Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
3.
J Pers Med ; 14(7)2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39064007

RESUMO

Rheumatic heart disease (RHD) caused by group A streptococcus infection is one of the most important reasons of cardiovascular morbidity and mortality in low- and middle-income countries. Aberrant host immune response modulated by polymorphisms in inflammatory response genes plays an important role in RHD pathogenesis. This study aimed to determine risk-associated polymorphic variants in inflammatory response genes in Caucasian RHD patients. A total of 251 Caucasian RHD patients and 300 healthy donors were recruited for this study, and 27 polymorphic sites in 12 genes (TLR1, TLR2, TLR4, TLR6, IL1B, IL6R, IL6, IL10, IL12RB1, IL12B, TNF and CRP) were analyzed using allele-specific PCR. It was demonstrated that the polymorphic variants rs1800871 and rs1800872 in the IL10 gene, rs 1130864, rs3093077 and rs1205 in the CRP gene, rs375947 in the IL12RB1 gene, rs 5743551 and rs5743611 in the TLR1 gene, and rs3775073 in the TLR6 gene can modify RHD risk in a gender- and age-dependent manner. The obtained results can be used to determine the personalized risk of RHD in healthy donors during medical examination or screening, as well as to develop appropriate early prevention strategies targeting RHD in the risk groups.

5.
Am J Cardiol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996898

RESUMO

Recommendations for prosthesis type in older patients who underwent surgical aortic valve replacement (SAVR) are established, albeit undervalidated. The purpose of this study is to compare outcomes after bioprosthetic versus mechanical SAVR across various age groups. This was a retrospective study using an institutional SAVR database. All patients who underwent isolated SAVR were compared across valve types and age strata (<65 years, 65 to 75 years, >75 years). Patients who underwent concomitant operations, aortic root interventions, or previous aortic valve replacement were excluded. Objective survival and aortic valve reinterventions were compared. Kaplan-Meier survival estimation and multivariate regression were performed. A total of 1,847 patients underwent SAVR from 2010 to 2023. A total of 1,452 patients (78.6%) received bioprosthetic valves, whereas 395 (21.4%) received mechanical valves. Of those who received bioprosthetic valves, 349 (24.0%) were aged <65 years, 627 (43.2%) were 65 to 75 years, and 476 (32.8%%) were older than 75 years. For patients who received mechanical valves, 308 (78.0%) were aged <65 years, 84 (21.3%) were between 65 and 75 years, and 3 (0.7%) were >75 years. The median follow-up in the total cohort was 6.2 (2.6 to 8.9) years. No statistically significant differences were observed in early-term Kaplan-Meier survival estimates between SAVR valve types in all age groups. However, the cumulative incidence estimates of aortic valve reintervention were significantly higher in patients aged under 65 years who received bioprosthetic than those who received mechanical valves, with 5-year reintervention rates of 5.8% and 3.1%, respectively (p = 0.002). On competing risk analysis for valve reintervention, bioprosthetic valves were significantly associated with an increased hazard of aortic valve reintervention (hazard ratio 3.35, 95% confidence interval 1.73 to 6.49, p <0.001). In conclusion, SAVR with bioprosthetic valves (particularly, in patients aged <65 years) was comparable in survival to mechanical valve SAVR but significantly associated with increased valve reintervention rates.

6.
ACS Appl Mater Interfaces ; 16(28): 35936-35948, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38958205

RESUMO

Tissue-engineered heart valve (TEHV) has emerged as a prospective alternative to conventional valve prostheses. The decellularized heart valve (DHV) represents a promising TEHV scaffold that preserves the natural three-dimensional structure and retains essential biological activity. However, the limited mechanical strength, fast degradation, poor hemocompatibility, and lack of endothelialization of DHV restrict its clinical use, which is necessary for ensuring its long-term durability. Herein, we used oxidized chondroitin sulfate (ChS), one of the main components of the extracellular matrix with various biological activities, to cross-link DHV to overcome the above problems. In addition, the ChS-adipic dihydrazide was used to react with residual aldehyde groups, thus preventing potential calcification. The results indicated notable enhancements in mechanical properties and resilience against elastase and collagenase degradation in vitro as well as the ability to withstand extended periods of storage without compromising the structural integrity of valve scaffolds. Additionally, the newly cross-linked valves exhibited favorable hemocompatibility in vitro and in vivo, thereby demonstrating exceptional biocompatibility. Furthermore, the scaffolds exhibited traits of gradual degradation and resistance to calcification through a rat subcutaneous implantation model. In the rat abdominal aorta implantation model, the scaffolds demonstrated favorable endothelialization, commendable patency, and a diminished pro-inflammatory response. As a result, the newly constructed DHV scaffold offers a compelling alternative to traditional valve prostheses, which potentially advances the field of TEHV.


Assuntos
Sulfatos de Condroitina , Animais , Sulfatos de Condroitina/química , Sulfatos de Condroitina/farmacologia , Ratos , Próteses Valvulares Cardíacas , Engenharia Tecidual , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/química , Ratos Sprague-Dawley , Alicerces Teciduais/química , Teste de Materiais , Humanos , Reagentes de Ligações Cruzadas/química , Masculino , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Suínos
7.
Anat Histol Embryol ; 53(4): e13075, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38881030

RESUMO

The gross morphological examination of native caprine heart valves revealed distinctive structural characteristics of the caprine's cardiac anatomy. Four primary orifices were identified, each protected by thin, valve-like structures. Atrioventricular orifices featured tricuspid and bicuspid valves, while the aorta and pulmonary arteries were guarded by semilunar valves. Within the atrioventricular apparatus, distinct features were observed including the tricuspid valve's three leaflets and the bicuspid valve's anterior and posterior leaflets. Ultrasonography provided insights into valve thickness and chordae tendineae lengths. Morphometric studies compared leaflets/cusps within individual native valves, showcasing significant variations in dimensions. Comparative analysis between native and decellularized valves highlighted the effects of decellularization on leaflet thickness and chordae tendineae lengths. Decellularized valves exhibited reduced dimensions compared to native valves, indicating successful removal of cellular components. While some dimensions remained unchanged post-decellularization, significant reductions were observed in leaflet thicknesses and chordae tendineae lengths. Notably, semilunar valve cusps displayed varying responses to decellularization, with significant reductions in cusp lengths observed in the aortic valve, while the pulmonary valve exhibited more subtle changes. These findings underscore the importance of understanding structural alterations in heart valves post-decellularization, providing valuable insights for tissue engineering applications and regenerative medicine.


Assuntos
Cabras , Valvas Cardíacas , Animais , Cabras/anatomia & histologia , Valvas Cardíacas/anatomia & histologia , Valva Pulmonar/anatomia & histologia , Cordas Tendinosas/anatomia & histologia , Valva Aórtica/anatomia & histologia , Valva Tricúspide/anatomia & histologia , Ultrassonografia/veterinária , Masculino
8.
Adv Healthc Mater ; : e2303972, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692263

RESUMO

Heart valve disease poses a significant clinical challenge, especially in pediatric populations, due to the inability of existing valve replacements to grow or respond biologically to their microenvironment. Tissue-engineered heart valves (TEHVs) provide a solution by facilitating patient-specific models for self-repair and remodeling. In this study, a 3D-bioprinted TEHV is designed to emulate the trilayer leaflet structure of an aortic valve. A cell-laden hydrogel scaffold made from gelatin methacrylate and polyethylene glycol diacrylate (GelMA/PEGDA) incorporates valvular interstitial-like (VIC-like) cells, being reinforced with a layer of polycaprolactone (PCL). The composition of the hydrogel scaffold remains stable over 7 days, having increased mechanical strength compared to pure GelMA. The scaffold maintains VIC-like cell function and promotes extracellular matrix (ECM) protein expression up to 14 days under two dynamic culture conditions: shear stress and stretching; replicating heart valve behavior within a more physiological-like setting and suggesting remodeling potential via ECM synthesis. This TEHV offers a promising avenue for valve replacements, closely replicating the structural and functional attributes of a native aortic valve, leading to mechanical and biological integration through biomaterial-cellular interactions.

9.
Front Biosci (Landmark Ed) ; 29(5): 181, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38812319

RESUMO

BACKGROUND: Recent studies highlighted the presence of anti-α-Gal antibodies in patients implanted with commercial bioprosthetic heart valves (BHVs). BHVs expose residual α-Gal xenoantigen and their recognition by the circulating anti-Gal antibodies leads to opsonization of the device's tissue component with the consequent triggering of a deterioration pathway that culminates with calcification. Small animal models such as mice and rats have been broadly involved in the in vivo testing of biomaterials by subcutaneous implantation, especially for the effectiveness of BHVs anti-calcific treatments. However, since models employed for this purpose express α-Gal antigen, the implantation of BHVs' leaflets does not elicit a proper immunological response, so the calcification propensity may be dramatically underestimated. METHODS: An α-Gal knockout (KO) mouse model has been created, using the CRISP/Cas9 approach, and adopted to assess the calcification potential of commercial BHVs leaflets through the surgical implantation in the back subcutis area. Calcium quantification was performed by inductively coupled plasma analysis; immune response against the BHVs leaflets and α-Gal silencing was evaluated through immunological assays. RESULTS: Two months after the implantation of commercial BHV leaflets, the anti-Gal antibody titers in KO mice doubled when compared with those found in wild-type (WT) ones. Leaflets explanted from KO mice, after one month, showed a four-time increased calcium deposition concerning the ones explanted from WT. The degree of silencing of α-Gal varied, depending on the specific organ that was assessed. In any case, the animal model was suitable for evaluating implanted tissue responses. CONCLUSIONS: Such mouse model proved to be an accurate tool for the study of the calcific propensity of commercial BHVs leaflets than those hitherto used. Given its reliability, it could also be successfully used to study even other diseases in which the possible involvement of α-Gal has been observed.


Assuntos
Bioprótese , Calcinose , Modelos Animais de Doenças , Próteses Valvulares Cardíacas , Camundongos Knockout , Animais , Calcinose/imunologia , Calcinose/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Masculino
10.
Adv Healthc Mater ; 13(16): e2303737, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38560921

RESUMO

Tissue engineering heart valves (TEHVs) are expected to address the limitations of mechanical and bioprosthetic valves used in clinical practice. Decellularized heart valve (DHV) is an important scaffold of TEHVs due to its natural three-dimensional structure and bioactive extracellular matrix, but its mechanical properties and hemocompatibility are impaired. In this study, DHV is cross-linked with three different molecular weights of oxidized hyaluronic acid (OHA) by a Schiff base reaction and presented enhanced stability and hemocompatibility, which could be mediated by the molecular weight of OHA. Notably, DHV cross-linked with middle- and high-molecular-weight OHA could drive the macrophage polarization toward the M2 phenotype in vitro. Moreover, DHV cross-linked with middle-molecular-weight OHA scaffolds are further modified with RGD-PHSRN peptide (RPF-OHA/DHV) to block the residual aldehyde groups of the unreacted OHA. The results show that RPF-OHA/DHV not only exhibits anti-calcification properties, but also facilitates endothelial cell adhesion and proliferation in vitro. Furthermore, RPF-OHA/DHV shows excellent performance under an in vivo hemodynamic environment with favorable recellularization and immune regulation without calcification. The optimistic results demonstrate that OHA with different molecular weights has different cross-linking effects on DHV and that RPF-OHA/DHV scaffold with enhanced immune regulation, anti-calcification, and recellularization properties for clinical transformation.


Assuntos
Ácido Hialurônico , Engenharia Tecidual , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Animais , Engenharia Tecidual/métodos , Humanos , Valvas Cardíacas , Alicerces Teciduais/química , Imunomodulação/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Camundongos , Calcinose , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Próteses Valvulares Cardíacas , Proliferação de Células/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Adesão Celular/efeitos dos fármacos
11.
Pathol Int ; 74(5): 285-291, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38563592

RESUMO

We herein report a case of methotrexate-associated lymphoproliferative disorder (MTX-LPD) showing fibrin-associated large B-cell lymphoma-like heart valve lesions, and Epstein-Barr virus (EBV)-positive mucocutaneous ulcer-like cutaneous and oral mucosal lesions. MTX-LPD is a critical complication that can occur in RA patients who are treated with MTX. EBV also plays a defining or important role in LPDs. Among the sites of MTX-LPD, 40-50% occur in extranodal sites, including the gastrointestinal tract, skin, liver, lung, and kidney. There are few reports of MTX-LPDs involving the heart valves, and to the best of our knowledge, this is the first case to be reported in the English literature. The possibility of EBV-positive LPD should be considered in RA patients, even in patients with an atypical site, as in this case.


Assuntos
Valva Aórtica , Artrite Reumatoide , Linfoma Difuso de Grandes Células B , Transtornos Linfoproliferativos , Metotrexato , Valva Mitral , Humanos , Artrite Reumatoide/complicações , Artrite Reumatoide/tratamento farmacológico , Transtornos Linfoproliferativos/patologia , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/induzido quimicamente , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/diagnóstico , Valva Mitral/patologia , Metotrexato/efeitos adversos , Metotrexato/uso terapêutico , Valva Aórtica/patologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/patologia , Fibrina/metabolismo , Feminino , Idoso , Antirreumáticos/efeitos adversos , Antirreumáticos/uso terapêutico , Masculino
12.
J Cardiothorac Surg ; 19(1): 176, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576022

RESUMO

BACKGROUND: Mechanical heart valve replacement is a standard treatment for severe valvular disorders. The use of mono-leaflet valves has decreased recently. Recognizing the echocardiographic features of mono-leaflet and bileaflet valves is crucial for accurate complication diagnosis and proper management. CASE PRESENTATION: A 65-year-old female with mono-leaflet mitral and bileaflet tricuspid valves underwent an echocardiographic assessment. This simple educational case provides a unique opportunity to compare the echocardiographic features of these valves within a single patient. CONCLUSION: There is a crucial need for clinicians, particularly those in training, to differentiate between mono-leaflet and bileaflet mechanical heart valves adeptly. With mono-leaflet valves decreasing in prevalence, proficiency in recognizing the echocardiographic nuances of each type is imperative. Failure to do so may result in misdiagnoses and inappropriate management. This underscores the significance of continuous education and vigilance in echocardiographic assessments to ensure optimal patient care.


Assuntos
Próteses Valvulares Cardíacas , Valva Mitral , Idoso , Feminino , Humanos , Ecocardiografia , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Desenho de Prótese , Valva Tricúspide/diagnóstico por imagem , Valva Tricúspide/cirurgia
13.
J Cardiovasc Dev Dis ; 11(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667724

RESUMO

There is increasing evidence that some adult mitral valve pathologies may have developmental origins involving errors in cell signaling and protein deposition during valvulogenesis. While early and late gestational stages are well-documented in zebrafish, chicks, and small mammalian models, longitudinal studies in large mammals with a similar gestational period to humans are lacking. Further, the mechanism of chordae tendineae formation and multiplication remains unclear. The current study presents a comprehensive examination of mitral anterior leaflet and chordae tendineae development in a bovine model (a large mammal with the same gestational period as humans). Remarkably distinct from small mammals, bovine development displayed early branched chordae, with increasing attachments only until birth, while the anterior leaflet grew both during gestation and postnatally. Chordae also exhibited accelerated collagen deposition, maturation, and crimp development during gestation. These findings suggest that the bovine anterior leaflet and chordae tendineae possess unique processes of development despite being a continuous collagenous structure and could provide greater insight into human valve development.

15.
Circ Cardiovasc Imaging ; 17(4): e016435, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626096

RESUMO

Heart valve replacement has steadily increased over the past decades due to improved surgical mortality, an aging population, and the increasing use of transcatheter valve technology. With these developments, prosthetic valve complications, including prosthetic valve endocarditis, are increasingly encountered. In this review, we aim to characterize the manifestations of prosthetic valve endocarditis using representative case studies from our institution to highlight the advances and contributions of modern multimodality imaging techniques.


Assuntos
Endocardite Bacteriana , Endocardite , Implante de Prótese de Valva Cardíaca , Próteses Valvulares Cardíacas , Infecções Relacionadas à Prótese , Humanos , Idoso , Endocardite Bacteriana/diagnóstico por imagem , Endocardite Bacteriana/terapia , Próteses Valvulares Cardíacas/efeitos adversos , Endocardite/diagnóstico por imagem , Endocardite/etiologia , Implante de Prótese de Valva Cardíaca/efeitos adversos , Imagem Multimodal , Infecções Relacionadas à Prótese/diagnóstico por imagem , Infecções Relacionadas à Prótese/terapia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38634992

RESUMO

The study investigated the relationship between the histological compositions of the tricuspid, pulmonary, mitral, and aortic valves, and age. All 85 fresh human hearts were obtained with an age range between 20 and 90 years. The central area of the valves was conducted to analyze the density of collagen and elastic fibers by using an image analysis program. Neural network function in MATLAB was used for classification data and accuracy test of the age predictive model. Overall, a gradual increase in the density of collagen and elastic fibers was demonstrated with age in all valve types. The pulmonary valve cusps had the least density of collagen and elastic contents, whereas the most dense of collagen was found in the mitral leaflets. A similarity was noted for the elastic fibers in the tricuspid, mitral, and aortic valves. The highest correlation between the collagen (r = 0.629) and elastic fibers (r = 0.713) and age was found in the noncoronary cusp of the aortic valve. The established predictive equations using collagen and elastic fibers in the noncoronary cusp provided the standard error of ± 14.0 and 12.5 years, respectively. A 60.9% of accuracy was found in all age groups using collagen, while accuracy in elastic fibers showed 70.0% in the classification process using the neural networks. The current study provided additional data regarding age-associated changes of collagen and elastic fibers in the human heart valves in Thais and the benefits and application in age forensic identification.

17.
Cureus ; 16(3): e56465, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38638777

RESUMO

Mechanical heart valves (MHVs) are thrombogenic and require lifelong anticoagulation with vitamin K antagonists (VKAs) such as warfarin. Periprocedural bridging with unfractionated heparin (UFH) and low-molecular-weight heparin (LMWH) aims to reduce the risk of thromboembolic events in patients. Currently, there are no definitive class I recommendations for anticoagulation management in patients with MHVs. In this report, we present the case of a 77-year-old female who was perioperatively bridged with enoxaparin and subsequently developed an acute thrombus.

18.
Adv Healthc Mater ; 13(16): e2303395, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38554036

RESUMO

In the last 30 years, there are ≈60 000 publications about electrospun nanofibers, but it is still unclear whether nanoscale fibers are really necessary for electrospun tissue engineering scaffolds. The present report puts forward this argument and reveals that compared with electrospun nanofibers, microfibers with diameter of ≈3 µm (named as "oligo-micro fiber") are more appropriate for tissue engineering scaffolds owing to their better cell infiltration ability caused by larger pores with available nuclear deformation. To further increase pore sizes, electrospun poly(ε-caprolactone) (PCL) scaffolds are fabricated using latticed collectors with meshes. Fiber orientation leads to sufficient mechanical strength albeit increases porosity. The latticed scaffolds exhibit good biocompatibility and improve cell infiltration. Under aortic conditions in vitro, the performances of latticed scaffolds are satisfactory in terms of the acute systolic hemodynamic functionality, except for the higher regurgitation fraction caused by the enlarged pores. This hierarchical electrospun scaffold with sparse fibers in macropores and oligo-micro fibers in filaments provides new insights into the design of tissue engineering scaffolds, and tissue engineering may provide living heart valves with regenerative capabilities for patients with severe valve disease in the future.


Assuntos
Nanofibras , Poliésteres , Engenharia Tecidual , Alicerces Teciduais , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Nanofibras/química , Poliésteres/química , Animais , Humanos , Valvas Cardíacas/fisiologia , Porosidade , Próteses Valvulares Cardíacas , Materiais Biocompatíveis/química
19.
Acta Biomater ; 178: 181-195, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447808

RESUMO

Valvular endothelial cells (VECs) derived from human induced pluripotent stem cells (hiPSCs) provide an unlimited cell source for tissue engineering heart valves (TEHVs); however, they are limited by their low differentiation efficiency and immature function. In our study, we applied unidirectional shear stress to promote hiPSCs differentiation into valvular endothelial-like cells (VELs). Compared to the static group, shear stress efficiently promoted the differentiation and functional maturation of hiPSC-VELs, as demonstrated by the efficiency of endothelial differentiation reaching 98.3% in the high shear stress group (45 dyn/cm2). Furthermore, we found that Piezo1 served as a crucial mechanosensor for the differentiation and maturation of VELs. Mechanistically, the activation of Piezo1 by shear stress resulted in the influx of calcium ions, which in turn initiated the Akt signaling pathway and promoted the differentiation of hiPSCs into mature VELs. Moreover, VELs cultured on decellularized heart valves (DHVs) exhibited a notable propensity for proliferation, robust adhesion properties, and antithrombotic characteristics, which were dependent on the activation of the Piezo1 channel. Overall, our study demonstrated that proper shear stress activated the Piezo1 channel to facilitate the differentiation and maturation of hiPSC-VELs via the Akt pathway, providing a potential cell source for regenerative medicine, drug screening, pathogenesis, and disease modeling. STATEMENT OF SIGNIFICANCE: This is the first research that systematically analyzes the effect of shear stress on valvular endothelial-like cells (VELs) derived from human induced pluripotent stem cells (hiPSCs). Mechanistically, unidirectional shear stress activates Piezo1, resulting in an elevation of calcium levels, which triggers the Akt signaling pathway and then facilitates the differentiation of functional maturation VELs. After exposure to shear stress, the VELs exhibited enhanced proliferation, robust adhesion capabilities, and antithrombotic characteristics while being cultured on decellularized heart valves. Thus, it is of interest to develop hiPSCs-VELs using shear stress and the Piezo1 channel provides insights into the functional maturation of valvular endothelial cells, thereby serving as a catalyst for potential applications in the development of therapeutic and tissue-engineered heart valves in the future.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células Endoteliais , Cálcio/metabolismo , Fibrinolíticos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular/fisiologia , Endotélio
20.
Cryobiology ; 115: 104880, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38437898

RESUMO

Cryopreserved human heart valves fill a crucial role in the treatment for congenital cardiac anomalies, since the use of alternative mechanical and xenogeneic tissue valves have historically been limited in babies. Heart valve models have been used since 1998 to better understand the impact of cryopreservation variables on the heart valve tissue components with the ultimate goals of improving cryopreserved tissue outcomes and potentially extrapolating results with tissues to organs. Cryopreservation traditionally relies on conventional freezing, employing cryoprotective agents, and slow cooling to sub-zero centigrade temperatures; but it is plagued by the formation of ice crystals and cell damage upon thawing. Researchers have identified ice-free vitrification procedures and developed a new rapid warming method termed nanowarming. Nanowarming is an emerging method that utilizes targeted application of energy at the nanoscale level to rapidly rewarm vitrified tissues, such as heart valves, uniformly for transplantation. Vitrification and nanowarming methods hold great promise for surgery, enabling the storage and transplantation of tissues for various applications, including tissue repair and replacement. These innovations have the potential to revolutionize complex tissue and organ transplantation, including partial heart transplantation. Banking these grafts addresses organ scarcity by extending preservation duration while preserving biological activity with maintenance of structural fidelity. While ice-free vitrification and nanowarming show remarkable potential, they are still in early development. Further interdisciplinary research must be dedicated to exploring the remaining challenges that include scalability, optimizing cryoprotectant solutions, and ensuring long-term viability upon rewarming in vitro and in vivo.


Assuntos
Criopreservação , Crioprotetores , Valvas Cardíacas , Vitrificação , Criopreservação/métodos , Valvas Cardíacas/transplante , Humanos , Crioprotetores/farmacologia , Animais , Transplante de Coração/métodos , Bancos de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA