Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.071
Filtrar
1.
J Ethnopharmacol ; 335: 118600, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053714

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Herb-induced liver injury (HILI) represents an exacerbated inflammatory response, with Psoraleae fructus (PF) and its preparations recently associated with hepatotoxicity. Licorice, historically recognized as a detoxifying herbal remedy, is considered to possess hepatoprotective properties. Our previous research identified bavachin, bakuchiol, and psoralidin (PSO) as potential toxic constituents in PF, while licochalcone B (LCB) and echinatin were identified as bioactive components in licorice. However, evidence regarding the interactions of active compounds in herbs and their underlying mechanisms remains limited. AIM OF THE STUDY: The objective of this study is to assess the potential mechanisms through which LCB modulates immunological and anti-inflammatory responses to treat PSO-induced liver injury by using human hepatocyte cells (L02) and LPS-primed mice. METHODS: The ameliorative effects of LCB and echinatin on bavachin, bakuchiol, and PSO-induced liver injury were demonstrated in L02 cells. Subsequently, the efficacy of LCB on PSO-induced idiosyncratic liver injury was further validated in C57BL/6 mice under moderate inflammatory stress induced by LPS priming. The mechanisms were preliminarily explored with an integrated strategy of molecular docking, RT-PCR verification, and untargeted metabolomics. RESULTS: The study shows that LCB significantly reduced cell injury induced by the three chemicals in PF and provided substantial protection against PSO-induced hepatic damage, as indicated by the levels of ALT, AST, and LDH. LCB normalized liver function and remarkedly alleviated hepatic lesions and inflammation caused by PSO in mice under moderate inflammatory stress. The mRNA profiles of both L02 cells and mice liver tissue revealed that LCB mitigated PSO-induced hepatotoxicity by regulating the gene expression of pro-inflammatory cytokines IL1B and TNF, as well as immunoinflammatory genes PIK3CA, AKT1, NFKB1, and NLRP3. Furthermore, untargeted metabolomics of liver tissue indicated that LCB could reverse the abnormal expression of 11 discriminatory metabolites, with the interrelationship between differential metabolites and target genes primarily clustering in glycerophospholipid metabolism, arachidonic acid metabolism, and phosphatidylinositol signaling system. CONCLUSION: LCB demonstrated a superior anti-inflammatory and immunomodulatory effect on PSO-induced hepatotoxicity by modulating the inflammatory response and metabolic signaling system. Key interactive targets included phosphatidylcholine, phosphatidic acid, and subunit isoforms of PI3K.

2.
J Pharm Pharmacol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046816

RESUMO

BACKGROUND: This study aimed to assess the herb-drug interactions between crude/silver nanoparticle (SNP)-loaded carob extract (Car, NCar, respectively) and donepezil-HCl (DPZ) and their impact on neurotherapeutic outcomes in a dementia model. METHODS: Carob pods were subjected to ethanol extraction, and their phytoconstituents were chromatographically analysed. SNP-loaded extract was synthesized and characterized, and dementia-like symptoms were induced in Wistar rats by repeated dosing with 175 mg/kg AlCl3 for 60 days, after which the animals were treated with Car, NCar, DPZ, and combinations of Car/NCar-DPZ for 30 days. The effect of carob formulations on DPZ bioavailability was in-silico profiled and the herb-drug interactions were mathematically assessed as combination indices. RESULTS: Different formulations significantly improved cognitive/spatial memory functions, restored dysregulated brain redox and cholinergic functions, and markedly inhibited cholinesterase, as reflected by the reduction/absence of amyloid plaques and neurofibrillary tangles. In silico profiling of the major phytoconstituents revealed their non-P-glycoprotein substrate nature and CYP3A4, 2C19, and 2C9 inhibition, which might have improved the oral bioavailability of DPZ. The combination index calculations revealed strong synergy between DPZ and both carob formulations, with the strongest effect exhibited by the DPZ/NCar combination. CONCLUSION: The co-administration of carob extract/SNPs represents a promising approach for enhancing the neurotherapeutic efficacy of DPZ.

3.
J Ethnopharmacol ; 334: 118545, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39002826

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Qinghao-Biejia herb pair (QB) is the core herb pair of "Jieduquyuziyin prescription" and is one of the commonly used herb pairs for the clinical treatment of systemic lupus erythematosus (SLE). Previous studies have shown that QB reduces the expression of inflammatory cytokines like IL-6 and TNF-α in the serum and kidney of MRL/lpr mice. Additionally, it inhibits the expression of TLR4 and MyD88 in the kidney and aorta and reduces the deposition of renal complement C3 and aortic plaque after treatment. These findings suggest that QB has a preventive and therapeutic effect on lupus rats. AIM OF THE STUDY: This study sought to investigate the mechanisms underlying the anti-SLE combined with atherosclerosis activity of the Qinghao-Biejia herb pair. MATERIALS AND METHODS: Drug targets for QB were identified using the HERB database, while targets associated with SLE and atherosclerosis were retrieved from the GeneCards database. The intersection of these drug and disease targets was then analyzed using a protein-protein interaction (PPI) network with GO and KEGG pathway enrichment analysis. In vivo, apolipoprotein E-deficient (ApoE-/-) mice were induced to develop SLE-AS by intraperitoneal injection of pristane and continued feeding of a high-fat diet. The changes in relevant indexes were observed after 12 weeks of gavage treatment with hydroxychloroquine, QB, Q (Qinghao alone), and B (Biejia alone). Bone marrow-derived macrophages from ApoE-/- mice and Raw 264.7 macrophages were used to explore the mechanisms of QB treatment. RESULTS: The levels of inflammatory cytokines in serum and pathological liver changes in mice were improved to varying degrees in the treatment groups. Additionally, there was a reduction in aortic atheromatous plaque formation and some improvement in cholesterol efflux. Furthermore, QB suppressed the expression of inflammatory cytokines in M1 macrophages, suggesting a role in regulating macrophage polarization. CONCLUSION: QB demonstrates clear efficacy for treating SLE-AS, and its therapeutic mechanism may involve the regulation of macrophage phenotypes by promoting cholesterol efflux.

4.
Turk J Pharm Sci ; 21(3): 234-242, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994864

RESUMO

Objectives: In recent years, especially with the Coronavirus Disease of 2019 (COVID-19) pandemic, the use of herbal products for various health problems has been increasing worldwide. This study aimed to determine the frequency of herbal product/dietary supplement use, the most used products, and the factors affecting the use of these products in patients who applied to the Chest Diseases Clinic. Materials and Methods: This descriptive survey study was conducted at Chest Diseases Clinic using a face-to-face interview technique. Adult individuals with subacute respiratory complaints for > 3 weeks or a diagnosis of chronic chest disease were included in the study. The questionnaire form included questions about personal characteristics, data related to disease and treatment, use of herbal products/dietary supplements, and attitudes toward these products. A total of 444 participants with all the data included in the study. Descriptive statistics, chi-square, and binary logistic regression tests were used. Results: It was determined that 49.3% of the participants used herbal products/dietary supplements, and the most frequently used products were honey, linden, ginger, lemon, and carob. According to the results of the binary logistic regression test, it was determined that patients over 60 years old [odds ratio (OR)= 2.0, 95% confidence interval (Cl): 1.1-3.8, p= 0.042], those with a high education level (OR= 2.0, 95% Cl: 1.1-3.6, p= 0.018), those who live in urban (OR= 1.8, 95% Cl: 1.1-3.0, p= 0.018), and those with a diagnosis of post-COVID syndrome (OR= 2.7, 95%, Cl: 1.3-5.5, p= 0.007) are more likely to use these products. It was determined that 57.9% of the participants used these products to relieve the symptoms of the disease. Conclusion: Considering the high probability of using these products in patients with respiratory tract disease, it is essential for public health that health professionals question the use of these products and provide counseling on this issue.

5.
J Cell Mol Med ; 28(13): e18527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38984969

RESUMO

Infected bone defects (IBDs) are the common condition in the clinical practice of orthopaedics. Although surgery and anti-infective medicine are the firstly chosen treatments, in many cases, patients experience a prolonged bone union process after anti-infective treatment. Epimedium-Curculigo herb pair (ECP) has been proved to be effective for bone repair. However, the mechanisms of ECP in IBDs are insufficiency. In this study, Effect of ECP in IBDs was verified by micro-CT and histological examination. Qualitative and quantitative analysis of the main components in ECP containing medicated serum (ECP-CS) were performed. The network pharmacological approaches were then applied to predict potential pathways for ECP associated with bone repair. In addition, the mechanism of ECP regulating LncRNA MALAT1/miRNA-34a-5p/SMAD2 signalling axis was evaluated by molecular biology experiments. In vivo experiments indicated that ECP could significantly promote bone repair. The results of the chemical components analysis and the pathway identification revealed that TGF-ß signalling pathway was related to ECP. The results of in vitro experiments indicated that ECP-CS could reverse the damage caused by LPS through inhibiting the expressions of LncRNA MALAT1 and SMAD2, and improving the expressions of miR-34a-5p, ALP, RUNX2 and Collagen type І in osteoblasts significantly. This research showed that ECP could regulate the TGF-ß/SMADs signalling pathway to promote bone repair. Meanwhile, ECP could alleviate LPS-induced bone loss by modulating the signalling axis of LncRNA MALAT1/miRNA-34a-5p/ SMAD2 in IBDs.


Assuntos
Epimedium , MicroRNAs , Osteoblastos , RNA Longo não Codificante , Transdução de Sinais , Proteína Smad2 , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Animais , Proteína Smad2/metabolismo , Proteína Smad2/genética , Camundongos , Epimedium/química , Transdução de Sinais/efeitos dos fármacos , Masculino , Regeneração Óssea/efeitos dos fármacos , Humanos , Regulação da Expressão Gênica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética
6.
Front Endocrinol (Lausanne) ; 15: 1387242, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38982988

RESUMO

Background: Combination therapy was associated with an increased risk of drug- drug interactions (DDIs) in patients with type 2 diabetes mellitus (T2DM). The present study aimed to investigate the epidemiology of potential DDIs (pDDIs), including potential chemical drug-drug interactions (pCDIs) and potential herb-drug interactions (pHDIs), and classify the influencing factors of pDDIs in these patients. Methods: A retrospective study of the epidemiology of pDDIs among T2DM hospitalized patients older than 18 years and treated with at least two drugs during hospitalization was conducted over a 12-month period in 2019. PDDIs were identified with C (monitor therapy), D (consider therapy modification), and X (avoid combination) risk ratings. Binary logistic regression was used to analyze the risk factors of pDDIs. Results: A total of 6796 pDDIs were identified from 737 T2DM hospitalized patients during hospitalization, with 0.87% classified as X risk rating, 13.39% as D risk rating. Additionally, 1753 pDDIs were identified after discharge, with 0.11% as X and 25.73% as D risk rating. The drug-drug association networks showed that the majority of pCDIs were associated with cardiovascular system drugs. Chlorphenamine-potassium chloride and danshen-warfarin were the most prevalent interacting pairs of pCDIs and pHDIs with X rating during hospitalization. Multivariate analysis indicated that the likelihood of developing over 4 pDDIs was significantly higher among T2DM patients who had received over 8 medications. The presence of pDDIs after discharge was strongly associated with the complications of T2DM and the number of discharge medications. Conclusions: T2DM patients were frequently exposed to pDDIs, including pCDIs and pHDIs, both during hospitalization and after discharge. Multi-drug combination was the primary risk factor for pDDIs. Strategies such as enhancing the monitoring and warning for pDDIs, increasing clinical pharmacological experience, as well as developing universally applicable clinical guidelines for pDDIs may be beneficial in reducing the incidence of potentially harmful drug-combinations.


Assuntos
Diabetes Mellitus Tipo 2 , Interações Medicamentosas , Hospitalização , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Estudos Retrospectivos , Feminino , Masculino , Pessoa de Meia-Idade , China/epidemiologia , Hospitalização/estatística & dados numéricos , Idoso , Interações Ervas-Drogas , Fatores de Risco , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/efeitos adversos , Adulto
7.
J Ethnopharmacol ; 334: 118534, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986753

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chinese herb pairs are the most basic and compressed examples of Chinese herbal combinations and can be used to effectively explain the fundamental concepts of traditional Chinese medicine prescriptions. These pairings have gained significant interest due to their subtle therapeutic benefits, minimal side effects, and efficacy in treating complicated chronic conditions. The Banxia-Xiakucao Chinese herb pair (BXHP) consists of Pinellia ternata (Thunb.) Breit. (Banxia) and Prunella vulgaris L. (Xiakucao). This formula was documented in The Medical Classic of the Yellow Emperor approximately 2000 years ago,and clinical research has demonstrated that BXHP effectively treats insomnia. AIM OF THE STUDY: This study aimed to evaluate the efficacy and therapeutic mechanism of the BXHP through a comprehensive strategy involving network pharmacology, molecular docking, transcriptomics, and molecular biology experimental validation. MATERIALS AND METHODS: The composition of BXHP was characterized using the UPLC-Q-TOF-MS. The active compounds were screened to find drug-likeness compounds by analyzing the ADME data. To predict the molecular mechanism of BXHP in sleep deprivation (SD) by network pharmacology and molecular docking. We established a rat model of SD and the in vivo efficacy of BXHP was verified through the pentobarbital sodium righting reflex test, behavioral assays, enzyme-linked immunosorbent assay, transmission electron microscopy, HE staining, and Nissl staining, and the underlying molecular mechanism of BXHP in SD was revealed through transcriptomic and bioinformatic analyses in conjunction with quantitative real-time PCR, Western blot, and immunofluorescence staining. RESULTS: In the present study, we showed for the first time that BXHP reduced sleep latency, prolongs sleep duration, and improves anxiety; lowered serum CORT, IL6, TNF-α and MDA levels; decreased hypothalamic Glu levels; and elevated hypothalamic GABA and 5-HT levels in SD rats. We found 16 active compounds that acted on 583 targets, 145 of which are related to SD. By modularly dissecting the PPI network, we discovered three critical targets, Akt1, CREB1, and PRKACA, all of which play important roles in the effects of BXHP on SD. Molecular docking resulted in the identification of 16 active compounds that strongly bind to key targets. The results of GO and KEGG enrichment analyses of network pharmacology and transcriptomics focused on both the regulation of circadian rhythm and the cAMP signaling pathway, which strongly demonstrated that BXHP affects SD via the cAMP-PKA-CREB-Circadian rhythm pathway. Molecular biology experiments verified this hypothesis. Following BXHP administration, PKA and CREB phosphorylation levels were elevated in SD rats, the cAMP-PKA-CREB signaling pathway was activated, the expression levels of the biological clock genes CLOCK, p-BMAL1/BMAL1, and PER3 were increased, and the rhythmicity of the biological clock was improved. CONCLUSIONS: The active compounds in BXHP can activate the cAMP-PKA-CREB-Circadian rhythm pathway, improve the rhythmicity of the biological clock, promote sleep and ameliorate anxiety, which suggests that BXHP improves SD through a multicomponent, multitarget, multipathway mechanism. This study is important for the development of herbal medicines and clinical therapies for improving sleep deprivation.

8.
Ecol Evol ; 14(7): e11677, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38962021

RESUMO

The hemiparasitic tribe Cymbarieae (Orobanchaceae) plays a crucial role in elucidating the initial stage of the transition from autotrophism to heterotrophism. However, the complete chloroplast genome of the type genus Cymbaria has yet to be reported. In addition, the traditional Mongolian medicine Cymbaria daurica is frequently subjected to adulteration or substitution because of the minor morphological differences with Cymbaria mongolica. In this study, the complete chloroplast genomes of the two Cymbaria species were assembled and annotated, and those of other published 52 Orobanchaceae species were retrieved for comparative analyses. We found that the Cymbaria chloroplast genomes are characterized by pseudogenization or loss of stress-relevant genes (ndh) and a unique rbcL-matK inversion. Unlike the high variability observed in holoparasites, Cymbaria and other hemiparasites exhibit high similarity to autotrophs in genome size, guanine-cytosine (GC) content, and intact genes. Notably, four pairs of specific DNA barcodes were developed and validated to distinguish the medicinal herb from its adulterants. Phylogenetic analyses revealed that the genus Cymbaria and the Schwalbea-Siphonostegia clade are grouped into the tribe Cymbarieae, which forms a sister clade to the remaining Orobanchaceae parasitic lineages. Moreover, the diversification of monophyletic Cymbaria occurred during the late Miocene (6.72 Mya) in the Mongol-Chinese steppe region. Our findings provide valuable genetic resources for studying the phylogeny of Orobanchaceae and plant parasitism, and genetic tools to validate the authenticity of the traditional Mongolian medicine "Xinba.".

9.
Plants (Basel) ; 13(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39065491

RESUMO

The medicinal plant Abrus precatorius L. was traditionally used in the Siddha and Ayurvedic systems of medicine in India. The Indian center of origin holds a vast variability in its seed color. The objective of this study was to assess the total monomeric anthocyanin, flavonol, as well as the antioxidative potential, protein content and ash content among the accessions. A total of 99 accessions conserved in the Indian National Genebank were used in this study. The methods used for the estimation of total monomeric anthocyanin, flavonol, as well as the antioxidative potential, protein content and ash content were the pH differential method, Oomah method, Ferric Reducing Antioxidant Potential, Dumas method and gravimetric method, respectively. The completely black colored accession was recorded with highest total monomeric anthocyanin (51.95 mg/100 g of cyanidin 3-glucoside equivalent) and flavonol content (66.41 mg/g of quercetin equivalent). Red + black colored accessions have recorded the maximum value with respect to antioxidants (14.18 mg/g of gallic acid equivalent). The highest amount of protein content was found in a completely white colored accession (20.67%) and the maximum ash content was recorded in red + black colored accession (4.01%). The promising accessions identified can be used by pharmaceutical companies in drug development and in curing degenerative diseases.

10.
Front Pharmacol ; 15: 1399460, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983920

RESUMO

Herb compatibility is the soul of traditional Chinese Medicine prescriptions. Coptidis rhizoma (CR) (Coptis chinensis Franch., Coptis deltoidea C.Y.Cheng et Hsiao, or Coptis teeta Wall.; family Ranunculaceae), is a well-known herb. The bitter and cold nature of CR can irritate the spleen and stomach, and certain ingredients in CR may trigger allergic reactions. Herb combinations can help alleviate the side effects caused by CR. Through data analysis and literature research, there are many herbs combined with CR have a high frequency, but only a few are currently used as formulae in clinical practice. The results showed that these six herb pairs are usually widely studied or used as prescriptions in the clinic. This paper describes the six herb pairs from the key traditional uses, changes in bioactive constituents, and compatibility effects, especially with Euodiae fructus (family Rutaceae), Scutellariae radix (family Lamiaceae), Magnoliae Officinalis cortex (family Magnoliaceae), Glycyrrhizae radix et rhizoma (family Fabaceae), Ginseng radix et rhizoma (family Araliaceae), and Aucklandiae radix (family Asteraceae), and found that herbs are more effective when used in combination. Therefore, it is feasible to establish some methods to study herb pairs comprehensively from different perspectives. This paper aims to provide the latest and most comprehensive information on the six herb pairs and summarize the pattern of CR compatibility effects. It aims to attract more attention, and further experimental studies will be conducted to investigate and evaluate the effects of herb pairs containing CR. These data can also provide valuable references for researchers and also provide more possibilities for future applications in clinical practice and new drug development.

11.
Front Oncol ; 14: 1412370, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957318

RESUMO

Malignant tumors are complex systemic chronic diseases and one of the major causes of human mortality. Targeted therapy, chemotherapy, immunotherapy, and radiotherapy are examples of mainstream allopathic medicine treatments that effective for intermediate and advanced malignant tumors. The ongoing use of conventional allopathic medicine has resulted in adverse responses and drug resistance, which have hampered its efficacy. As an important component of complementary and alternative medicine, Chinese medicine has been found to have antitumor effects and has played an important role in enhancing the therapeutic sensitivity of mainstream allopathic medicine, reducing the incidence of adverse events and improving immune-related functions. The combined application of adjuvant Chinese medicine and mainstream allopathic medicine has begun to gain acceptance and is gradually used in the field of antitumor therapy. Traditional natural medicines and their active ingredients, as well as Chinese patent medicines, have been proven to have excellent therapeutic efficacy and good safety in the treatment of various malignant tumors. This paper focuses on the mechanism of action and research progress of combining the above drugs with mainstream allopathic medicine to increase therapeutic sensitivity, alleviate drug resistance, reduce adverse reactions, and improve the body's immune function. To encourage the clinical development and use of Chinese herb adjuvant therapy as well as to provide ideas and information for creating safer and more effective anticancer medication combinations, the significant functions of Chinese herb therapies as adjuvant therapies for cancer treatment are described in detail.

12.
Artigo em Inglês | MEDLINE | ID: mdl-38978357

RESUMO

AIM: Yokukansan is one of the most frequently used herbal medicines that can improve the behavioral and psychological symptoms of dementia. In this exploratory study, we investigated whether yokukansan affects the steady-state blood concentrations of donepezil, risperidone, and the major metabolites of both drugs in a real-world clinical setting. METHODS: A non-randomized, open-label, single-arm study examining drug-drug interactions was conducted. Fifteen dementia patients taking donepezil for at least 4 weeks and eight schizophrenia patients taking risperidone for at least 2 weeks were orally administered 2.5 g of yokukansan three times a day before or between meals, and blood samples were collected before and 8 weeks after starting co-treatment with yokukansan. Plasma concentrations of donepezil, risperidone, and each metabolite were measured using high-performance liquid chromatography-tandem mass spectrometry and compared before and after the 8-week administration of yokukansan. RESULTS: The plasma concentrations of donepezil and its metabolites (6-O-desmethyl-donepezil, 5-O-desmethyl-donepezil, and donepezil-N-oxide), risperidone, and its metabolite paliperidone did not differ before and after the 8-week treatment with yokukansan. CONCLUSIONS: The findings of this study show that the concomitant use of yokukansan may have little clinical impact on the steady-state blood levels of donepezil and risperidone in patients with dementia or schizophrenia.

13.
Chempluschem ; : e202400177, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951113

RESUMO

The adsorption characteristics of novel activated biocarbons prepared from horsetail herb by physical activation (using carbon dioxide) and chemical one (using phosphoric(V) acid) in the process of simultaneous proteins immobilization in multicomponent solutions were examined. The carbon materials were characterized in terms of their porous structure, acidic-basic properties, and surface morphology. The binding mechanisms of such proteins as bovine serum albumin (BSA) and lysozyme (LSZ), differing in internal stability, were determined alone and in their blends. This was done based on the comprehensive analysis of the results of adsorption/desorption, surface, electrokinetic and stability measurements. These experiments were carried out over a wide pH range of 3-11. They included the following issues: (1) determination of the protein adsorbed/desorbed amounts on/from a surface of activated biocarbons; (2) study of the kinetics of these processes; (3) examination of the macromolecules impact on the surface charge density and zeta potential of the carbon materials; and (4) determination of the suspension stability and size of aggregates formed in the examined systems. The analysis of the obtained results indicated the differences in the binding mechanism of both proteins that is of key importance for their simultaneous immobilization on activated biocarbons surface in the soil environment.

14.
J Ethnopharmacol ; 335: 118608, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053709

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Herb-herb combination has been used to maximize the therapeutic efficacy in the theory of traditional Chinese medicine. Chuanxiong rhizoma (called Chuanxiong in Chinese, CX) and Cyperi rhizoma (called Xiangfu in Chinese, XF) have been used alone or in combination (CRCR) to treat migraine dating back to Eastern Jin Dynasty (AD317) of China. But no data demonstrate the possible necessities or advantages of combining CX and XF for migraine. AIM OF THE STUDY: This study explores the combination mechanism based on pharmacodynamics and pharmacokinetics. MATERIALS AND METHODS: A nitroglycerin-induced acute migraine model in rats was used to evaluate the anti-migraine effects of CRCR and the individual herbs using behavior, real time polymerase chain reaction and Western blot experiments. The absorption characteristics of active components involved in the anti-migraine action were analyzed by UPLC-MS/MS. RESULTS: CX and CRCR significantly reversed the abnormal levels of vasoactive substances (5-HT, CGRP, MMP-2 and MMP-9) to normal levels, but XF did not. XF and CRCR significantly decreased the pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-a), and increased the anti-inflammatory cytokines (IL-4 and IL-10). CRCR significantly decreased the mRNA expression levels of c-fos, iNos and nNos, and the corresponding protein expression levels of c-Fos, iNOS, and nNOS. CRCR inhibited NOS/NO pathway by downregulating the expression levels of NOS and NO. Furthermore, CRCR significantly increased the intestinal absorption rate and amount, and changed the pharmacokinetic parameters of active components in comparison with the individual herbs. CONCLUSIONS: CX had an advantage in regulating vasoactive substances, and XF focused on regulating inflammatory cytokines. CRCR is more effective in treating migraine than the individual herbs by depending on the synergistic action of CX and XF. This research provided some critical evidences on synergistic action between herb-herb interactions, and revealed the potential advantages of herb-herb combination in traditional Chinese medicine.

15.
Toxicology ; 507: 153900, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39079402

RESUMO

Drug-Induced Liver Injury (DILI) and herb Induced Liver Injury (HILI) continues to pose a substantial challenge in both clinical practice and drug development, representing a grave threat to patient well-being. This comprehensive review introduces a novel perspective on DILI and HILI by thoroughly exploring the intricate microenvironment of the liver. The dynamic interplay among hepatocytes, sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, cholangiocytes, and the intricate vascular network assumes a central role in drug metabolism and detoxification. Significantly, this microenvironment is emerging as a critical determinant of susceptibility to DILI and HILI. The review delves into the multifaceted interactions within the liver microenvironment, providing valuable insights into the complex mechanisms that underlie DILI and HILI. Furthermore, we discuss potential strategies for mitigating drug-induced liver injury by targeting these influential factors, emphasizing their clinical relevance. By highlighting recent advances and future prospects, our aim is to shed light on the promising avenue of leveraging the liver microenvironment for the prevention and mitigation of DILI and HILI. This deeper understanding is crucial for advancing clinical practices and ensuring patient safety in the realm of DILI and HILI.

16.
Front Pharmacol ; 15: 1410470, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39035985

RESUMO

Respiratory syncytial virus (RSV) is a major cause of respiratory tract infection in children. Despite decades of efforts, no effective therapies are available. We recently reported that extracts of Ephedra Herb and Cinnamon Bark interacted with the G attachment protein of RSV to inhibit infectivity. The present in vitro study aimed to investigate the antiviral effect of ephedrine alkaloids-free Ephedra Herb extract (EFE), which is characterized by free of harmful effects of ephedrine alkaloids in Ephedra Herb, on experimental RSV infection. Infection of RSV into A549 cells simultaneously with EFE resulted the significant reduction of RSV RNA, viral protein, and viral titers after the incubation of the cells. We found that RSV attachment to the cell surface was inhibited both in the presence of EFE and when RSV particles were pre-treated with EFE. We also found that EFE specifically interacted with the central conserved domain of RSV G protein by surface plasmon resonance, demonstrating that specific binding of G protein to the cellular receptor was inhibited by EFE. Another mechanism was found in which a higher concentration of EFE inhibited the viral load immediately after the viral entry into host cells, suggesting the inhibition of viral RNA replication. These results demonstrate that EFE worked against RSV infection through multiple antiviral mechanisms, a unique feature of this crude drug extract.

17.
Metab Brain Dis ; 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39002017

RESUMO

Ischemic stroke is the most important cause of disability and death worldwide, but current treatments remain limited. Traditional Chinese medicine (TCM) including the herb pair of Zhiqiao-Danggui (ZD) offers a multifaceted treatment approach through promoting blood circulation, yet its specific anti-ischemic mechanism remains unclear. This study used the photochemically induced thrombosis (PIT) mouse model and the oxygen glucose deprivation/reoxygenation (OGD/R) cell model to explore the therapeutic effect of ZD on ischemic stroke. Mice were treated with high and low doses of ZD extract or positive control. Behavior was assessed using the grid test. The brain tissue was then subjected to infarct volume assessment, histopathology, oxidative stress marker detection, LC/MS metabolomic analysis and qRT-PCR validation. The therapeutic effect of ZD-medicated serum on OGD/R model was tested on cells. Experimental results show that ZD can improve motor function, reduce infarct size, neuronal damage and apoptosis as well as alleviate oxidative stress in mice. ZD-medicated serum promotes endothelial cell proliferation, improves cell survival against OGD/R-induced injury, reduces oxidative damage and protects mitochondrial function. Metabolomics reveals ZD regulation of metabolites in energy metabolism, amino acid metabolism, TCA cycle, and angiogenesis signaling pathways. qRT-PCR results also showed that ZD could attenuate abnormal conduction of angiogenic signals and enhance vessel stability. This study confirmed the neuroprotective and vasoprotective effects of ZD, highlighted its potential in treating ischemic stroke, and provided a scientific basis for the traditional use of ZD.

18.
Carbohydr Polym ; 342: 122404, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39048239

RESUMO

A new ultra-hydrophilic elastic sponge composite has been proposed. Medicinal herbs, commonly used in herbal medicine and subsequently discarded, are rich in natural polymer substances, making them promising candidates for various material industries. TEMPO-oxidized cellulose was extracted from medicinal herb residue, and the physicochemical properties of an ultra-hydrophilic elastic sponge, prepared through a PVA and CA impregnate cross-linking process, were investigated. The fabricated composite sponge exhibited an increase in compressive stress-strain proportional to the PVA cross-linking concentration, and its water retention capability was assessed through retention tests. Swelling tests for various solvents were conducted to evaluate the potential use of the sponge in diverse industries, revealing the highest swelling ratio in water. Pressure distribution measurements using prescale film indicated that the sponge's shock absorption capacity was enhanced by PVA cross-linking, leading to improved pressure dispersion.


Assuntos
Celulose , Interações Hidrofóbicas e Hidrofílicas , Plantas Medicinais , Álcool de Polivinil , Álcool de Polivinil/química , Celulose/química , Plantas Medicinais/química , Reagentes de Ligações Cruzadas/química , Elasticidade , Água/química , Óxidos N-Cíclicos/química , Celulose Oxidada/química
19.
J Ethnopharmacol ; 335: 118641, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39084273

RESUMO

As one of the most serious microvascular complications of diabetes mellitus (DM), diabetic retinopathy (DR) can cause visual impairment and even blindness. With the rapid increase in the prevalence of DM, the incidence of DR is also rising year by year. Preventing and effectively treating DR has become a major focus in the medical field. Traditional Chinese medicine (TCM) has a wealth of experience in treating DR and has achieved significant results with various herbs and TCM prescriptions. Traditional Chinese Medicine (TCM) provides a comprehensive therapeutic strategy for diabetic retinopathy (DR), encompassing anti-inflammatory and antioxidant actions, anti-neovascularization, neuroprotection, regulation of glucose metabolism, and inhibition of apoptosis. This review provides an overview of the current status of TCM treatment for DR in recent years, including experimental studies and clinical researches, to explore the clinical efficacy and the underlying modern mechanisms of herbs and TCM prescriptions. Besides, we also discussed the challenges TCM faces in treating DR, such as drug-drug interactions among TCM components and the lack of high-quality evidence-based medicine practice, which pose significant obstacles to TCM's application in DR.

20.
Drug Des Devel Ther ; 18: 2169-2187, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882048

RESUMO

Purpose: Traditional Chinese medicine (TCM) therapy is an important means to treat hepatocellular carcinoma (HCC), Astragalus (Latin name: Hedysarum Multijugum Maxim; Chinese name: Huangqi, HQ) and Atractylodes (Latin name: Atractylodes Macrocephala Koidz; Chinese name: Baizhu, BZ) (HQBZ), a classic herb pair, is often used in combination to HCC. However, the main components and potential mechanisms of HQBZ therapy in HCC remain unclear. This study aimed to identify the potential active ingredients and molecular mechanisms of action of HQBZ in HCC treatment. Methods: The HQBZ-Compound-Target-HCC network and HQBZ-HCC transcriptional regulatory network were constructed to screen the core active compound components and targets of HQBZ therapy for HCC. Molecular docking techniques are used to verify the stability of binding core active compound components to targets. GO and KEGG enrichment analysis were used to explore the signaling pathway of HQBZ in HCC treatment, the mechanism of HQBZ treatment of HCC was verified based on in vivo H22 tumor bearing mice and in vitro cell experiments. Results: Network pharmacology and molecular docking studies showed that HQBZ treatment of HCC was related to the targeted regulation of IL-6 and STAT3 by the active compound biatractylolide, KEGG pathway enrichment analysis suggest that HQBZ may play a role in the treatment of HCC through IL-6/STAT3 signaling pathway. In vitro experiment results proved that HQBZ could regulate IL-6/STAT3 signaling pathway transduction on CD8+T cells, inhibit CD8+T cell exhaustion and restore the function of exhausted CD8+T cells. In vivo experiment results proved that HQBZ can regulate IL-6/STAT3 signaling pathway transduction in H22 liver cancer model mouse tumor tissue, increased the proportion of tumor infiltrating CD8+T cells. Conclusion: This study found that HQBZ may play a therapeutic role in HCC by targeting IL-6 and STAT3 through biatractylolide, its mechanism of action is related to regulating IL-6/STAT3 signaling pathway, reversing T cell failure and increasing tumor infiltration CD8+T cells.


Assuntos
Antineoplásicos Fitogênicos , Atractylodes , Carcinoma Hepatocelular , Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Farmacologia em Rede , Fator de Transcrição STAT3 , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/química , Camundongos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Atractylodes/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Simulação de Acoplamento Molecular , Astrágalo/química , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/patologia , Neoplasias Hepáticas Experimentais/metabolismo , Interleucina-6/metabolismo , Interleucina-6/antagonistas & inibidores , Medicina Tradicional Chinesa , Ensaios de Seleção de Medicamentos Antitumorais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA