Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Cell Mol Med ; 28(16): e70024, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39183370

RESUMO

BCR::ABL1-negative myeloproliferative neoplasms (MPNs) are clonal haematopoietic stem cell disorders characterized by specific driver mutations and an increased risk of both macrothrombosis and microthrombosis. Serotonin receptor type 1B (HTR1B) was found to be expressed by various solid tumours, and also primary bone marrow mononuclear cells from myelodysplastic neoplasm and acute myeloid leukaemia patients, representing a potential therapeutic target. In this study we assessed for the first time the expression levels of HTR1B mRNA in the peripheral blood mononuclear cells (PBMC) of 85 newly diagnosed MPN patients, consisting of 28 polycythemia vera, 25 essential thrombocythemia and 32 primary myelofibrosis cases. Levels of HTR1B expression between MPN subtypes and control group were not significantly different. However, at clinical data examination, it was observed that MPN patients with a recent history of major thrombosis and/or signs of impaired microcirculation exhibited significantly higher HTR1B expression levels compared to non-thrombotic MPNs and control group. Moreover, thrombotic MPN patients had significantly higher HTR1B expression than patients with recent thrombosis and absence of MPN diagnostic criteria. These findings suggest that increased levels of HTR1B expression in PBMC might be associated with thrombosis in MPN patients, but larger studies are needed for confirmation, including testing of the receptor protein expression level.


Assuntos
Transtornos Mieloproliferativos , RNA Mensageiro , Receptor 5-HT1B de Serotonina , Trombose , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Receptor 5-HT1B de Serotonina/genética , Receptor 5-HT1B de Serotonina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Idoso , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/complicações , Transtornos Mieloproliferativos/metabolismo , Trombose/genética , Adulto , Proteínas de Fusão bcr-abl/genética , Leucócitos Mononucleares/metabolismo , Idoso de 80 Anos ou mais
2.
Heliyon ; 10(12): e33132, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39022094

RESUMO

Background: Previous studies have shown that serotonin and its receptors are widely distributed in mammalian reproductive tisssues and play an important role in embryonic development. However, the specific effects of the serotonergic system on embryonic arrest (EA) and the underlying mechanism require further investigation. Methods: Chorionic villi were collected from patients with EA and healthy pregnant women. Western blotting (WB) and immunohistochemistry (IHC) were used to detect serotonin receptor 1B (HTR1B) levels and evaluate mitochondrial function. Additionally, HTR-8/SVneo cells were transfected with an HTR1B overexpression plasmid. Quantitative real-time polymerase chain reaction(qRT-PCR), Cell Counting Kit-8 (CCK-8), and wound healing assays were utilized to evaluate mitophagy level, cell proliferation and cell migration, respectively. Results: We discovered elevated HTR1B levels in the chorionic villi of the patients with EA compared to controls. Concurrently, we observed enhanced levels of nucleus-encoded proteins including mitofilin, succinate dehydrogenase complex subunit A (SDHA), and cytochrome c oxidase subunit 4 (COXIV), along with the mitochondrial fusion protein optic atrophy 1(OPA1), fission proteins mitochondrial fission protein 1(FIS1) and mitochondrial fission factor (MFF) in the EA group. Additionally, there was an excessive mitophagy levels in EA group. Furthermore, a notable activation of mitogen-activated protein kinase (MAPK) signaling pathway proteins including extracellular regulating kinase (ERK), c-Jun N-terminal kinase (JNK), and P38 was observed in the EA group. By overexpressing HTR1B in HTR-8/SVneo cells, we observed a significant reduction in cell proliferation and migration. HTR1B overexpression also caused an increase in levels of SDHA and FIS1, as well as an upregulation of mitophagy. Notably, the ERK inhibitor U0126 effectively mitigated these effects. Conclusion: These findings show that HTR1B influences mitochondrial homeostasis, promoting excessive mitophagy and impairing cell proliferation and migration by activating the MAPK signalling pathway during post-implantation EA. Therefore, HTR1B may serve as a potential therapeutic target for patients with EA.

3.
Cell Biosci ; 13(1): 213, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990254

RESUMO

BACKGROUND: Abnormalities in the 5-HT system and synaptic plasticity are hallmark features of schizophrenia. Previous studies suggest that the human endogenous retrovirus W family envelope (ERVWE1) is an influential risk factor for schizophrenia and inversely correlates with 5-HT4 receptor in schizophrenia. To our knowledge, no data describes the effect of ERVWE1 on 5-HT neuronal plasticity. N6-methyladenosine (m6A) regulates gene expression and impacts synaptic plasticity. Our research aims to systematically investigate the effects of ERVWE1 on 5-HT neuronal plasticity through m6A modification in schizophrenia. RESULTS: HTR1B, ALKBH5, and Arc exhibited higher levels in individuals with first-episode schizophrenia compared to the controls and showed a strong positive correlation with ERVWE1. Interestingly, HTR1B was also correlated with ALKBH5 and Arc. Further analyses confirmed that ALKBH5 may be an independent risk factor for schizophrenia. In vitro studies, we discovered that ERVWE1 enhanced HTR1B expression, thereby activating the ERK-ELK1-Arc pathway and reducing the complexity and spine density of 5-HT neurons. Furthermore, ERVWE1 reduced m6A levels through ALKBH5 demethylation. ERVWE1 induced HTR1B upregulation by improving its mRNA stability in ALKBH5-m6A-dependent epigenetic mechanisms. Importantly, ALKBH5 mediated the observed alterations in 5-HT neuronal plasticity induced by ERVWE1. CONCLUSIONS: Overall, HTR1B, Arc, and ALKBH5 levels were increased in schizophrenia and positively associated with ERVWE1. Moreover, ALKBH5 was a novel risk gene for schizophrenia. ERVWE1 impaired 5-HT neuronal plasticity in ALKBH5-m6A dependent mechanism by the HTR1B-ERK-ELK1-Arc pathway, which may be an important contributor to aberrant synaptic plasticity in schizophrenia.

4.
J Mol Neurosci ; 73(7-8): 664-677, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37580644

RESUMO

The serotonin receptor subtype 5-HTR1B is widely distributed in the brain with an important role in various behavioral implications including neurological conditions and psychiatric disorders. The neuromodulatory action of 5-HTR1B largely depends upon its arrestin mediated signaling pathway. In this study, we tried to investigate the role of unusually long intracellular loop 3 (ICL3) region of the serotonin receptor 5-HTR1B in interaction with ß-arrestin1 (Arr2) to compensate for the absence of the long cytoplasmic tail. Molecular modeling and docking tools were employed to obtain a suitable molecular conformation of the ICL3 region in complex with Arr2 which dictates the specific complex formation of 5-HTR1B with Arr2. This reveals the novel molecular mechanism of phosphorylated ICL3 mediated GPCR-arrestin interaction in the absence of the long cytoplasmic tail. The in-cell disulfide cross-linking experiments and molecular dynamics simulations of the complex further validate the model of 5-HTR1B-ICL3-Arr2 complex. Two serine residues (Ser281 and Ser295) within the 5-HTR1B-ICL3 region were found to be occupying the electropositive pocket of Arr2 in our model and might be crucial for phosphorylation and specific Arr2 binding. The alignment studies of these residues showed them to be conserved only across 5-HTR1B mammalian species. Thus, our studies were able to predict a molecular conformation of 5-HTR1B-Arr2 and identify the role of long ICL3 in the signaling process which might be crucial in designing targeted drugs (biased agonists) that promote GPCR-Arr2 signaling to deter the effects of stress and anxiety-like disorders.


Assuntos
Receptores de Serotonina , Transdução de Sinais , Humanos , Animais , beta-Arrestina 1/metabolismo , Fosforilação , Receptores de Serotonina/metabolismo , Transtornos de Ansiedade , beta-Arrestina 2/metabolismo , beta-Arrestina 2/farmacologia , beta-Arrestinas/metabolismo , Mamíferos
5.
Rev Colomb Psiquiatr (Engl Ed) ; 52(2): 130-138, 2023.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37453823

RESUMO

INTRODUCTION: Serotonin is highly implicated in the regulation of emotional state and the execution of cognitive tasks, so much so that the serotonin transporter genes (5-HTT, SLC6A4) and the serotonin receptor genes (HTR1A, HTR1B, HTR2A) have become the perfect candidates when studying the effects that these genes and their polymorphic variations have on depression characteristics. OBJECTIVE: A review of research reports that have studied the effects of variations in the serotonin transporter and receptor genes on different clinical features of depression. METHODS: A search of the Scopus, Web of Science and PubMed databases was conducted using the keywords ("depression" AND "polymorphism"). CONCLUSIONS: According to the review of 54 articles, the short allele of the 5-HTTLPR polymorphism was found to be the most reported risk factor related to the development of depression and its severity. Variations in the genes studied (SLC6A4, HTR1A, HTR2A) can generate morphological alterations of brain structures.


Assuntos
Depressão , Proteínas da Membrana Plasmática de Transporte de Serotonina , Humanos , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Depressão/genética , Polimorfismo Genético , Serotonina/genética , Alelos
6.
PNAS Nexus ; 2(6): pgad202, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37388922

RESUMO

All female vertebrates develop a pair of ovaries except for birds, in which only the left gonad develops into an ovary, whereas the right gonad regresses. Previous studies found that the transcription factor Paired-Like Homeodomain 2 (PITX2), a key mediator for left/right morphogenesis in vertebrates, was also implicated in asymmetric gonadal development in chickens. In this study, we systematically screened and validated the signaling pathways that could be targeted by Pitx2 to control unilateral gonad development. Integrated chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analyses indicated that Pitx2 directly binds to the promoters of genes encoding neurotransmitter receptors and leads to left-biased expression of both serotonin and dopamine receptors. Forcibly activating serotonin receptor 5-Hydroxytryptamine Receptor 1B (HTR1B) signaling could induce ovarian gene expression and cell proliferation to partially rescue the degeneration of the right gonad. In contrast, inhibiting serotonin signaling could block the development of the left gonad. These findings reveal a PITX2-HTR1B genetic pathway that guides the left-specific ovarian growth in chickens. We also provided new evidence showing neurotransmitters stimulate the growth of nonneuronal cells during the early development of reproductive organs well before innervation.

7.
Rev. colomb. psiquiatr ; 52(2)jun. 2023.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1536130

RESUMO

Introducción: La serotonina tiene gran implicación en la regulación del estado emocional y la ejecución de tareas cognitivas, de modo que los genes del transportador de serotonina (5-HTT, SLC6A4) y de los receptores de serotonina (HTR1A, HTR1B, HTR2A) se convierten en candidatos adecuados para estudiar los efectos de estos genes y sus variaciones polimórficas en las características de la depresión. Objetivo: Revisión de reportes de investigación que hayan estudiado los efectos de las variantes de los genes del transportador y de los receptores de serotonina en las diferentes características clínicas de la depresión. Métodos: Se realizó una búsqueda en las bases de datos Scopus, Web of Science y PubMed con las palabras clave "depression", AND "polymorphism". Conclusiones: Según la revisión de 54 artículos, se encontró que el alelo corto del polimorfismo de 5-HTTLPR es el factor de riesgo más reportado en relación con el desarrollo de depresión y su gravedad. Las variantes de los genes estudiados (SLC6A4, HTR1A, HTR1B y HTR2A) pueden generar alteraciones morfológicas de estructuras cerebrales.


Introduction: Serotonin is highly implicated in the regulation of emotional state and the execution of cognitive tasks, so much so that the serotonin transporter genes (5-HTT, SLC6A4) and the serotonin receptor genes (HTR1A, HTR1B, HTR2A) have become the perfect candidates when studying the effects that these genes and their polymorphic variations have on depression characteristics. Objective: A review of research reports that have studied the effects of variations in the serotonin transporter and receptor genes on different clinical features of depression. Methods: A search of the Scopus, Web of Science and PubMed databases was conducted using the keywords ("depression" AND "polymorphism"). Conclusions: According to the review of 54 articles, the short allele of the 5-HTTLPR polymorphism was found to be the most reported risk factor related to the development of depression and its severity. Variations in the genes studied (SLC6A4, HTR1A, HTR2A) can generate morphological alterations of brain structures.

8.
Neuron ; 111(5): 711-726.e11, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584680

RESUMO

Retinal ganglion cell (RGC) types relay parallel streams of visual feature information. We hypothesized that neuromodulators might efficiently control which visual information streams reach the cortex by selectively gating transmission from specific RGC axons in the thalamus. Using fiber photometry recordings, we found that optogenetic stimulation of serotonergic axons in primary visual thalamus of awake mice suppressed ongoing and visually evoked calcium activity and glutamate release from RGC boutons. Two-photon calcium imaging revealed that serotonin axon stimulation suppressed RGC boutons that responded strongly to global changes in luminance more than those responding only to local visual stimuli, while the converse was true for suppression induced by increases in arousal. Converging evidence suggests that differential expression of the 5-HT1B receptor on RGC presynaptic terminals, but not differential density of nearby serotonin axons, may contribute to the selective serotonergic gating of specific visual information streams before they can activate thalamocortical neurons.


Assuntos
Corpos Geniculados , Receptor 5-HT1B de Serotonina , Serotonina , Tálamo , Animais , Camundongos , Axônios/fisiologia , Cálcio , Corpos Geniculados/fisiologia , Receptor 5-HT1B de Serotonina/metabolismo , Células Ganglionares da Retina/fisiologia , Serotonina/metabolismo , Tálamo/fisiologia
9.
Psychoneuroendocrinology ; 144: 105861, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35853382

RESUMO

Psychopathy is a condition characterized by atypical emotions and socially maladaptive behavioral patterns. Among incarcerated people, psychopathy has been associated with higher rates of crimes, recidivism, and resistance to treatment. Many studies have indicated significant heritability of psychopathic traits, but little is known about the specific contribution of genes and their interaction with adverse experiences in life. Considering the primary role that serotonin plays in cognition and emotion, we investigated TPH2-rs4570625, 5-HTTLPR, MAOA-uVNTR, HTR1B-rs13212041 and HTR2A-rs6314 as risk factors for psychopathy in the largest sample of institutionalized individuals studied so far, consisting of 793 US White male incarcerated adults, and in a replication sample of 168 US White male incarcerated adolescents. In a subgroup of the adult sample, the interaction between genetics and parenting style, assessed by the Measure of Parental Style (MOPS) questionnaire, was also evaluated. The HTR1B-rs13212041-T/T genotype, as compared to HTR1B-rs13212041-C allele, predicted higher psychopathy scores in both the adult and the adolescent samples. The interaction between HTR1B-rs13212041-T/T genotype and paternal MOPS scores, investigated in a subgroup of the adult sample, was an even stronger predictor of higher levels of psychopathy than either the genetics or the environment taken individually. Overall, these data, obtained in two independent samples, shed new light on neurobiological correlates of psychopathy with promising implications both at a clinical and forensic level.


Assuntos
Transtorno da Personalidade Antissocial , Emoções , Adolescente , Adulto , Alelos , Transtorno da Personalidade Antissocial/genética , Transtorno da Personalidade Antissocial/psicologia , Genótipo , Humanos , Masculino , Poder Familiar , Receptor 5-HT1B de Serotonina/genética
10.
Biomed Pharmacother ; 150: 112935, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35447543

RESUMO

BACKGROUND: Morphine dependence, a devastating neuropsychiatric condition, may be closely associated with gut microbiota dysbiosis. Ginsenoside Rg1 (Rg1), an active ingredient extracted from the roots of Panax ginseng C.A. Meyer, has potential health-promoting effects on the nervous system. However, its role in substance use disorders remains unclear. Here, we explored the potential modulatory roles of Rg1 in protection against morphine dependence. METHODS: Conditioned place preference (CPP) was used for establishing a murine model of morphine dependence. 16S rRNA gene sequencing and metabolomics were performed for microbial and metabolite analysis. Molecular analysis was tested for evaluating the host serum and brain responses. RESULTS: Rg1 prevented morphine-induced CPP in mice. The 16S rRNA gene-based microbiota analysis demonstrated that Rg1 ameliorated morphine-induced gut microbiota dysbiosis, specifically for Bacteroidetes. Moreover, Rg1 also inhibited gut microbiota-derived tryptophan metabolism and reduced the serotonin, 5-hydroxytryptamine receptor 1B (5-HTR1B), and 5-hydroxytryptamine receptor 2 A (5-HTR2A) levels. However, the Rg1-induced amelioration of CPP was not observed in mice when their gut microbiome was depleted by non-absorbable antibiotics. Subsequently, gavage with Bacteroides vulgatus increased the abundance of Bacteroidetes. B. vulgatus supplementation synergistically enhanced Rg1-alleviated morphine-induced CPP in mice with microbiome knockdown. Co-treatment with B. vulgatus and Rg1 produced suppressive effects against morphine dependency by inhibiting tryptophan metabolism and reducing the serotonin and 5-HTR1B/5-HTR2A levels. CONCLUSIONS: The gut microbiota-tryptophan metabolism-serotonin plays an important role in gut-brain signaling in morphine disorders, which may represent a novel approach for drug dependence treatment via manipulation of the gut microbial composition and tryptophan metabolite.


Assuntos
Microbioma Gastrointestinal , Dependência de Morfina , Animais , Disbiose , Ginsenosídeos , Camundongos , Morfina/farmacologia , Dependência de Morfina/tratamento farmacológico , RNA Ribossômico 16S/genética , Serotonina/farmacologia , Triptofano/metabolismo , Triptofano/farmacologia
11.
Psychiatry Clin Neurosci ; 76(2): 51-57, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34773671

RESUMO

AIMS: Antidepressants are effective in the treatment of major depressive disorder (MDD), while many patients fail to respond to antidepressants. Both 5-HT1A (HTR1A) and 5-HT1B (HTR1B) receptors play an important role in antidepressant activity. Meanwhile, DNA methylation is associated with MDD and antidepressant efficacy. In this study we investigate the influence of HTR1A and HTR1B methylation combined with stress/genotype on antidepressant efficacy. METHODS: A total of 291 MDD patients and 100 healthy controls received the Life Events Scale (LES) and the Childhood Trauma Questionnaire (CTQ) as stress assessment. Eight single nucleotide polymorphisms (SNPs) of HTR1A and HTR1B involved in antidepressant mechanisms were tested. Methylation status in 181 cytosine-phosphate-guanine (CpG) sites of HTR1A and HTR1B were assessed. All MDD patients were divided into response (RES) and non-response (NRES) after 2 weeks of antidepressant treatment. Logistic regression was conducted for interactions between methylation, NLES/CTQ score and genotype. RESULTS: Low HTR1A-2-143 methylation is connected with better antidepressant efficacy in subgroup. Low HTR1A-2-143 methylation combined with low CTQ score is related to better antidepressant efficacy. The interaction between high HTR1B methylation with the rs6298 AA/AG genotype affects better antidepressant efficacy. CONCLUSIONS: HTR1A and HTR1B methylation combined with stress/genotype is associated with antidepressant efficacy.


Assuntos
Antidepressivos , Transtorno Depressivo Maior , Antidepressivos/farmacologia , Estudos de Casos e Controles , Metilação de DNA , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1B de Serotonina/genética , Estresse Psicológico/genética , Resultado do Tratamento
12.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-34493397

RESUMO

INTRODUCTION: Serotonin is highly implicated in the regulation of emotional state and the execution of cognitive tasks, so much so that the serotonin transporter genes (5-HTT, SLC6A4) and the serotonin receptor genes (HTR1A, HTR1B, HTR2A) have become the perfect candidates when studying the effects that these genes and their polymorphic variations have on depression characteristics. OBJECTIVE: A review of research reports that have studied the effects of variations in the serotonin transporter and receptor genes on different clinical features of depression. METHODS: A search of the Scopus, Web of Science and PubMed databases was conducted using the keywords ("depression" AND "polymorphism"). CONCLUSIONS: According to the review of 54 articles, the short allele of the 5-HTTLPR polymorphism was found to be the most reported risk factor related to the development of depression and its severity. Variations in the genes studied (SLC6A4, HTR1A, HTR2A) can generate morphological alterations of brain structures.

13.
Front Psychiatry ; 12: 696655, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34322042

RESUMO

Purpose: Previous association studies have investigated whether genetic polymorphisms in HTR1B influenced individuals' susceptibility to major depressive disorder (MDD), anti-depressant response (ADR) and suicidal behavior. However, equivocal evidence was obtained. In this meta-analysis, we aimed to examine the association of HTR1B polymorphisms with risk of MDD, ADR and suicidal behavior. Materials and Methods: Studies evaluating the association between HTR1B polymorphisms and risk of MDD, ADR and suicidal behavior were searched in Pubmed, Ovid Medline, web of science and China National Knowledge Infrastructure databases. Summary odds ratios (ORs), 95 % confidence intervals (CIs) and p-values were calculated using a fixed or random effects model. Results: Meta-analysis findings revealed a significantly increased risk of MDD with rs6296 GC and GC/CC genotypes (GC vs. GG: OR = 1.26, 95% CI, 1.07-1.48; GC/CC vs. GG: OR = 1.22, 95% CI, 1.04-1.43, respectively). Moreover, rs6298 CT genotype was significantly associated with an increased risk of suicidal behavior (CT vs. CC: OR = 1.48, 95% CI, 1.16-1.88). However, both rs6296 and rs130058 were not significant risk factors for lethal suicidal behavior. Conclusion: This meta-analysis identified that rs6296 and rs6298 in HTR1B may be significantly related to the risk of MDD and lethality of suicide attempts, respectively. Further studies are required to assess the markers in larger cohorts.

14.
BMC Genomics ; 22(1): 575, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315401

RESUMO

BACKGROUND: Our previous genome-wide association study (GWAS) on milk fatty acid traits in Chinese Holstein cows revealed, the SNP, BTB-01556197, was significantly associated with C10:0 at genome-wide level (P = 0.0239). It was located in the down-stream of 5-hydroxytryptamine receptor 1B (HTR1B) gene that has been shown to play an important role in the regulation of fatty acid oxidation. Hence, we considered it as a promising candidate gene for milk fatty acids in dairy cattle. In this study, we aimed to investigate whether the HTR1B gene had significant genetic effects on milk fatty acid traits. RESULTS: We re-sequenced the entire coding region and 3000 bp of 5' and 3' flanking regions of HTR1B gene. A total of 13 SNPs was identified, containing one in 5' flanking region, two in 5' untranslated region (UTR), two in exon 1, five in 3' UTR, and three in 3' flanking region. By performing genotype-phenotype association analysis with SAS9.2 software, we observed that 13 SNPs were significantly associated with medium-chain saturated fatty acids such as C6:0, C8:0 and C10:0 (P < 0.0001 ~ 0.042). With Haploview 4.1 software, linkage disequilibrium (LD) analysis was performed. Two haplotype blocks formed by two and ten SNPs were observed. Haplotype-based association analysis indicated that both haplotype blocks were strongly associated with C6:0, C8:0 and C10:0 as well (P < 0.0001 ~ 0.0071). With regards to the missense mutation in exon 1 (g.17303383G > T) that reduced amino acid change from alanine to serine, we predicted that it altered the secondary structure of HTR1B protein with SOPMA. In addition, we predicted that three SNPs in promoter region, g.17307103A > T, g.17305206 T > G and g.17303761C > T, altered the binding sites of transcription factors (TFs) HMX2, PAX2, FOXP1ES, MIZ1, CUX2, DREAM, and PPAR-RXR by Genomatix. Of them, luciferase assay experiment further confirmed that the allele T of g.17307103A > T significantly increased the transcriptional activity of HTR1B gene than allele A (P = 0.0007). CONCLUSIONS: In conclusion, our findings provided first evidence that the HTR1B gene had significant genetic effects on milk fatty acids in dairy cattle.


Assuntos
Ácidos Graxos , Leite , Animais , Bovinos/genética , Feminino , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Serotonina
15.
BMC Psychiatry ; 20(1): 499, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33036580

RESUMO

BACKGROUND: The 5-hydroxytryptamine 1B receptor (5-HT1B) plays an essential role in the serotonin (5-HT) system and is widely involved in a variety of brain activities. HTR1B is the gene encoding 5-HT1B. Genome-wide association studies have shown that HTR1B polymorphisms are closely related to multiple mental and behavioral disorders; however, the functional mechanisms underlying these associations are unknown. This study investigated the effect of several HTR1B haplotypes on regulation of gene expression in vitro and the functional sequences in the 5' regulatory region of HTR1B to determine their potential association with mental and behavioral disorders. METHODS: Six haplotypes consisting of rs4140535, rs1778258, rs17273700, rs1228814, rs11568817, and rs130058 and several truncated fragments of the 5' regulatory region of HTR1B were transfected into SK-N-SH and HEK-293 cells. The relative fluorescence intensities of the different haplotypes and truncated fragments were detected using a dual-luciferase reporter assay system. RESULTS: Compared to the major haplotype T-G-T-C-T-A, the relative fluorescence intensities of haplotypes C-A-T-C-T-A, C-G-T-C-T-A, C-G-C-A-G-T, and C-G-T-A-T-A were significantly lower, and that of haplotype C-G-C-A-G-A was significantly higher. Furthermore, the effects of the rs4140535T allele, the rs17273700C-rs11568817G linkage combination, and the rs1228814A allele made their relative fluorescence intensities significantly higher than their counterparts at each locus. Conversely, the rs1778258A and rs130058T alleles decreased the relative fluorescence intensities. In addition, we found that regions from - 1587 to - 1371 bp (TSS, + 1), - 1149 to - 894 bp, - 39 to + 130 bp, + 130 to + 341 bp, and + 341 to + 505 bp upregulated gene expression. In contrast, regions - 603 to - 316 bp and + 130 to + 341 bp downregulated gene expression. Region + 341 to + 505 bp played a decisive role in gene transcription. CONCLUSIONS: HTR1B 5' regulatory region polymorphisms have regulatory effects on gene expression and potential correlate with several pathology and physiology conditions. This study suggests that a crucial sequence for transcription is located in region + 341 ~ + 505 bp. Regions - 1587 to - 1371 bp, - 1149 to - 894 bp, - 603 to - 316 bp, - 39 to + 130 bp, and + 130 to + 341 bp contain functional sequences that can promote or suppress the HTR1B gene expression.


Assuntos
Estudo de Associação Genômica Ampla , Transtornos Mentais , Células HEK293 , Haplótipos , Humanos , Transtornos Mentais/genética , Polimorfismo Genético/genética , Polimorfismo de Nucleotídeo Único/genética , Receptor 5-HT1B de Serotonina/genética , Receptores de Serotonina/genética
16.
BMC Genet ; 21(1): 79, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32689951

RESUMO

BACKGROUND: The HTR1B gene encodes the 5-hydroxytryptamine (5-HT1B) receptor, which is involved in a variety of brain activities and mental disorders. The regulatory effects of non-coding regions on genomic DNA are one of many reasons for the cause of genetic-related diseases. Post-transcriptional regulation that depends on the function of 3' regulatory regions plays a particularly important role. This study investigated the effects, on reporter gene expression, of several haplotypes of the HTR1B gene (rs6297, rs3827804, rs140792648, rs9361234, rs76194807, rs58138557, and rs13212041) and truncated fragments in order to analyze the function of the 3' region of HTR1B. RESULTS: We found that the haplotype, A-G-Del-C-T-Ins-A, enhanced the expression level compared to the main haplotype; A-G-Del-C-G-Ins-A; G-G-Del-C-G-Ins-G decreased the expression level. Two alleles, rs76194807T and rs6297G, exhibited different relative luciferase intensities compared to their counterparts at each locus. We also found that + 2440 ~ + 2769 bp and + 1953 ~ + 2311 bp regions both had negative effects on gene expression. CONCLUSIONS: The 3' region of HTR1B has a regulatory effect on gene expression, which is likely closely associated with the interpretation of HTR1B-related disorders. In addition, the HTR1B 3' region includes several effector binding sites that induce an inhibitory effect on gene expression.


Assuntos
Regulação da Expressão Gênica , Polimorfismo Genético , Receptor 5-HT1B de Serotonina/genética , Alelos , Linhagem Celular , Haplótipos , Humanos , MicroRNAs/genética
17.
Int J Mol Sci ; 21(7)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231051

RESUMO

Schizophrenia is a serious, chronic psychiatric disorder requiring lifelong treatment. Extrapyramidal side effects (EPS) are common adverse reactions to antipsychotic medications. In addition to the dopaminergic system, serotonergic mechanisms, including serotonin (5-HT) receptors, might be involved in EPS development. This study aimed to examine molecular associations of HTR1A, HTR1B, HTR2A, HTR2C and HTR6 gene polymorphisms with acute EPS in 229 male schizophrenia patients, following two weeks of haloperidol monotherapy. The Simpson-Angus Rating Scale for Extrapyramidal Side Effects (SAS), Barnes Akathisia Rating Scale (BARS) and Extrapyramidal Symptom Rating Scale (ESRS) were used to evaluate EPS severity. Genotyping was performed using real-time PCR, following extraction of blood DNA. Significant acute EPS appeared in 48.03% of schizophrenia patients. For the rs13212041 HTR1B gene polymorphism, affecting microRNA regulation of HTR1B gene expression, a higher frequency of TT carriers was found among haloperidol-treated patients with akathisia when compared to the group without akathisia symptoms. In comparison to C-allele carriers, patients carrying the TT genotype had higher akathisia severity, as determined by the SAS, BARS and ESRS scales. These molecular findings suggest potential involvement of 5-HT1B receptors in akathisia development following haloperidol treatment, as well as possible epigenetic mechanisms of serotonergic modulation associated with antipsychotic-induced EPS.


Assuntos
Antipsicóticos/efeitos adversos , Haloperidol/efeitos adversos , Polimorfismo Genético , Receptores de Serotonina/genética , Esquizofrenia/tratamento farmacológico , Adulto , Antipsicóticos/uso terapêutico , Haloperidol/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1B de Serotonina/genética , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2C de Serotonina/genética , Esquizofrenia/genética
18.
J Child Psychol Psychiatry ; 60(12): 1289-1299, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31321769

RESUMO

BACKGROUND: Serotonin system genes are commonly studied in obsessive-compulsive disorder (OCD), but genetic studies to date have produced inconsistent results, possibly because phenotypic heterogeneity has not been adequately accounted for. In this paper, we studied candidate serotonergic genes and homogenous phenotypic subgroups as presented through obsessive-compulsive (OC) trait dimensions in a general population of children and adolescents. We hypothesized that different serotonergic gene variants are associated with different OC trait dimensions and, furthermore, that they vary by sex. METHODS: Obsessive-compulsive trait dimensions (Cleaning/Contamination, Counting/Checking, Symmetry/Ordering, Superstition, Rumination, and Hoarding) were examined in a total of 5,213 pediatric participants in the community using the Toronto Obsessive-Compulsive Scale (TOCS). We genotyped candidate serotonin genes (directly genotyping the 5-HTTLPR polymorphism in SLC6A4 for 2018 individuals and using single nucleotide polymorphism (SNP) array data for genes SLC6A4, HTR2A, and HTR1B for 4711 individuals). We assessed the association between variants across these genes and each of the OC trait dimensions, within males and females separately. We analyzed OC traits as both (a) dichotomized based on a threshold value and (b) quantitative scores. RESULTS: The [LG + S] variant in 5-HTTLPR was significantly associated with hoarding in males (p-value of 0.003 and 0.004 for categorical and continuous analyses, respectively). There were no significant findings for 5-HTTLPR in females. Using SNP array data, there were significant findings for rumination in males for HTR2A SNPs (p-value of 1.04e-6 to 5.20e-6). CONCLUSIONS: This represents the first genetic association study of OC trait dimensions in a community-based pediatric sample. Our strongest results indicate that hoarding and rumination may be distinct in their association with serotonin gene variants and that serotonin gene variation may be specific to sex. Future genetic association studies in OCD should properly account for heterogeneity, using homogenous subgroups stratified by symptom dimension, sex, and age group.


Assuntos
Comportamento Compulsivo/genética , Estudos de Associação Genética , Colecionismo/genética , Comportamento Obsessivo/genética , Personalidade/genética , Ruminação Cognitiva/fisiologia , Serotonina/genética , Adolescente , Criança , Feminino , Humanos , Masculino , Transtorno Obsessivo-Compulsivo/genética , Polimorfismo de Nucleotídeo Único , Receptor 5-HT1B de Serotonina/genética , Receptor 5-HT2A de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Caracteres Sexuais
19.
Data Brief ; 19: 2336-2339, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30246098

RESUMO

There is a positive relationship between attention-deficit hyperactivity disorder and tendency toward drug use in numerous studies. The present study was aimed to investigate the relationship between polymorphism of serotonin receptor 1B gene (HTR1B) and Dopamine beta-hydroxylase gene (DBH) with attention-deficit hyperactivity disorder in adults with or without substance use disorders. In the present case-control study, as many as 355 individuals entered the present study and was categorized in different groups: control healthy group, substance use disorders group, and attention-deficit hyperactivity disorder group. For confirming attention-deficit hyperactivity disorder in adults, demographic and Conners forms were used. Moreover, SCID-I questionnaire was used to confirm or reject the individual׳s suffering from substance use disorders and other psychiatric diseases. The polymorphism of abovementioned genes was conducted by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP). In case of DBH gene-Rs2519152, the findings indicated that TT, TC, and CC genotypes and T and C alleles are not different in the attention-deficit hyperactivity disorder group, substance use disorder group, the group with patients suffering from both disorders, and control group. Moreover, the frequency of TT, TA, and AA genotypes as well as T and A alleles was same in the attention-deficit hyperactivity disorder group, substance use disorder group, the group with patients suffering from both disorders, and control group.

20.
BMC Psychiatry ; 18(1): 303, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231895

RESUMO

BACKGROUND: Schizophrenia is associated with multiple neurotransmitter disorders, including serotonin (5-hydroxytryptamine, 5-HT). The neuromodulatory action of serotonin on brain function largely depends on the action of specific subtypes of serotonin receptors. The serotonin receptor 1B (HTR1B) gene has been proposed to play putative roles in the development of multiple emotional and psychiatric disorders. METHODS: To study the relationship of HTR1B polymorphisms and schizophrenia, gene information was drawn from a cohort of 310 schizophrenic patients (152 men and 158 women) and 313 healthy controls (153 men and 160 women) of northern Han Chinese descent. The χ2 test was used to compare allele and genotype distributions between case and control groups. The haplotype and linkage equilibrium were also assessed in two group comparisons. RESULTS: We detected 14 SNPs. Male patients were observed to have higher frequencies of the A-allele and AA+AG genotype at rs1778258 than female patients (p = 0.012 and p = 0.015, respectively). Both the A-allele and AA+AG genotype were associated with schizophrenia risk (OR = 1.986 and OR = 2.061, respectively), although the statistical significance of the genotype was lost after Bonferroni correction. Linkage analysis showed that rs17273700, rs11568817, rs9361234 and rs58138557 polymorphisms exhibit strong linkage disequilibrium (LD). In addition, schizophrenic patients show stronger linkage between 11,568,817 and rs130058 than healthy controls. CONCLUSIONS: HTR1B polymorphisms are associated with schizophrenia in the northern Han Chinese population, which provides an etiological reference for schizophrenia.


Assuntos
Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Receptor 5-HT1B de Serotonina/genética , Esquizofrenia/genética , Adulto , Povo Asiático/genética , Estudos de Casos e Controles , China , Feminino , Marcadores Genéticos , Genótipo , Haplótipos , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA