Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Res Struct Biol ; 7: 100129, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327713

RESUMO

Since nucleic acids and proteins of unicellular prokaryotes are directly exposed to extreme environmental conditions, it is possible to explore the genomic-proteomic compositional determinants of molecular mechanisms of adaptation developed by them in response to harsh environmental conditions. Using a wealth of currently available complete genomes/proteomes we were able to explore signatures of adaptation to three environmental factors, pH, salinity, and temperature, observing major trends in compositions of their nucleic acids and proteins. We derived predictors of thermostability, halophilic, and pH adaptations and complemented them by the principal components analysis. We observed a clear difference between thermophilic and salinity/pH adaptations, whereas latter invoke seemingly overlapping mechanisms. The genome-proteome compositional trade-off reveals an intricate balance between the work of base paring and base stacking in stabilization of coding DNA and r/tRNAs, and, at the same time, universal requirements for the stability and foldability of proteins regardless of the nucleotide biases. Nevertheless, we still found hidden fingerprints of ancient evolutionary connections between the nucleotide and amino acid compositions indicating their emergence, mutual evolution, and adjustment. The evolutionary perspective on the adaptation mechanisms is further studied here by means of the comparative analysis of genomic/proteomic traits of archaeal and bacterial species. The overall picture of genomic/proteomic signals of adaptation obtained here provides a foundation for future engineering and design of functional biomolecules resistant to harsh environments.

2.
Mol Biol Evol ; 38(9): 3754-3774, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-33974066

RESUMO

Extreme halophilic Archaea thrive in high salt, where, through proteomic adaptation, they cope with the strong osmolarity and extreme ionic conditions of their environment. In spite of wide fundamental interest, however, studies providing insights into this adaptation are scarce, because of practical difficulties inherent to the purification and characterization of halophilic enzymes. In this work, we describe the evolutionary history of malate dehydrogenases (MalDH) within Halobacteria (a class of the Euryarchaeota phylum). We resurrected nine ancestors along the inferred halobacterial MalDH phylogeny, including the Last Common Ancestral MalDH of Halobacteria (LCAHa) and compared their biochemical properties with those of five modern halobacterial MalDHs. We monitored the stability of these various MalDHs, their oligomeric states and enzymatic properties, as a function of concentration for different salts in the solvent. We found that a variety of evolutionary processes, such as amino acid replacement, gene duplication, loss of MalDH gene and replacement owing to horizontal transfer resulted in significant differences in solubility, stability and catalytic properties between these enzymes in the three Halobacteriales, Haloferacales, and Natrialbales orders since the LCAHa MalDH. We also showed how a stability trade-off might favor the emergence of new properties during adaptation to diverse environmental conditions. Altogether, our results suggest a new view of halophilic protein adaptation in Archaea.


Assuntos
Euryarchaeota , Halobacterium , Malatos , Filogenia , Proteômica
3.
Proc Natl Acad Sci U S A ; 117(19): 10113-10121, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32284426

RESUMO

Cellular function is generally depicted at the level of functional pathways and detailed structural mechanisms, based on the identification of specific protein-protein interactions. For an individual protein searching for its partner, however, the perspective is quite different: The functional task is challenged by a dense crowd of nonpartners obstructing the way. Adding to the challenge, there is little information about how to navigate the search, since the encountered surrounding is composed of protein surfaces that are predominantly "nonconserved" or, at least, highly variable across organisms. In this study, we demonstrate from a colloidal standpoint that such a blindfolded intracellular search is indeed favored and has more fundamental impact on the cellular organization than previously anticipated. Basically, the unique polyion composition of cellular systems renders the electrostatic interactions different from those in physiological buffer, leading to a situation where the protein net-charge density balances the attractive dispersion force and surface heterogeneity at close range. Inspection of naturally occurring proteomes and in-cell NMR data show further that the "nonconserved" protein surfaces are by no means passive but chemically biased to varying degree of net-negative repulsion across organisms. Finally, this electrostatic control explains how protein crowding is spontaneously maintained at a constant level through the intracellular osmotic pressure and leads to the prediction that the "extreme" in halophilic adaptation is not the ionic-liquid conditions per se but the evolutionary barrier of crossing its physicochemical boundaries.


Assuntos
Fenômenos Fisiológicos Celulares , Matriz Extracelular/metabolismo , Proteínas/química , Proteínas/metabolismo , Animais , Fenômenos Biomecânicos , Humanos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Mapas de Interação de Proteínas
4.
Front Microbiol ; 9: 1305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997580

RESUMO

Halophilic organisms inhabit hypersaline environments where the extreme ionic conditions and osmotic pressure have driven the evolution of molecular adaptation mechanisms. Understanding such mechanisms is limited by the common difficulties encountered in cultivating such organisms. Within the Euryarchaeota, for example, only the Halobacteria and the order Methanosarcinales include readily cultivable halophilic species. Furthermore, only the former have been extensively studied in terms of their component proteins. Here, in order to redress this imbalance, we investigate the halophilic adaptation of glycolytic enzymes from the ADP-dependent phosphofructokinase/glucokinase family (ADP-PFK/GK) derived from organisms of the order Methanosarcinales. Structural analysis of proteins from non-halophilic and halophilic Methanosarcinales shows an almost identical composition and distribution of amino acids on both the surface and within the core. However, these differ from those observed in Halobacteria or Eukarya. Proteins from Methanosarcinales display a remarkable increase in surface lysine content and have no reduction to the hydrophobic core, contrary to the features ubiquitously observed in Halobacteria and which are thought to be the main features responsible for their halophilic properties. Biochemical characterization of recombinant ADP-PFK/GK from M. evestigatum (halophilic) and M. mazei (non-halophilic) shows the activity of both these extant enzymes to be only moderately inhibited by salt. Nonetheless, its activity over time is notoriously stabilized by salt. Furthermore, glycine betaine has a protective effect against KCl inhibition and enhances the thermal stability of both enzymes. The resurrection of the last common ancestor of ADP-PFK/GK from Methanosarcinales shows that the ancestral enzyme displays an extremely high salt tolerance and thermal stability. Structure determination of the ancestral protein reveals unique traits such as an increase in the Lys and Glu content at the protein surface and yet no reduction to the volume of the hydrophobic core. Our results suggest that the halophilic character is an ancient trait in the evolution of this protein family and that proteins from Methanosarcinales have adapted to highly saline environments by a non-canonical strategy, different from that currently proposed for Halobacteria. These results open up new avenues for the search and development of novel salt tolerant biocatalysts.

5.
Amino Acids ; 48(3): 751-762, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26520112

RESUMO

The sequence parameters for halophilic adaptation are still not fully understood. To understand the molecular basis of protein hypersaline adaptation, a detailed analysis is carried out, and investigated the likely association of protein sequence attributes to halophilic adaptation. A two-stage strategy is implemented, where in the first stage a supervised machine learning classifier is build, giving an overall accuracy of 86 % on stratified tenfold cross validation and 90 % on blind testing set, which are better than the previously reported results. The second stage consists of statistical analysis of sequence features and possible extraction of halophilic molecular signatures. The results of this study showed that, halophilic proteins are characterized by lower average charge, lower K content, and lower S content. A statistically significant preference/avoidance list of sequence parameters is also reported giving insights into the molecular basis of halophilic adaptation. D, Q, E, H, P, T, V are significantly preferred while N, C, I, K, M, F, S are significantly avoided. Among amino acid physicochemical groups, small, polar, charged, acidic and hydrophilic groups are preferred over other groups. The halophilic proteins also showed a preference for higher average flexibility, higher average polarity and avoidance for higher average positive charge, average bulkiness and average hydrophobicity. Some interesting trends observed in dipeptide counts are also reported. Further a systematic statistical comparison is undertaken for gaining insights into the sequence feature distribution in different residue structural states. The current analysis may facilitate the understanding of the mechanism of halophilic adaptation clearer, which can be further used for rational design of halophilic proteins.


Assuntos
Proteínas/química , Adaptação Fisiológica , Sequência de Aminoácidos , Animais , Bases de Dados de Proteínas , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Aprendizado de Máquina , Proteínas/metabolismo , Cloreto de Sódio/química , Cloreto de Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA