Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.216
Filtrar
1.
Front Nutr ; 11: 1367589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38706565

RESUMO

Introduction: Taurine has a prominent lipid-lowering effect on hyperlipidemia. However, a comprehensive analysis of the effects of taurine on endogenous metabolites in hyperlipidemia has not been documented. This study aimed to explore the impact of taurine on multiple metabolites associated with hyperlipidemia. Methods: The hyperlipidemic mouse model was induced by high-fat diet (HFD). Taurine was administered via oral gavage at doses of 700 mg/kg/day for 14 weeks. Evaluation of body weight, serum lipid levels, and histopathology of the liver and adipose tissue was performed to confirm the lipid-lowering effect of taurine. Ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS)-based metabonomics analyses of serum, urine, feces, and liver, coupled with multivariate data analysis, were conducted to assess changes in the endogenous metabolites. Results and discussion: Biochemical and histological examinations demonstrated that taurine administration prevented weight gain and dyslipidemia, and alleviated lipid deposition in the liver and adipose tissue in hyperlipidemic mice. A total of 76 differential metabolites were identified by UPLC-MS-based metabolomics approach, mainly involving BAs, GPs, SMs, DGs, TGs, PUFAs and amino acids. Taurine was found to partially prevent HFDinduced abnormalities in the aforementioned metabolites. Using KEGG database and MetaboAnalyst software, it was determined that taurine effectively alleviates metabolic abnormalities caused by HFD, including fatty acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, diacylglycerol metabolism, amino acid metabolism, bile acid and taurine metabolism, taurine and hypotaurine metabolism. Moreover, DGs, GPs and SMs, and taurine itself may serve as active metabolites in facilitating various anti-hyperlipidemia signal pathways associated with taurine. This study provides new evidence for taurine to prevent hyperlipidemia.

2.
J Sep Sci ; 47(9-10): e2300898, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38726747

RESUMO

Based on the specific binding of drug molecules to cell membrane receptors, a screening and separation method for active compounds of natural products was established by combining phospholipase C (PLC) sensitized hollow fiber microscreening by a solvent seal with high-performance liquid chromatography technology. In the process, the factors affecting the screening were optimized. Under the optimal screening conditions, we screened honokiol (HK), magnolol (MG), negative control drug carbamazepine, and positive control drug amentoflavone, the repeatability of the method was tested. The PLC activity was determined before and after the screening. Experimental results showed that the sensitization factors of PLC of HK and MG were 61.0 and 48.5, respectively, and amentoflavone was 15.0, carbamazepine could not bind to PLC. Moreover, the molecular docking results were consistent with this measurement, indicating that HK and MG could be combined with PLC, and they were potential interacting components with PLC. This method used organic solvent to seal the PLC greatly ensuring the activity, so this method had the advantage of integrating separation, and purification with screening, it not only exhibited good reproducibility and high sensitivity but was also suitable for screening the active components in natural products by various targets in vitro.


Assuntos
Produtos Biológicos , Fosfolipases Tipo C , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/isolamento & purificação , Fosfolipases Tipo C/metabolismo , Fosfolipases Tipo C/química , Fosfolipases Tipo C/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão , Simulação de Acoplamento Molecular , Lignanas/química , Lignanas/isolamento & purificação , Lignanas/farmacologia , Compostos de Bifenilo/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/isolamento & purificação , Humanos , Compostos Alílicos , Fenóis
3.
Artigo em Inglês | MEDLINE | ID: mdl-38714089

RESUMO

The lack of individual pure standard has hampered the application of therapeutic drug monitoring (TDM) for multi-component antibiotics in clinical laboratories. Here, we aimed to develop an integrated identification-quantification (ID-Quant) workflow based on ultra-high-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UHPLC-QTOF-MS) to enable the comprehensive determination of all teicoplanin components without needing pure standards. The workflow comprises three steps. First, non-targeted MSE full scanning was used to detect and identify all potential ingredients. Then, characteristic product ions were selected to generate a quantitative time-of-flight multiple reaction monitoring (Tof-MRM) method. Finally, the constituent composition of teicoplanin injection was determined and utilized as an alternative reference standard to monitor the teicoplanin ingredients in human serum samples. As a result, nine teicoplanin analogs were identified from teicoplanin injection (Sanofi-Aventis, France). The overall performance of the Tof-MRM method was satisfactory in terms of linearity, precision, accuracy, and limits of detection. Utilizing the drug as standard, the individual concentrations for each component in patient serum were determined to be 0.120 µg/mL (A3-1), 0.020 µg/mL (N-1), 0.550 µg/mL (N-2), 0.730 µg/mL (A2-1), 4.26 µg/mL (A2-2,3), 4.79 µg/mL (A2-4,5), and 0.290 µg/mL (N-3), respectively. The distribution pattern of teicoplanin components was also discovered to differ from that in the drug injection. Overall, this integrated ID-Quant workflow based on UHPLC-QTOF-MS enables the robust quantitation of all teicoplanin analogs without the need for individual pure standard. This approach could help address the standard unavailability problem in the TDM of multi-component antibiotics.

4.
Anal Chim Acta ; 1307: 342620, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719413

RESUMO

BACKGROUND: Pharmacokinetic studies are pivotal in drug development, focusing on absorption, distribution, and excretion of active compounds. Effective sample preparation methods play a crucial role in these studies. Traditional techniques like protein precipitation and liquid-liquid extraction often involve toxic solvents and are time-consuming. Recently, deep eutectic solvent (DES) has emerged as an eco-friendly alternative due to its high efficiency, low cost, and low toxicity. This study introduces a novel sample pretreatment method using CO2-switchable DES in liquid-liquid microextraction (LLME) to enhance speed, accuracy, and sensitivity in complex biological samples analysis. RESULTS: A liquid-liquid microextraction sample pretreatment method based on switchable DES combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established for the analysis of urine and tissue samples. The method was optimized through systematic investigation of key parameters, including DES type, volume, molar ratio, pH, vortex time, gas purge time, and salt addition. The resulting procedure exhibited satisfying linearity (r2 ≥ 0.9958), good precision (RSD ≤6.01 %), desirable recovery (52.44%-98.12 %) and matrix effect (86.22%-119.30 %), and the accuracy and precision of stability were within the ±15 % limit. The proven methods were further applied to urinary excretion study and tissue distribution study of Nelumbinis plumula (NP) extract. The results indicated that the total cumulative excretion of liensinine, isoliensinine and neferine in urine within 240 h was 4.96 %, 0.66 % and 0.44 %, respectively. The tissue distribution study showed that alkaloids mainly distribute in liver, kidney, and spleen. SIGNIFICANCE: This research introduces a groundbreaking technique distinguished by its simplicity, speed, cost-effectiveness, and environmental friendliness. This approach, utilizing CO2-switchable DES as an extraction solvent for LLME, integrates deproteinization and removal of interfering molecules into a single step. This integration showcases its efficiency and convenience, demonstrating significant promise for various applications in the analysis of biological samples. Additionally, this study provides the first report on urinary excretion and tissue distribution of alkaloids from NP using a DES-LLME method. These findings offer valuable insights into the in vivo behavior of herbal medicine, enhancing understanding of pharmacological actions and facilitating clinical rational administration.


Assuntos
Dióxido de Carbono , Solventes Eutéticos Profundos , Microextração em Fase Líquida , Espectrometria de Massas em Tandem , Microextração em Fase Líquida/métodos , Dióxido de Carbono/química , Solventes Eutéticos Profundos/química , Animais , Distribuição Tecidual , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Masculino , Ratos , Ratos Sprague-Dawley
5.
Food Chem ; 454: 139796, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38797102

RESUMO

This study aimed to present a selective and effective method for analyzing quinolones (QNs) in food matrix. Herein, a NiFe2O4-based magnetic sodium disulfonate covalent organic framework (NiFe2O4/COF) was prepared using a simple solvent-free grinding method, and was adopted as a selective adsorbent for magnetic solid phase extraction of QNs. Coupled with UHPLC-Q-Orbitrap HRMS, an efficient method for simultaneous detection of 18 kinds of QNs was established. The method exhibited good linearity (0.01-100 ng g-1), high sensitivity (LODs ranging from 0.0011 to 0.0652 ng g-1) and precision (RSDs below 9.5%). Successful extraction of QNs from liver and kidney samples was achieved with satisfactory recoveries ranging from 82.2% to 108.4%. The abundant sulfonate functional groups on NiFe2O4/COF facilitated strong affinity to QNs through electrostatic and hydrogen bonding interactions. The proposed method provides a new idea for the extraction of contaminants with target selectivity.

6.
Int J Lab Hematol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38808488

RESUMO

INTRODUCTION: Hemolytic interference may impact various laboratory tests, including coagulation analyses. Apixaban is the most commonly used direct oral anticoagulant in Norway, and there is lacking knowledge on how apixaban concentration measurements might be influenced by hemolysis. Moreover, hemolysis-induced alterations in apixaban levels could potentially impact the risk of bleeding in specific clinical scenarios. We wanted to study whether hemolysis would increase apixaban concentration and investigate the impact of hemolytic interference on apixaban concentration measurements. METHODS: Blood samples from 20 apixaban-treated patients and 8 healthy controls were hemolyzed in vitro by a freeze method. The degree of hemolysis was measured with plasma free hemoglobin (PfHb) at baseline and two levels of hemolysis. Apixaban concentration was measured in plasma using both the chromogenic anti-Xa method and the ultraperformance liquid chromatography mass spectrometry (UPLC-MS). Thrombin generation assay was performed to assess coagulability. RESULTS: UPLC-MS measurements showed a mean concentration change of -1.66% (±3.2%, p = 0.005) and anti-Xa assay showed a mean concentration change of 3.37% (±6.5%, p = 0.09) with increasing hemolysis. Thrombin generation lagtime decreased, and endogenous thrombin potential and peak thrombin increased with increasing hemolysis in both the control group and the apixaban group. CONCLUSION: Apixaban concentration measurements by anti-Xa assay and UPLC-MS were not affected by hemolysis to a clinically relevant extent. Furthermore, hemolysis did not lead to hypocoagulability when assessed by thrombin generation.

7.
Anal Sci ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809340

RESUMO

Metal-organic frameworks (MOFs) are widely used for gas adsorption, separation, and sensing materials. In most cases, MOFs are not used in their crystal form but as impregnated materials because the fine crystals result in high-pressure drops. One key characteristic of MOF-impregnated materials is the amount of MOF in the material. This is evaluated using the wet digestion method; however, it is limited to determining only the metal content. Moreover, some metal, denoted as free metal, will not react with ligands to form MOFs. Additionally, it is crucial to determine the ligand amount, which cannot be determined using wet digestion. In the present study, a two-step extraction method for copper (II) benzene-1,3,5-tricarboxylate (Cu-BTC MOF) impregnated materials was developed to determine the MOF formed and free metals and ligands. Various solvents were applied to evaluate the extraction efficiencies. The results led to the selection of ethanol (EtOH) for extracting free Cu2+ and BTC, while 0.3 M HNO3 was chosen to extract MOF-formed Cu2+ and BTC. The MOF-impregnated sample material was first extracted using EtOH and then 0.3 M HNO3. The Cu2+ and BTC in the obtained extract solutions, as well as EtOH and HNO3, were analyzed using flame atomic absorption spectroscopy and high-performance liquid chromatography, respectively. In standard addition tests, free and MOF-formed Cu2+ and BTC were quantitatively extracted from MOF-impregnated materials. The developed two-step analysis method was successfully applied to Cu-BTC-impregnated materials used in gas sensing.

8.
Food Chem X ; 22: 101447, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38779497

RESUMO

Dark tea refers to a kind of post-fermented product, and its quality and price vary owing to the distinct altitudes at which it grows. In this study, a novel method based on high performance liquid chromatography with a diode-array detector (HPLC-DAD) and an evaporative light scattering detector (HPLC-ELSD) was proposed for the classification of dark teas from distinct altitudes in China. Through implementing a strategy fusing feature-level data to construct a combined dataset, the classification performance of dark teas from distinct altitudes in China was evaluated after preprocessing. The results suggested that, through the feature fusion strategy, the identification accuracy rate increased from <70% of a single detector to 76.923%. After the implementation of preprocessing, the identification accuracy rate was further improved. Typically, the model identification accuracy rate after short-time Fourier Transform (STFT) treatment reached 92.85%, and the AUROC value was higher than 0.84, exhibiting a favorable generalization ability. This study provides a new thinking for the identification technology of dark teas from different altitudes in China.

9.
J Pharm Biomed Anal ; 246: 116223, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38763108

RESUMO

The utilization of Hydroquinone (HQ) in over-the-counter skincare items is subject to restrictions. Consequently, Arbutin (AR) serves as a reliable alternative for addressing hyperpigmentation in non-prescription topical formulations. Nevertheless, AR undergoes decomposition into HQ and p-Benzoquinone (BZ) when exposed to temperature stress, ultraviolet light, or dilution in an acidic environment, all of which can induce skin toxicity. The intention of this paper is to investigate the effect of extraction procedure on the conversion of AR to HQ and or BZ and to evaluate kinetics of AR hydrolysis to HQ. Meanwhile this study aims to evaluate AR and BZ interference with the United States Pharmacopoeia (USP) identification and assessment method for HQ Hydrolytic stress during extraction conditions underwent optimization through systematic screening tests. Subsequent assessment of the residual drug and its degradation products were achieved by HPLC method. The resulting data were meticulously fitted to various kinetic models. To analyze the potential interference of AR in HQ measurement using USP method, the standard concentrations of AR and HQ were analyzed through UV-VIS spectrophotometry. For enhanced certainty, a validated HPLC method analysis was also conducted. Notably, the acid hydrolysis of AR exhibited independence from its initial concentration. So, the hydrolytic degradation of AR exhibited a Zero-order kinetic profile. Furthermore, the proven interference of AR in the UV-VIS spectrophotometry method was identified within the context of the USP method. This study successfully utilized an adopted HPLC method for the concurrent quantification of AR, HQ, and BZ. The potential interference of AR in the UV-VIS spectrophotometric assay for HQ may lead to false results especially for regulatory purposes.

10.
Artigo em Inglês | MEDLINE | ID: mdl-38691943

RESUMO

The strategy of aqueous two-phase flotation (ATPF) followed by preparative high performance liquid chromatography (prep-HPLC) was established and used for the separation of astragalin from Flaveria bidentis. In the ATPF, the effects of sublation solvent, solution pH, (NH4)2SO4 concentration in aqueous solution, cosolvent, N2 flow rate, flotation time and volumes of the PEG phase on the recovery of astragalin were investigated in detail, and the optimal conditions of ATPF were selected: 50 wt% PEG1000 ethanol solvent as the flotation solvent, pH 4, 350 g/L of (NH4)2SO4 concentration in 5 % ethanol aqueous phase, 40 mL/min of N2 flow rate, 30 min of flotation time, 10.0 mL of flotation solvent volume and twice. After ATPF enrichment, the flotation product was further purified by prep-HPLC. As determined by HPLC, the purity of astragalin was 98.8 %.

11.
Front Mol Neurosci ; 17: 1394886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745725

RESUMO

Aims: White matter damage (WMD) is linked to both cerebral palsy and cognitive deficits in infants born prematurely. The focus of this study was to examine how caffeine influences the acetylation of proteins within the neonatal white matter and to evaluate its effectiveness in treating white matter damage caused by hypoxia-ischemia. Main methods: We employed a method combining affinity enrichment with advanced liquid chromatography and mass spectrometry to profile acetylation in proteins from the white matter of neonatal rats grouped into control (Sham), hypoxic-ischemic (HI), and caffeine-treated (Caffeine) groups. Key findings: Our findings included 1,999 sites of lysine acetylation across 1,123 proteins, with quantifiable changes noted in 1,342 sites within 689 proteins. Analysis of these patterns identified recurring sequences adjacent to the acetylation sites, notably YKacN, FkacN, and G * * * GkacS. Investigation into the biological roles of these proteins through Gene Ontology analysis indicated their involvement in a variety of cellular processes, predominantly within mitochondrial locations. Further analysis indicated that the acetylation of tau (Mapt), a protein associated with microtubules, was elevated in the HI condition; however, caffeine treatment appeared to mitigate this over-modification, thus potentially aiding in reducing oxidative stress, inflammation in the nervous system, and improving mitochondrial health. Caffeine inhibited acetylated Mapt through sirtuin 2 (SITR2), promoted Mapt nuclear translocation, and improved mitochondrial dysfunction, which was subsequently weakened by the SIRT2 inhibitor, AK-7. Significance: Caffeine-induced changes in lysine acetylation may play a key role in improving mitochondrial dysfunction and inhibiting oxidative stress and neuroinflammation.

13.
J Chromatogr A ; 1725: 464944, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38703459

RESUMO

Investigating pesticide exposure and oxidative stress in preschool children is essential for elucidating the determinants of environmental health in early life, with human biomonitoring of urinary pesticide metabolites serving as a critical strategy for achieving this objective. This study demonstrated biomonitoring of 2 phenoxyacetic acid herbicides, 2 organophosphorus pesticide metabolites, and 4 pyrethroid pesticide metabolites in 159 preschool children and evaluated their association with oxidative stress biomarker 8-hydroxydeoxyguanosine. An enzymatic deconjugation process was used to release urinary pesticide metabolites, which were then extracted and enriched by supported liquid extraction, and quantified by ultra-high performance liquid chromatography-tandem mass spectrometry with internal standard calibration. Dichloromethane: methyl tert­butyl ether (1:1, v/v) was optimized as the solvent for supported liquid extraction, and we validated the method for linear range, recovery, matrix effect and method detection limit. Method detection limit of the pesticide metabolites ranged from 0.01 µg/L to 0.04 µg/L, with satisfactory recoveries ranging from 70.5 % to 95.5 %. 2,4,5-Trichlorophenoxyacetic acid was not detected, whereas the other seven pesticide metabolites were detected with frequencies ranging from 10.1 % to 100 %. The concentration of urinary pesticide metabolites did not significantly differ between boys and girls, with the median concentrations being 9.39 µg/L for boys and 4.90 µg/L for girls, respectively. Spearman correlation analysis indicated that significant positive correlations among urinary metabolites. Bayesian kernel machine regression revealed a significant positive association between urinary pesticide metabolites and 8-hydroxydeoxyguanosine. Para-nitrophenol was the pesticide metabolite that contributed significantly to the elevated level of oxidative stress.


Assuntos
8-Hidroxi-2'-Desoxiguanosina , Monitoramento Biológico , Estresse Oxidativo , Praguicidas , Espectrometria de Massas em Tandem , Humanos , Pré-Escolar , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Feminino , Masculino , Monitoramento Biológico/métodos , Praguicidas/urina , Praguicidas/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/urina , Limite de Detecção , Biomarcadores/urina , Extração Líquido-Líquido/métodos , Criança
14.
Plants (Basel) ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732467

RESUMO

The genus Angelica comprises various species utilized for diverse medicinal purposes, with differences attributed to the varying levels or types of inherent chemical components in each species. This study employed DNA barcode analysis and HPLC analysis to genetically authenticate and chemically classify eight medicinal Angelica species (n = 106) as well as two non-medicinal species (n = 14) that have been misused. Nucleotide sequence analysis of the nuclear internal transcribed spacer (ITS) region revealed differences ranging from 11 to 117 bp, while psbA-trnH showed variances of 3 to 95 bp, respectively. Phylogenetic analysis grouped all samples except Angelica sinensis into the same cluster, with some counterfeits forming separate clusters. Verification using the NCBI database confirmed the feasibility of species identification. For chemical identification, a robust quantitative HPLC analysis method was developed for 46 marker compounds. Subsequently, two A. reflexa-specific and seven A. biserrata-specific marker compounds were identified, alongside non-specific markers. Moreover, chemometric clustering analysis reflecting differences in chemical content between species revealed that most samples formed distinct clusters according to the plant species. However, some samples formed mixed clusters containing different species. These findings offer crucial insights for the standardization and quality control of medicinal Angelica species.

15.
Se Pu ; 42(5): 432-444, 2024 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-38736386

RESUMO

Amphotericin B (AmB) is a polyene-macrolide antimicrobial drug with a broad antibacterial spectrum and remarkable efficacy against deep fungal infections. It binds to ergosterol on the fungal cell membrane and alters its permeability, thereby destroying the membrane. AmB is a multicomponent antimicrobial medication that contains a wide range of impurities, rendering quality analysis extremely difficult. In the current Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3), high performance liquid chromatography (HPLC) is applied to examine related substances in AmB. However, this technique presents a number of issues. For instance, the mobile phases used in the HPLC method described in both references contain nonvolatile inorganic salts, which cannot be coupled with a mass spectrometry (MS) detector. In addition, because the mobile phases used have a low pH, the component/impurities of AmB drug can easily be degraded or interconverted during the analytical process, leading to reduced analytical accuracy. Therefore, the accuracy and sensitivity of this method must be improved. In this study, a method based on on-line two-dimensional high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (2D HPLC-Q TOF/MS) was developed to analyze the impurity profile of AmB in accordance with the Chinese Pharmacopoeia (Edition 2020) and European Pharmacopoeia (EP10.3). The method combines on-line dilution and a multiple-capture HPLC system to achieve the efficient separation of AmB component/impurities. It also resolves the issue of poor solvent compatibility in 2D HPLC, increases the analytical flux, enhances the automation capability, reduces the mutual conversion of AmB and its impurities during the analytical process, and increases the detection sensitivity of the method. MS was also used to determine the structural inference of unstable components and impurities. An XBridge Shield C18 column (250 mm×4.6 mm, 3 µm) was used for first-dimensional-liquid chromatography with gradient elution using methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (10∶30∶60, v/v/v, pH 4.7) as mobile phase A and methanol-acetonitrile-4.2 g/L citric acid monohydrate solution (12∶68∶20, v/v/v, pH 3.9) as mobile phase B. An Xtimate C8 column (10 mm×2.1 mm, 5 µm) was used as the trap column, and trapping and desalting were performed using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v). An Xtimate C8 column (250 mm×2.1 mm, 5 µm) was used for second-dimensional-liquid chromatography with gradient elution using 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (95∶5, v/v) and 10 mmol/L ammonium formate aqueous solution containing 0.1% formic acid-acetonitrile (5∶95, v/v) as mobile phases. The data were collected in positive-ion mode. In this study, the structures of six impurities in amphotericin B were inferred, according to the fragmentation, the MS and MS2 spectra of each impurity. The developed method can be used to quickly and sensitively analyze the impurity profile of AmB. Furthermore, the research results on impurity profiles can be applied to guide improvements in AmB production.


Assuntos
Anfotericina B , Contaminação de Medicamentos , Espectrometria de Massas , Cromatografia Líquida de Alta Pressão/métodos , Anfotericina B/análise , Anfotericina B/química , Espectrometria de Massas/métodos
16.
Se Pu ; 42(5): 474-480, 2024 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-38736391

RESUMO

A method was established for the simultaneous detection of 12 prohibited veterinary drugs, including ß2-receptor agonists, nitrofuran metabolites, nitroimidazoles, chlorpromazine, and chloramphenicol, in pig urine. The sample was pretreated by enzymolysis, acid hydrolysis/derivatization, and liquid-liquid extraction combined with solid-phase extraction. Detection was performed using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Ammonium acetate solution (0.2 mol/L, 4.5 mL) and ß-glucuronidase/aryl sulfatase (40 µL) were added to the sample, which was subsequently enzymolized at 37 ℃ for 2 h. Then, 1.5 mL of 1.0 mol/L hydrochloric acid solution and 100 µL of 0.1 mol/L o-nitrobenzaldehyde solution were added to the sample. The mixture was incubated at 37 ℃ for 16 h, and the analytes were extracted with 8 mL of ethyl acetate by liquid-liquid extraction. The lower aqueous phase obtained after extraction was extracted and purified using a mixed cation-exchange solid-phase extraction column. The extracts were combined, the extraction solution was blow-dried with nitrogen, and the residue was redissolved for determination. The samples were analyzed under multiple-reaction monitoring mode with both positive and negative electrospray ionization, and quantified using an isotope internal standard method. The correlation coefficients (r) of the 12 compounds were >0.99. The limits of detection (LODs) and quantification (LOQs) of chloramphenicol were 0.05 and 0.1 µg/L, respectively, and the LODs and LOQs of the other compounds were 0.25 and 0.5 µg/L, respectively. The mean recoveries and RSDs at 1, 2, and 10 times the LOQ were 83.6%-115.3% and 2.20%-12.34%, respectively. The proposed method has the advantages of high sensitivity, good stability, and accurate quantification; thus, it is suitable for the simultaneous determination of the 12 prohibited veterinary drug residues in pig urine.


Assuntos
Resíduos de Drogas , Espectrometria de Massas em Tandem , Drogas Veterinárias , Animais , Espectrometria de Massas em Tandem/métodos , Suínos , Cromatografia Líquida de Alta Pressão/métodos , Drogas Veterinárias/urina , Drogas Veterinárias/análise , Resíduos de Drogas/análise , Cloranfenicol/urina , Cloranfenicol/análise
17.
Food Chem ; 452: 139579, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38735111

RESUMO

Novel metal-organic framework MIL-101(Cr)-NH2 functionalised hydrophilic polydopamine-modified Fe3O4 magnetic nanoparticles (Fe3O4@PDA@MIL-101(Cr)-NH2) were synthesised and used as magnetic solid-phase extraction (MSPE) adsorbents for extracting tetracyclines (TCs) from milk samples. The integrated Fe3O4@PDA@MIL-101(Cr)-NH2 exhibited convenient magnetic separation and exceptional multi-target binding capabilities. Furthermore, the PDA coating significantly enhanced the hydrophilicity and extraction efficiency of the material, thereby facilitating the extraction of trace TCs. Various factors affecting MSPE, such as adsorbent dosage, extraction time, pH value, and desorption conditions, were optimised. The developed MSPE method coupled with high-performance liquid chromatography demonstrated good linearity (R2 ≥ 0.9989), acceptable accuracy (82.2%-106.1%), good repeatability (intra-day precision of 0.8%-4.7% and inter-day precision of 1.1%-4.5%), low limits of detection (2.18-6.25 µg L-1), and low limits of quantification (6.54-18.75 µg L-1) in TCs detection. The approach was successfully used for the quantification of trace TCs in real milk samples.

18.
Heliyon ; 10(9): e29738, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38699043

RESUMO

Alginate is the most abundant polysaccharide compound in brown algae, which is widely used in various fields. At present, the determination of the content of alginate is mostly carried out using sulfuric acid and trifluoroacetic acid hydrolysis followed by the determination of the content, but the results are not satisfactory, and there are problems such as low hydrolysis degree and low recovery rate. Therefore, in this study, based on the optimization of high performance liquid chromatographic conditions for pre-column derivatization of 1-phenyl-3-methyl-5-pyrazolone (PMP), the hydrolysis effects of sulfuric acid, trifluoroacetic acid (TFA), oxalic acid, and formic acid were compared and the hydrolysis conditions were optimized. The results showed that formic acid was the best hydrolyzing acid. The optimal hydrolysis conditions were 95 % formic acid at 110 °C for 10 h. The hydrolysis effect was stable, with high recovery and low destruction of monosaccharides, which made it possible to introduce formic acid into the subsequent polysaccharide hydrolysis. The pre-column derivatization high performance liquid chromatography method established in this study was accurate and reliable, and the hydrolysis acid with better effect was screened, which provided a theoretical basis for the subsequent determination of alginate content.

19.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792176

RESUMO

Utilizing online gradient pressure liquid extraction (OGPLE) coupled with a high-performance liquid chromatography antioxidant analysis system, we examined the antioxidative active components present in both the aerial parts and roots of dandelion. By optimizing the chromatographic conditions, we identified the ferric reducing-antioxidant power system as the most suitable for online antioxidant reactions in dandelion. Compared to offline ultrasonic extraction, the OGPLE method demonstrated superior efficiency in extracting chemical components with varying polarities from the samples. Liquid chromatography-mass spectrometry revealed twelve compounds within the dandelion samples, with nine demonstrating considerable antioxidant efficacy. Of these, the aerial parts and roots of dandelion contained nine and four antioxidant constituents, respectively. Additionally, molecular docking studies were carried out to investigate the interaction between these nine antioxidants and four proteins associated with oxidative stress (glutathione peroxidase, inducible nitric oxide synthase, superoxide dismutase, and xanthine oxidase). The nine antioxidant compounds displayed notable binding affinities below -5.0 kcal/mol with the selected proteins, suggesting potential receptor-ligand interactions. These findings contribute to enhancing our understanding of dandelion and provide a comprehensive methodology for screening the natural antioxidant components from herbs.


Assuntos
Antioxidantes , Simulação de Acoplamento Molecular , Extratos Vegetais , Taraxacum , Antioxidantes/química , Cromatografia Líquida de Alta Pressão/métodos , Taraxacum/química , Extratos Vegetais/química , Raízes de Plantas/química , Componentes Aéreos da Planta/química
20.
Molecules ; 29(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38792202

RESUMO

Mixed-mode high-performance liquid chromatography (HPLC) is increasingly used for the analysis of ionic and highly hydrophilic drugs, which are difficult to separate by conventional single-mode HPLC. In the former case, chromatographic separation is achieved using one of the several commercially available mixed-mode stationary phases, typically combinations of reversed and ion-exchange phases. Moreover, mixed-mode stationary phases can be used as solid-phase extraction (SPE) sorbents. This review focuses on the recent applications of mixed-mode stationary phases in the chromatographic analysis of bioactive compounds, such as drugs, herbicides, and pesticides. Specifically, we briefly summarize HPLC methods utilizing mixed-mode stationary phases and SPE pretreatment procedures utilizing mixed-mode sorbents developed in the last decade, thus providing a reference work for overcoming the difficulties in analyzing ionized or hydrophilic drugs by conventional reversed-phase chromatography.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...