Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.935
Filtrar
1.
Front Immunol ; 15: 1444533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144146

RESUMO

Regulatory T cells (Tregs), characterized by the expression of Forkhead Box P3 (FOXP3), constitute a distinct subset of T cells crucial for immune regulation. Tregs can exert direct and indirect control over immune homeostasis by releasing inhibitory factors or differentiating into Th-like Treg (Th-Treg), thereby actively contributing to the prevention and treatment of autoimmune diseases. The epigenetic regulation of FOXP3, encompassing DNA methylation, histone modifications, and post-translational modifications, governs the development and optimal suppressive function of Tregs. In addition, Tregs can also possess the ability to maintain homeostasis in diverse microenvironments through non-suppressive mechanisms. In this review, we primarily focus on elucidating the epigenetic regulation of Tregs as well as their multifaceted roles within diverse physiological contexts while looking forward to potential strategies involving augmentation or suppression of Tregs activity for disease management, particularly in light of the ongoing global COVID-19 pandemic.


Assuntos
COVID-19 , Epigênese Genética , Fatores de Transcrição Forkhead , Homeostase , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/imunologia , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , COVID-19/imunologia , Metilação de DNA , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia
2.
FEBS J ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39185698

RESUMO

Protein phosphatase 2A (PP2A), one of the most abundant protein phosphatases, has divergent functions in multiple types of cells. Its inactivation has been closely associated with leukemia diseases. However, the physiological function of PP2A for hematopoiesis has been poorly understood in organisms. Drosophila hematopoiesis parallels the vertebrate counterpart in developmental and functional features but involves a much simpler hematopoietic system. Here, utilizing the Drosophila major larval hematopoietic organ lymph gland, we studied the function of PP2A for hematopoiesis in vivo. By knocking down the expression of Pp2A-29B that encodes the scaffold subunit of the PP2A holoenzyme complex, we found that PP2A silencing in the differentiating hemocytes resulted in their excessive proliferation. Furthermore, this PP2A inhibition downregulated the expression of Smoothened (Smo), a crucial component in the Hedgehog pathway, and smo overexpression was able to rescue the phenotypes of PP2A depletion, indicating that Smo functions as a downstream effector of PP2A to restrict the hemocyte proliferation. PDGF/VEGF-receptor (Pvr) overexpression also restored the Smo expression and lymph gland morphology of PP2A silencing, suggesting a PP2A-Pvr-Smo axis to regulate lymph gland growth and hemocyte proliferation. Moreover, inhibiting PP2A activity in the blood progenitor cells promoted their differentiation, but which was independent with Smo. Together, our data suggested that PP2A plays a dual role in the Drosophila lymph gland by preserving the progenitor population and restraining the hemocyte proliferation, to properly regulate the hematopoietic process.

3.
Heliyon ; 10(15): e35051, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39157371

RESUMO

Hematopoietic stem cells (HSCs) are tightly regulated by specific microenvironments called niches to produce an appropriate number of mature blood cell types. Self-renewal and differentiation are two hallmarks of hematopoietic stem and progenitor cells, and their balance is critical for proper functioning of blood and immune cells throughout life. In addition to cell-intrinsic regulation, extrinsic cues within the bone marrow niche and systemic factors also affect the fate of HSCs. Despite this, many paracrine and endocrine factors that influence the function of hematopoietic cells remain unknown. In hematological malignancies, malignant cells remodel their niche into a permissive environment to enhance the survival of leukemic cells. These events are accompanied by loss of normal hematopoiesis. It is well known that extracellular vehicles (EVs) mediate intracellular interactions under physiological and pathological conditions. In other words, EVs transfer biological information to surrounding cells and contribute not only to physiological functions but also to the pathogenesis of some diseases, such as cancers. Therefore, a better understanding of cell-to-cell interactions may lead to identification of potential therapeutic targets. Recent reports have suggested that EVs are evolutionarily conserved constitutive mediators that regulate hematopoiesis. Here, we focus on the emerging roles of EVs in normal and pathological conditions, particularly in hematological malignancies. Owing to the high abundance of EVs in biological fluids, their potential use as biomarkers and therapeutic tools is discussed.

4.
J Vet Intern Med ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143652

RESUMO

BACKGROUND: Immune thrombocytopenia (ITP) is a common cause of severe thrombocytopenia in dogs. The pathogenesis of nonassociative, primary ITP (pITP) appears complex, with ill-defined thrombopoietic response. OBJECTIVES: Develop an immunoassay to measure plasma canine thrombopoietin (TPO) concentration and characterize TPO concentrations in dogs with pITP. ANIMALS: Forty-one healthy dogs, 8 dogs in an induced ITP model (3 control, 5 ITP), and 58 pITP dogs. METHODS: Recombinant canine TPO (rcTPO) was purchased and its identity confirmed by mass spectrometry. Monoclonal antibodies were raised to rcTPO and used to configure a sandwich ELISA using streptavidin-biotin detection. Assay performance, coefficients of variability, and healthy dog plasma TPO reference interval (RI) were determined, followed by assay of ITP samples. RESULTS: Assay dynamic range was 15 pg/mL (lower limit of detection) to 1000 pg/mL TPO, with limit of quantitation of 62 pg/mL. Plasma TPO RI was 0 to 158 pg/mL, with plasma TPO <62 pg/mL for 35/41 healthy dogs. All dogs with induced ITP developed marked increases in plasma TPO concentration. Peak values ranged from 515 to >6000 pg/mL. In contrast, only 2/58 pITP dogs had TPO values above RI. CONCLUSIONS AND CLINICAL IMPORTANCE: Plasma TPO concentration is paradoxically low at diagnosis for most dogs with pITP. This finding suggests that ineffective thrombopoiesis contributes to thrombocytopenia in pITP dogs and supports evaluating TPO receptor agonist treatment as used for pITP in humans. The TPO assay provides a new tool to study thrombopoiesis in pITP and other thrombocytopenic syndromes in dogs.

5.
Adv Gerontol ; 37(3): 266-275, 2024.
Artigo em Russo | MEDLINE | ID: mdl-39139119

RESUMO

The number of somatic mutations among all tissues increases along with age. This process was well-studied in hematopoietic stem cells (HSCs). Some mutations lead to a proliferative advantage and expansion of HSCs to form a dominant clone. Clonal hematopoiesis is general in the elderly population. Clonal hematopoiesis of indeterminate potential (CHIP) is a more common phenomenon in the elderly and is defined as somatic mutations in clonal blood cells without any other hematological malignancies. The development of CHIP is an independent risk factor for hematological malignancies, cardiovascular diseases, and reduced overall survival. CHIP is frequently associated with mutations in DNMT3A and TET2 genes involved in DNA methylation. The epigenetic human body clocks have been developed based on the age-related changes in methylation, making it possible to detect epigenetic aging. The combination of epigenetic aging and CHUP is associated with adverse health outcomes. Further research will reveal the significance of clonal hematopoiesis and CHIP in aging, acquiring various diseases, and determining the feasibility of influencing the mutagenic potential of clones.


Assuntos
Envelhecimento , Hematopoiese Clonal , Epigênese Genética , Humanos , Envelhecimento/fisiologia , Envelhecimento/genética , Hematopoiese Clonal/genética , Mutação , Metilação de DNA , Células-Tronco Hematopoéticas/metabolismo , DNA Metiltransferase 3A , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/diagnóstico , Dioxigenases , Hematopoese/genética , Hematopoese/fisiologia , DNA (Citosina-5-)-Metiltransferases/genética
6.
DNA Repair (Amst) ; 141: 103733, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39096698

RESUMO

Fanconi anemia (FA) is a hereditary disorder characterized by a deficiency in the repair of DNA interstrand crosslinks and the response to replication stress. Endogenous DNA damage, most likely caused by aldehydes, severely affects hematopoietic stem cells in FA, resulting in progressive bone marrow failure and the development of leukemia. Recent studies revealed that expression levels of SLFN11 affect the replication stress response and are a strong determinant in cell killing by DNA-damaging cancer chemotherapy. Because SLFN11 is highly expressed in the hematopoietic system, we speculated that SLFN11 may have a significant role in FA pathophysiology. Indeed, we found that DNA damage sensitivity in FA cells is significantly mitigated by the loss of SLFN11 expression. Mechanistically, we demonstrated that SLFN11 destabilizes the nascent DNA strands upon replication fork stalling. In this review, we summarize our work regarding an interplay between SLFN11 and the FA pathway, and the role of SLFN11 in the response to replication stress.


Assuntos
Dano ao DNA , Replicação do DNA , Anemia de Fanconi , Proteínas Nucleares , Anemia de Fanconi/metabolismo , Anemia de Fanconi/genética , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Animais , Reparo do DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética
7.
Front Immunol ; 15: 1397469, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148724

RESUMO

Modest response rates to immunotherapy observed in advanced lung cancer patients underscore the need to identify reliable biomarkers and targets, enhancing both treatment decision-making and efficacy. Factors such as PD-L1 expression, tumor mutation burden, and a 'hot' tumor microenvironment with heightened effector T cell infiltration have consistently been associated with positive responses. In contrast, the predictive role of the abundantly present tumor-infiltrating myeloid cell (TIMs) fraction remains somewhat uncertain, partly explained by their towering variety in terms of ontogeny, phenotype, location, and function. Nevertheless, numerous preclinical and clinical studies established a clear link between lung cancer progression and alterations in intra- and extramedullary hematopoiesis, leading to emergency myelopoiesis at the expense of megakaryocyte/erythroid and lymphoid differentiation. These observations affirm that a continuous crosstalk between solid cancers such as lung cancer and the bone marrow niche (BMN) must take place. However, the BMN, encompassing hematopoietic stem and progenitor cells, differentiated immune and stromal cells, remains inadequately explored in solid cancer patients. Subsequently, no clear consensus has been reached on the exact breadth of tumor installed hematopoiesis perturbing cues nor their predictive power for immunotherapy. As the current era of single-cell omics is reshaping our understanding of the hematopoietic process and the subcluster landscape of lung TIMs, we aim to present an updated overview of the hierarchical differentiation process of TIMs within the BMN of solid cancer bearing subjects. Our comprehensive overview underscores that lung cancer should be regarded as a systemic disease in which the cues governing the lung tumor-BMN crosstalk might bolster the definition of new biomarkers and druggable targets, potentially mitigating the high attrition rate of leading immunotherapies for NSCLC.


Assuntos
Neoplasias Pulmonares , Mielopoese , Microambiente Tumoral , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Microambiente Tumoral/imunologia , Animais , Medula Óssea/patologia , Medula Óssea/imunologia , Medula Óssea/metabolismo , Nicho de Células-Tronco , Imunoterapia/métodos
8.
J Clin Oncol ; : JCO2401487, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39094067

RESUMO

BACKGROUND: Therapy-related myeloid neoplasm (t-MN) is a life-threatening complication of autologous peripheral blood stem cell (PBSC) transplantation for non-Hodgkin lymphoma (NHL). Prior studies report an association between clonal hematopoiesis (CH) in PBSC and risk of t-MN, but small samples precluded examination of risk within specific sub-populations. METHODS: Targeted DNA sequencing was performed to identify CH mutations in PBSC from a retrospective cohort of 984 NHL patients (median age at transplant 57y; range: 18-78). Fine-Gray proportional subdistribution hazard regression models estimated association between number of CH mutations and t-MN, adjusting for demographic, clinical, and therapeutic variables. Secondary analyses evaluated association between CH and t-MN among males and females. RESULTS: CH was identified in PBSC from 366 patients (37.2%). t-MN developed in 60 patients after median follow-up of 5y. Presence of ≥2 mutations conferred increased t-MN risk (adjusted hazard ratio [aHR]=2.10, 95% confidence interval [CI]=1.08-4.11, p=0.029). CH was associated with increased t-MN risk among males (aHR=1.83, 95%CI=1.01-3.31) but not females (aHR=0.56, 95%CI=0.15-2.09). Although prevalence and type of CH mutations in PBSC was comparable, the 8y cumulative incidence of t-MN was higher among males vs. females with CH (12.4% vs. 3.6%) but was similar between males and females without CH (4.9% vs. 3.9%). Expansion of CH clones from PBSC to t-MN was seen only among males. CONCLUSIONS: Presence of CH mutations in PBSC confers increased risk of t-MN after autologous transplantation in male but not female patients with NHL. Factors underlying sex-based differences in risk of CH progression to t-MN merit further investigation.

9.
Cureus ; 16(7): e63924, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39104967

RESUMO

Extramedullary hematopoiesis (EMH) is the formation of blood cells outside the bone marrow, typically occurring in response to chronic anemia or bone marrow dysfunction. While EMH is most commonly observed in the liver, spleen, and lymph nodes, its occurrence in the kidney is exceedingly rare. In this case report, we are presenting a case of a 49-year-old male diagnosed with polycythemia vera who had an incidental right renal mass, which was histo-pathologically proven as extramedullary hematopoiesis in the right kidney mimicking lymphoma. This case underscores the importance of considering EMH in the differential diagnosis of renal masses, especially in patients with a history of myeloproliferative disorders. Early recognition and appropriate management are crucial to avoid unnecessary interventions and manage the underlying hematological condition effectively. Accurate diagnosis through histopathological examination is crucial to avoid unnecessary surgical interventions.

10.
Cureus ; 16(7): e63945, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39105018

RESUMO

The formation of the blood elements and their maturation is called hematopoiesis. In adults, this typically takes place in the bone marrow of vertebrae, ribs, and long bones. In contrast, during fetal development, the primary sites of hematopoiesis are the spleen, liver, and the yolk sac. This process of hematopoiesis, when it occurs in sites other than the bone marrow, is called the extramedullary hematopoiesis (EMH). Extramedullary hematopoiesis usually happens in patients with blood disorders like sickle cell disease and thalassemia, where there is failure of hematopoiesis in the primary sites. Here, we present a young male with beta-thalassemia who presented with shortness of breath and palpitations for one month. This manuscript discusses the imaging findings of the EMH in our patient.

11.
Rinsho Ketsueki ; 65(7): 702-708, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-39098022

RESUMO

Myelodysplastic syndrome (MDS) is a refractory cancer that arises from hematopoietic stem cells and predominantly affects elderly adults. In addition to driver gene mutations, which are also found in clonal hematopoiesis in healthy elderly people, systemic inflammation caused by infection or collagen disease has long been known as an extracellular factor in the pathogenesis of MDS. Wild-type HSCs have an "innate immune memory" that functions in response to infection and inflammatory stress, and my colleagues and I used an infection stress model to demonstrate that the innate immune response by the TLR-TRIF-PLK-ELF1 pathway is similarly critical in impairment of hematopoiesis and dysregulation of chromatin in MDS stem cells. This revealed that not only are MDS stem cells expanded by the TRAF6-NF-kB pathway, the innate immune response is also involved in generating MDS stem cells. In this review, I will present research findings related to "innate immune memory," one of the pathogenic mechanisms of blood cancer, and discuss future directions for basic pathological research and potential therapeutic development.


Assuntos
Transformação Celular Neoplásica , Neoplasias Hematológicas , Mutação , Humanos , Neoplasias Hematológicas/genética , Transformação Celular Neoplásica/genética , Infecções , Imunidade Inata , Síndromes Mielodisplásicas/genética , Animais , Estresse Fisiológico
12.
Handb Clin Neurol ; 202: 23-39, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39111909

RESUMO

Hematopoiesis is a complex process that takes place inside the bone marrow, where a specialized structure, the bone marrow niche, participates in the maintenance of hematopoietic stem cell functionality. Inflammatory conditions, such as autoimmune diseases, could alter this equilibrium leading to pathologic consequences. Immune cells, which also reside in the bone marrow, directly participate in sustaining the inflammatory state in autoimmune diseases. In particular, memory lymphocytes are key players in the long-term maintenance of the immune response against self-antigens, causing tissue damage and bone marrow alterations.


Assuntos
Doenças Autoimunes , Humanos , Doenças Autoimunes/imunologia , Animais , Memória Imunológica/imunologia , Hematopoese/fisiologia , Hematopoese/imunologia , Células-Tronco Hematopoéticas/imunologia
13.
J Cardiovasc Aging ; 4(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39119355

RESUMO

Clonal hematopoiesis (CH) is a prevalent condition that results from somatic mutations in hematopoietic stem cells. When these mutations occur in "driver" genes, they can potentially confer fitness advantages to the affected cells, leading to a clonal expansion. While most clonal expansions of mutant cells are generally considered to be asymptomatic since they do not impact overall blood cell numbers, CH carriers face long-term risks of all-cause mortality and age-associated diseases, including cardiovascular disease and hematological malignancies. While considerable research has focused on understanding the association between CH and these diseases, less attention has been given to exploring the regulatory factors that contribute to the expansion of the driver gene clone. This review focuses on the association between environmental stressors and inherited genetic risk factors in the context of CH development. A better understanding of how these stressors impact CH development will facilitate mechanistic studies and potentially lead to new therapeutic avenues to treat individuals with this condition.

14.
FASEB Bioadv ; 6(8): 263-275, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39114446

RESUMO

Chronic psychological stress has been reported to decrease circulating iron concentrations and impair hematopoiesis. However, the underlying mechanisms remain unclear. This study aimed to investigate the effects of psychological stress on biological iron metabolism by using the social defeat stress (SDS) model, a widely used model of depression. Compared with control mice, mice subjected to SDS (SDS mice) had lower social interaction (SI) behavior. The SDS mice also showed impaired hematopoiesis, as evidenced by reduced circulating red blood cell counts, elevated reticulocyte counts, and decreased plasma iron levels. In the SDS mice, the iron contents in the bone marrow decreased, whereas those in the spleen increased, suggesting dysregulation in systemic iron metabolism. The concentrations of plasma hepcidin, an important regulator of systemic iron homeostasis, increased in the SDS mice. Meanwhile, the concentrations of ferroportin, an iron transport protein negatively regulated by hepcidin, were lower in the spleen and duodenum of the SDS mice than in those of the control mice. Treatment with dalteparin, a hepcidin inhibitor, prevented the decrease in plasma iron levels in the SDS mice. The gene expression and enzyme activity of furin, which converts the precursor hepcidin to active hepcidin, were high and positively correlated with plasma hepcidin concentration. Thus, furin activation might be responsible for the increased plasma hepcidin concentration. This study is the first to show that psychological stress disrupts systemic iron homeostasis by activating the hepcidin-ferroportin axis. Consideration of psychological stressors might be beneficial in the treatment of diseases with iron-refractory anemia.

15.
Genome Biol ; 25(1): 214, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39123248

RESUMO

Analysis of clonal dynamics in human tissues is enabled by somatic genetic variation. Here, we show that analysis of mitochondrial mutations in single cells is dramatically improved in females when using X chromosome inactivation to select informative clonal mutations. Applying this strategy to human peripheral mononuclear blood cells reveals clonal structures within T cells that otherwise are blurred by non-informative mutations, including the separation of gamma-delta T cells, suggesting this approach can be used to decipher clonal dynamics of cells in human tissues.


Assuntos
Mutação , Análise de Célula Única , Inativação do Cromossomo X , Humanos , Feminino , Leucócitos Mononucleares/metabolismo , Cromossomos Humanos X/genética , Células Clonais , Linfócitos T/metabolismo , Masculino , DNA Mitocondrial/genética
16.
Cancers (Basel) ; 16(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123361

RESUMO

Clonal hematopoiesis (CH), the relative expansion of mutant clones, is derived from hematopoietic stem cells (HSCs) with acquired somatic or cytogenetic alterations that improve cellular fitness. Individuals with CH have a higher risk for hematological and non-hematological diseases, such as cardiovascular disease, and have an overall higher mortality rate. Originally thought to be restricted to a small fraction of elderly people, recent advances in single-cell sequencing and bioinformatics have revealed that CH with multiple expanded mutant clones is universal in the elderly population. Just a few years ago, phylogenetic reconstruction across the human lifespan and novel sensitive sequencing techniques showed that CH can start earlier in life, decades before it was thought possible. These studies also suggest that environmental factors acting through aberrant inflammation might be a common theme promoting clonal expansion and disease progression. However, numerous aspects of this phenomenon remain to be elucidated and the precise mechanisms, context-specific drivers, and pathways of clonal expansion remain to be established. Here, we review our current understanding of the cellular mechanisms driving CH and specifically focus on how pro-inflammatory factors affect normal and mutant HSC fates to promote clonal selection.

17.
Blood Cells Mol Dis ; 109: 102884, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39173304

RESUMO

The red cell distribution width (RDW) is a standard variable reported in the complete blood count. It has been found to have a consistent relationship to life expectancy in older individuals, prognosis in patients with cardiovascular disease, outcome in those with hematological and non-hematological neoplasms and in a variety of medical circumstances such as non-cardiovascular or cancer related critical illness and postoperative outcome from various procedures. This report reviews some of the key medical publications establishing these relationships with RDW. The precise pathobiological processes that explain the predictive value of the RDW in this wide array of circumstances or why an alteration in erythropoiesis (exaggerated red cell size variation) occurs is uncertain. The possible role of inflammation has been one hypothesis considered, but not established.

18.
Metabolism ; 160: 156000, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39142602

RESUMO

The rising prevalence of obesity-related illnesses, such as metabolic steatotic liver disease (MASLD), represents a significant global public health concern. This disease affects approximately 30 % of the adult population and is the result of metabolic abnormalities rather than alcohol consumption. Additionally, MASLD is associated with an increased risk of cardiovascular disease (CVD), chronic liver disease, and a variety of cancers, particularly gastrointestinal cancers. Clonal hematopoiesis (CH) is a biological state characterized by the expansion of a population of blood cells derived from a single mutated hematopoietic stem cell. The presence of CH in the absence of a diagnosed blood disorder or cytopenia is known as clonal hematopoiesis of indeterminate potential (CHIP), which itself increases the risk of hematological malignancies and CVD. Steatotic liver disease may also complicate the clinical course of cancer patients receiving antineoplastic agents, a condition referred to as chemotherapy induced steatohepatitis (CASH). This review will present an outline of the various aspects of MASLD, including complications. Furthermore, it will summarize the existing knowledge on the emerging association between CHIP and MASLD and present the available data on patient cases with concurrent MASLD and hematological neoplasms. Finally, it will provide a brief overview of the chemotherapeutic drugs associated with CASH, the underlying pathophysiologic mechanisms and their clinical implications.

19.
Bioinformatics ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172488

RESUMO

MOTIVATION: Single-cell RNA sequencing (scRNA-seq) enables comprehensive characterization of the cell state. However, its destructive nature prohibits measuring gene expression changes during dynamic processes such as embryogenesis. Although recent studies integrating scRNA-seq with lineage tracing have provided clonal insights between progenitor and mature cells, challenges remain. Because of their experimental nature, observations are sparse, and cells observed in the early state are not the exact progenitors of cells observed at later time points. To overcome these limitations, we developed LineageVAE, a novel computational methodology that utilizes deep learning based on the property that cells sharing barcodes have identical progenitors. RESULTS: LineageVAE is a deep generative model that transforms scRNA-seq observations with identical lineage barcodes into sequential trajectories toward a common progenitor in a latent cell state space. This method enables the reconstruction of unobservable cell state transitions, historical transcriptomes, and regulatory dynamics at a single-cell resolution. Applied to hematopoiesis and reprogrammed fibroblast datasets, LineageVAE demonstrated its ability to restore backward cell state transitions and infer progenitor heterogeneity and transcription factor activity along differentiation trajectories. AVAILABILITY AND IMPLEMENTATION: The LineageVAE model was implemented in Python using the PyTorch deep learning library. The code is available on GitHub at https://github.com/LzrRacer/LineageVAE/. SUPPLEMENTARY INFORMATION: Available at Bioinformatics online.

20.
FASEB J ; 38(15): e23870, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39120151

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are successfully employed for hematological transplantations, and impaired HSPC function causes hematological diseases and aging. HSPCs maintain the lifelong homeostasis of blood and immune cells through continuous self-renewal and maintenance of the multilineage differentiation potential. TMEM106B is a transmembrane protein localized on lysosomal membranes and associated with neurodegenerative and cardiovascular diseases; however, its roles in HSPCs and hematopoiesis are unknown. Here, we established tmem106bb-/- knockout (KO) zebrafish and showed that tmem106bb KO reduced the proliferation of HSPCs during definitive hematopoiesis. The differentiation potential of HSPCs to lymphoid lineage was reduced, whereas the myeloid and erythroid differentiation potentials of HPSCs were increased in tmem106bb-/- zebrafish. Similar results were obtained with morpholino knockdown of tmem106bb. Mechanistically, TMEM106B interacted with LAMP2A, the lysosomal associated membrane protein 2A, impaired LAMP2A-Cathepsin A interaction, and enhanced LAMP2A stability; tmem106bb KO or TMEM106B knockdown caused LAMP2A degradation and impairment of chaperone-mediated autophagy (CMA). Knockdown of lamp2a caused similar phenotypes to that in tmem106bb-/- zebrafish, and overexpression of lamp2a rescued the impaired phenotypes of HSPCs in tmem106bb-/- embryos. These results uncover a novel molecular mechanism for the maintenance of HSPC proliferation and differentiation through stabilizing LAMP2A via TMEM106B-LAMP2A interaction.


Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Hematopoéticas , Proteína 2 de Membrana Associada ao Lisossomo , Proteínas de Membrana , Peixe-Zebra , Animais , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/citologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Lisossomos/metabolismo , Humanos , Hematopoese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA