-3-ol, 3-Octanol, and (E)-2-Octen-1-ol were identified as markers for FRESH T. matsutake. Conversely, (E)-3-Hexene, lavender lactone, and α-Pinene were associated with VFD T. matsutake. For HAD T. matsutake, olefins, pyrazine, and esters, particularly ocimene, 2,5-Dimethyl-pyrazine, and methyl cinnamate, significantly contributed to its particularities. The results from this present study can provide a practical guidance for the quality and flavor control of volatile organic compounds in preciously fungal fruiting bodies by using drying processes.

6.
Food Chem ; 455: 139942, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38917655

RESUMO

The characteristic flavor of Coffea arabica from Yunnan is largely attributed to the primary processing treatments through affecting the VOCs accumulation. Therefore, a rapid and comprehensive detection technique is needed to accurately recognize VOCs in green coffee beans with different pretreatment methods. Hence, we conducted volatile profiles and identified nine markers of three different primary processed green coffee beans from the major production areas in Yunnan with the combined of HS-SPME-GC-MS and PTR-TOF-MS. The relationships between the chemical composition and the content of VOCs in green coffee beans were elucidated. Among the markers, palmitic acid (F3), linoleic acid (F6), α-ethylidene phenylacetaldehyde (T4), and phytane (T8) contributed to the antioxidant activity of sun-exposed green coffee beans. In conclusion, the analytical technology presented here provided a general tool for an overall and rapid understanding of a detailed volatile profiles of green coffee beans in Yunnan.


Assuntos
Coffea , Sementes , Compostos Orgânicos Voláteis , Coffea/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/análise , China , Sementes/química , Cromatografia Gasosa-Espectrometria de Massas , Manipulação de Alimentos , Biomarcadores/análise , Microextração em Fase Sólida/métodos , Espectrometria de Massas , Café/química
7.
Food Chem X ; 22: 101438, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38846796

RESUMO

This study explored the effects of steam explosion-modified rice bran dietary fiber (S-RBDF) on red date-flavored naan quality and flavor characteristics. The results revealed that the rheological properties of the dough were improved with the incremental addition of S-RBDF (0-5%). The microstructure revealed that adding an appropriate amount of S-RBDF (1-5%) enabled more starch granules to be embedded in the dough network. Notably, the addition of 5% S-RBDF resulted in naan with an optimum specific volume and texture, which consumers preferred. Additionally, gas chromatography-mass spectrometry analysis showed that adding S-RBDF to naan contributed to the retention and sustained release of pleasant volatile compounds (e.g. red date flavor, etc.), while inhibiting the development of unpleasant volatile compounds by delaying the oxidation and decomposition of lipids and preserving the antioxidant phenolic compounds, thus contributing to flavor maintenance of naan during storage. Overall, these results provided a foundation for developing high-quality flavored naan.

8.
Molecules ; 29(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38893586

RESUMO

Hemerocallis L. possesses abundant germplasm resources and holds significant value in terms of ornamental, edible, and medicinal aspects. However, the quality characteristics vary significantly depending on different varieties. Selection of a high-quality variety with a characteristic aroma can increase the economic value of Hemerocallis flowers. The analytic hierarchy process (AHP) is an effective decision-making method for comparing and evaluating multiple characteristic dimensions. By applying AHP, the aromatic character of 60 varieties of Hemerocallis flowers were analyzed and evaluated in the present study. Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) was employed to identify volatile components in Hemerocallis flowers. Thirteen volatile components were found to contribute to the aroma of Hemerocallis flowers, which helps in assessing their potential applications in essential oil, aromatherapy, and medical treatment. These components include 2-phenylethanol, geraniol, linalool, nonanal, decanal, (E)-ß-ocimene, α-farnesene, indole, nerolidol, 3-furanmethanol, 3-carene, benzaldehyde and benzenemethanol. The varieties with better aromatic potential can be selected from a large amount of data using an AHP model. This study provides a comprehensive understanding of the characteristics of the aroma components in Hemerocallis flowers, offers guidance for breeding, and enhances the economic value of Hemerocallis flowers.


Assuntos
Flores , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Microextração em Fase Sólida/métodos , Flores/química , Odorantes/análise , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/análise , Óleos Voláteis/química , Óleos Voláteis/análise , Sesquiterpenos/análise , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/análise , Álcool Feniletílico/química , Alcenos , Indóis
9.
Food Chem ; 455: 139864, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38833862

RESUMO

Aspergillus cristatus, the predominant microbe of Fuzhuan brick tea (FBT), is responsible for the creation of distinctive golden flower and unique floral aroma of FBT. The present study examined the alterations in chemical and aromatic components of raw dark tea by solid-state fermentation using A. cristatus (MK346334), the strain isolated from FBT. As results, catechins, total ployphenols, total flavonoids, theaflavins, thearubigins and antioxidant activity were significantly reduced after fermentation. Moreover, 112 and 76 volatile substances were identified by HS-SPME-GC-MS and HS-GC-IMS, respectively, primarily composed of alcohols, ketones, esters and aldehydes. Furthermore, the calculation of odor activity values revealed that 19 volatile chemicals, including hexanal, heptanal, linalool and methyl salicylate, were the main contributors to the floral, fungal, woody and minty aroma of dark tea. The present research highlights the pivotal role played by the fermentation with A. cristatus in the chemical composition, antioxidant property and distinctive flavor of dark tea.


Assuntos
Aspergillus , Camellia sinensis , Nariz Eletrônico , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/metabolismo , Aspergillus/metabolismo , Aspergillus/química , Odorantes/análise , Camellia sinensis/química , Camellia sinensis/metabolismo , Camellia sinensis/microbiologia , Paladar , Aromatizantes/química , Aromatizantes/metabolismo , Chá/química , Chá/metabolismo , Chá/microbiologia , Antioxidantes/metabolismo , Antioxidantes/química
10.
Food Chem ; 455: 139931, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38850976

RESUMO

In this study, we characterized the aroma profiles of different Rougui Wuyi rock tea (RGWRT) aroma types and identified the key aroma-active compounds producing these differences. The roasting process was found to have a considerable effect on the aroma profiles. Eleven aroma compounds, including linalool, ß-ionone, geraniol, indole, and (E)-nerolidol, strongly affected the aroma profiles. An RGWRT aroma wheel was constructed. The rich RGWRT aroma was found to be dominated by floral, cinnamon-like, and roasty aromas. Human olfaction was correlated with volatile compounds to determine the aromatic characteristics of these compounds. Most key aroma-active compounds were found to have floral, sweet, and herbal aromas (as well as some other aroma descriptors). The differences in key compounds of different aroma types were found to result from the methylerythritol phosphate, mevalonic acid and shikimate metabolic pathways and the Maillard reaction. Linalool, geraniol, and (E,E)-2,4-heptadienal were found to spontaneously bind to olfactory receptors.


Assuntos
Odorantes , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Odorantes/análise , Humanos , Chá/química , Olfato , Cromatografia Gasosa-Espectrometria de Massas , Camellia sinensis/química
11.
Food Chem X ; 22: 101399, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38840722

RESUMO

The aim of this study deals with characterize the volatile profiles of gluten free flours and bakery products. An appropriate HS-SPME/GC-MS methods for the quantification analyses was performed and corn starch solid as standards was used. 34 different samples were analysed, and 127 compounds distributed in 4 classes (alcohols, aldehydes and ketones, heterocyclic compounds, and terpenes), that make up the aroma of these gluten free, were identified. The developed method is characterized by detection limits of 0.0004 and 0.0047 mg/kg for camphor and pyrazine, respectively, and linearity of quantification standards were between 0.990 and 0.998 for a range of 3-50 mg/kg.

12.
Food Chem X ; 22: 101487, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38855096

RESUMO

In order to investigate the dynamic changes of flavor compounds, Ultra Performance Liquid Chromatography Tandem Mass Spectrometry (UPLC-MS/MS) combined with Headspace Solid Phase Microextraction Gas Chromatography Mass Spectrometry (HS-SPME-GC-MS) was used to detect the metabolites in different drying processes. A total of 80 volatile compounds and 1319 non-volatile compounds were identified. The trend in the changes of C-8 compounds and sulfur-containing compounds were generally consistent with the trend of key enzyme activities. 479 differential metabolites were identified and revealed that metabolic profiles of compounds in Boletus edulis were altered with increased organic acids and derivatives and lipids and lipid-like molecules. Fatty acids and amino acids were transformed into volatile compounds under the action of enzymes, which played a significant role in the formation of the distinctive flavor of Boletus edulis. Our study provided a theoretical support for fully comprehending the formation mechanism of flavor from Boletus edulis during drying processes.

13.
J Sci Food Agric ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924063

RESUMO

BACKGROUND: Although microorganisms are the main cause of spoilage in prepared beef steaks, very few deep spoilage mechanisms have been reported so far. Aiming to unravel the mechanisms during 12 days of storage at 4 °C affecting the quality of prepared beef steak, the present study investigated the changes in microbial dynamic community using a combined high-throughput sequencing combined and bioinformatics. In addition, gas chromatography-mass spectrometry combined with multivariate statistical analysis was utilized to identify marker candidates for prepared steaks. Furthermore, cloud platform analysis was applied to determine prepared beef steak spoilage, including the relationship between microbiological and physicochemical indicators and volatile compounds. RESULTS: The results showed that the dominant groups of Pseudomonas, Brochothrix thermosphacta, Lactobacillus and Lactococcus caused the spoilage of prepared beef steak, which are strongly associated with significant changes in physicochemical properties and volatile organic compounds (furan-2-pentyl-, pentanal, 1-octanol, 1-nonanol and dimethyl sulfide). Metabolic pathways were proposed, among which lipid metabolism and amino acid metabolism were most abundant. CONCLUSION: The present study is helpful with respect to further understanding the relationship between spoilage microorganisms and the quality of prepared beef steak, and provides a reference for investigating the spoilage mechanism of dominant spoilage bacteria and how to extend the shelf life of meat products. © 2024 Society of Chemical Industry.

14.
Food Chem ; 454: 139771, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38797093

RESUMO

Flavor alteration is a crucial factor affecting the quality of mushrooms during preservation. The dynamic variations of volatile profiles of fresh Hericium erinaceus with electron-beam generated X-ray irradiation were investigated by combining E-nose, headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS). E-nose analysis achieved rapid discrimination in all treatments over storage time. 65 and 73 volatile organic compounds (VOCs) were identified by HS-GC-IMS and HS-SPME-GC-MS, respectively. Thereinto, 1-octen-3-ol, 1-octen-3-one, and 2-octanone were screened out as the characteristic VOCs, which contents declined during storage. While the contents of (E)-2-octenal, (E)-2-nonenal, and 1-octanol increased. The flavor profile changes from distinct mushroom and floral odor to an intense alcohol and fatty odor. Notably, one-kGy irradiation remained more volatiles and denser mushroom odor after storage. Multivariate analysis further confirmed that 1.0 kGy irradiation contributed to the overall aroma retention during postharvest storage of H. erinaceus.


Assuntos
Nariz Eletrônico , Armazenamento de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/química , Odorantes/análise , Basidiomycota/química , Basidiomycota/efeitos da radiação , Raios X , Paladar , Irradiação de Alimentos , Aromatizantes/química , Agaricales/química , Agaricales/efeitos da radiação
15.
Food Sci Anim Resour ; 44(3): 651-661, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38765279

RESUMO

Chicken broth has a taste of umami, and the stewing time has an important effect on the quality of chicken broth, but there are fewer studies on the control of the stewing time. Based on this, the study was conducted to analyze the effects of different stewing times on the sensory, small molecular metabolites, free fatty acids, and volatile flavor compounds contents in chicken broths by liquid chromatography-quadrupole/time-of-flight mass spectrometry, gas chromatography-mass spectrometry, headspace solid-phase microextraction, and gas chromatography-mass spectrometry. Eighty-nine small molecular metabolites, 15 free fatty acids, and 86 volatile flavor compounds were detected. Palmitic and stearic acids were the more abundant fatty acids, and aldehydes were the main volatile flavor compounds. The study found that chicken broth had the best sensory evaluation, the highest content of taste components, and the richest content of volatile flavor components when the stewing time was 2.5 h. This study investigated the effect of stewing time on the quality of chicken broth to provide scientific and theoretical guidance for developing and utilizing local chicken.

16.
Food Res Int ; 187: 114366, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763646

RESUMO

In recent years, numerous studies have demonstrated the significant potential of non-Saccharomyces yeasts in aroma generation during fermentation. In this study, 134 strains of yeast were isolated from traditional fermented foods. Subsequently, through primary and tertiary screening, 28 strains of aroma-producing non-Saccharomyces yeast were selected for beer brewing. Headspace-solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and chemometrics were employed to analyze the volatile flavor substances in beer samples fermented using these strains. Chemometric analysis revealed that distinct species of non-Saccharomyces yeast had a unique influence on beer aroma, with strains from the same genus producing more similar flavor profiles. Accordingly, 2,6-nonadienal, 1-pentanol, phenyl ethanol, isoamyl acetate, ethyl caprate, butyl butyrate, ethyl propionate, furfuryl alcohol, phenethyl acetate, ethyl butyrate, ethyl laurate, acetic acid, and 3-methyl-4 heptanone were identified as the key aroma compounds for distinguishing among different non-Saccharomyces yeast species. This work provides useful insights into the aroma-producing characteristics of different non-Saccharomyces yeasts to reference the targeted improvement of beer aroma.


Assuntos
Cerveja , Fermentação , Alimentos Fermentados , Cromatografia Gasosa-Espectrometria de Massas , Odorantes , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Leveduras , Cerveja/análise , Cerveja/microbiologia , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Alimentos Fermentados/microbiologia , Alimentos Fermentados/análise , Leveduras/isolamento & purificação , Leveduras/metabolismo , Microbiologia de Alimentos
17.
Food Res Int ; 187: 114398, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763656

RESUMO

Nowadays, it is important to monitor the freshness of meat during storage to protect consumers' health. Volatile organic compounds (VOCs) are responsible for odour and taste of food, and they give an indication about meat quality and freshness. This study had the aim to seek and select potential new markers of meat spoilage through a semi-quantitative analysis in five types of meat (beef, raw and baked ham, pork sausage and chicken) and then to develop a new quantitative analytical method to detect and quantify potential markers on five types of meat simultaneously. Firstly, a new headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) method was developed to evaluate the volatile profile of five types of meat, preserved at 4 °C for 5 days. Among the 40 compounds identified, 15 were chosen and selected as potential shelf-life markers on the basis of their presence in most of meat samples or/and for their constant increasing/decreasing trend within the sample. Afterwards, a quantitative HS-SPME-GC-MS analytical method was developed to confirm which VOCs can be considered markers of shelf-life for these meat products, stored at 4 °C for 12 days. Some of the compounds analyzed attracted attention as they can be considered markers of shelf-life for at least 4 types of meat: 1-butanol, 3-methylbutanol, 1-hexanol, 2-nonanone, nonanal, 1-octen-3-ol and linalool. In conclusion, in this study a new quantitative HS-SPME-GC-MS analytical method to quantity 15 VOCs in five types of meat was developed and it was demonstrated that some of the compounds quantified can be considered markers of shelf-life for some of the meat products analyzed.


Assuntos
Armazenamento de Alimentos , Cromatografia Gasosa-Espectrometria de Massas , Produtos da Carne , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Produtos da Carne/análise , Animais , Suínos , Odorantes/análise , Bovinos , Aldeídos/análise , Galinhas , Cetonas/análise , Pentanóis/análise , Monoterpenos Acíclicos/análise , Octanóis
18.
Food Res Int ; 187: 114438, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763685

RESUMO

Early changes in sensory quality of phenols-rich virgin olive oil (VOO) and their relationship with the chemical changes are less studied in the literature. Therefore, the objective of this study was to propose a predictive model of dynamics of sensory changes based on specific chemical markers. The evolution of the sensory quality of phenol-rich VOOs from Tuscan cultivars stored under optimal storage conditions (i.e., absence of light, no O2 exposure, low temperature) was investigated using a multi-step methodological approach combining sensory (official sensory analysis (so-called Panel Test), Descriptive Analysis and Temporal Dominance of Sensation) and chemical measurements. The sensory map from descriptive data was related to the phenolic and volatile profiles, measured using HPLC-DAD and HS-SPME-GC-MS, respectively. A predictive model of the sensory changes over storage based on chemical compounds was developed. Results showed that very early changes involving phenolic and volatile compounds profiles occur in VOOs stored under optimal storage conditions, which turn in changes in sensory properties evaluated by the official panel test, the descriptive analysis and the temporal dominance of sensation. Furthermore, a chemical marker of sensory dynamics of oils during storage was identified as the ratio between two groups of secoiridoids. The proposed model, supported by the mentioned chemical marker, has the potential of improving the control of sensory changes in phenols-rich virgin olive oils during storage in optimal conditions.


Assuntos
Armazenamento de Alimentos , Azeite de Oliva , Fenóis , Compostos Orgânicos Voláteis , Azeite de Oliva/química , Fenóis/análise , Armazenamento de Alimentos/métodos , Compostos Orgânicos Voláteis/análise , Humanos , Paladar , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Masculino , Feminino , Adulto , Biomarcadores/análise , Iridoides/análise
19.
J Chromatogr A ; 1725: 464931, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703457

RESUMO

Atractylodis rhizoma is a common bulk medicinal material with multiple species. Although different varieties of atractylodis rhizoma exhibit variations in their chemical constituents and pharmacological activities, they have not been adequately distinguished due to their similar morphological features. Hence, the purpose of this research is to analyze and characterize the volatile organic compounds (VOCs) in samples of atractylodis rhizoma using multiple techniques and to identify the key differential VOCs among different varieties of atractylodis rhizoma for effective discrimination. The identification of VOCs was carried out using headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS), resulting in the identification of 60 and 53 VOCs, respectively. The orthogonal partial least squares discriminant analysis (OPLS-DA) model was employed to screen potential biomarkers and based on the variable importance in projection (VIP ≥ 1.2), 24 VOCs were identified as critical differential compounds. Random forest (RF), K-nearest neighbor (KNN) and back propagation neural network based on genetic algorithm (GA-BPNN) models based on potential volatile markers realized the greater than 90 % discriminant accuracies, which indicates that the obtained key differential VOCs are reliable. At the same time, the aroma characteristics of atractylodis rhizoma were also analyzed by ultra-fast gas chromatography electronic nose (Ultra-fast GC E-nose). This study indicated that the integration of HS-SPME-GC-MS, HS-GC-IMS and ultra-fast GC E-nose with chemometrics can comprehensively reflect the differences of VOCs in atractylodis rhizoma samples from different varieties, which will be a prospective tool for variety discrimination of atractylodis rhizoma.


Assuntos
Atractylodes , Nariz Eletrônico , Cromatografia Gasosa-Espectrometria de Massas , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Atractylodes/química , Espectrometria de Mobilidade Iônica/métodos , Rizoma/química , Análise Discriminante
20.
Foods ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731661

RESUMO

Headspace solid-phase microextraction, combined with gas chromatography-mass spectrometry and partial least squares discriminant analysis, was adopted to study the rule of change in volatile organic compounds (VOCs) for domestic and imported fishmeal during storage with different freshness grades. The results showed that 318 kinds of VOCs were detected in domestic fishmeal, while 194 VOCs were detected in imported fishmeal. The total relative content of VOCs increased with storage time, among which acids and nitrogen-containing compounds increased significantly, esters and ketones increased slightly, and phenolic and ether compounds were detected only in domestic fishmeal. Regarding the volatile base nitrogen, acid value, pH value, and mold counts as freshness indexes, the freshness indexes were significantly correlated with nine kinds of VOCs (p < 0.05) through the correlation analysis. Among them, volatile base nitrogen had a significant correlation with VOCs containing nitrogen, acid value with VOCs containing carboxyl group and hydrocarbons, pH value with acids which could be used to adjust pH value, and mold counts with part of acids adjusting pH value and VOCs containing nitrogen. Due to the fact that the value of all freshness indexes increased with freshness degradation during storage, based on volatile base nitrogen and acid value, the fishmeal was divided into three freshness grades, superior freshness, corrupting, and completely corrupted. By using partial least squares discriminant analysis, this study revealed the differences in flavor of the domestic and imported fishmeal during storage with different freshness grades, and it identified four common characteristic VOCs, namely ethoxyquinoline, 6,7,8,9-tetrahydro-3H-benzo[e]indole-1,2-dione, hexadecanoic acid, and heptadecane, produced by the fishmeal samples during storage, as well as the characteristic VOCs of fishmeal at each freshness grade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...