Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.754
Filtrar
1.
Adv Sci (Weinh) ; : e2401642, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38774948

RESUMO

Superconductivity at room temperature and near-ambient pressures is a highly sought-after phenomenon in physics and materials science. A recent study reported the presence of this phenomenon in N-doped lutetium hydride [Nature 615, 244 (2023)], however, subsequent experimental and theoretical investigations have yielded inconsistent results. This study undertakes a systematic examination of synthesis methods involving high temperatures and pressures, leading to insights into the impact of the reaction path on the products and the construction of a phase diagram for lutetium hydrides. Notably, the high-pressure phase of face-centered cubic LuH3 (fcc-LuH3) is maintained to ambient conditions through a high-temperature and high-pressure method. Based on temperature and anharmonic effects corrections, the lattice dynamic calculations demonstrate the stability of fcc-LuH3 at ambient conditions. However, no superconductivity is observed above 2 K in resistance and magnetization measurements in fcc-LuH3 at ambient pressure. This work establishes a comprehensive synthesis approach for lutetium hydrides, thereby enhancing the understanding of the high-temperature and high-pressure method employed in hydrides with superconductivity deeply.

2.
Food Chem ; 452: 139544, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38723571

RESUMO

This study investigated the effects of high hydrostatic pressure (HHP) on the binding interactions of cyanindin-3-O-glucoside (C3G) to bovine serum albumin, human serum albumin (HSA), bovine lactoferrin, and ovotransferrin. Fluorescence quenching revealed that HHP reduced C3G-binding affinity to HSA, while having a largely unaffected role for the other proteins. Notably, pretreating HSA at 500 MPa significantly increased its dissociation constant with C3G from 24.7 to 34.3 µM. Spectroscopic techniques suggested that HSA underwent relatively pronounced tertiary structural alterations after HHP treatments. The C3G-HSA binding mechanisms under pressure were further analyzed through molecular dynamics simulation. The localized structural changes in HSA under pressure might weaken its interaction with C3G, particularly polar interactions such as hydrogen bonds and electrostatic forces, consequently leading to a decreased binding affinity. Overall, the importance of pressure-induced structural alterations in proteins influencing their binding with anthocyanins was highlighted, contributing to optimizing HHP processing for anthocyanin-based products.

3.
Materials (Basel) ; 17(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38730779

RESUMO

Over the last few decades, there has been a growing discourse surrounding environmental and health issues stemming from drinking water and the discharge of effluents into the environment. The rapid advancement of various sewage treatment methodologies has prompted a thorough exploration of promising materials to capitalize on their benefits. Metal-organic frameworks (MOFs), as porous materials, have garnered considerable attention from researchers in recent years. These materials boast exceptional properties: unparalleled porosity, expansive specific surface areas, unique electronic characteristics including semi-conductivity, and a versatile affinity for organic molecules. These attributes have fueled a spike in research activity. This paper reviews the current MOF-based wastewater removal technologies, including separation, catalysis, and related pollutant monitoring methods, and briefly introduces the basic mechanism of some methods. The scale production problems faced by MOF in water treatment applications are evaluated, and two pioneering methods for MOF mass production are highlighted. In closing, we propose targeted recommendations and future perspectives to navigate the challenges of MOF implementation in water purification, enhancing the efficiency of material synthesis for environmental stewardship.

4.
Foods ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731676

RESUMO

Nowadays, consumers are more aware of the effects of their diet on their health, and thus demand natural or minimally processed food products. Therefore, research has focused on processes that assure safe products without jeopardizing their nutritional properties. In this context, this work aimed to evaluate the effects of high-pressure processing (550 MPa/3 min/15 °C, HPP) on a fruit salad (composed of melon juice and pieces of Golden apple and Rocha pear) throughout 35 days of storage at 4 °C. For the physicochemical properties analysed (browning degree, polyphenol oxidase activity, antioxidant activity (ABTS assay), and volatile profile), a freshly made fruit salad was used, while for the microbiological tests (total aerobic mesophiles, and yeast and moulds) spoiled melon juice was added to the fruit salad to increase the microbial load and mimic a challenge test with a high initial microbial load. It was determined that processed samples were more microbiologically stable than raw samples, as HPP enabled a reduction of almost 4-log units of both total aerobic mesophiles and yeasts and moulds, as well as an almost 1.5-fold increase in titratable acidity of the unprocessed samples compared to HPP samples. Regarding browning degree, a significant increase (p < 0.05) was observed in processed versus unprocessed samples (roughly/maximum 68%), while the addition of ascorbic acid decreased the browning of the samples by 29%. For antioxidant activity, there were no significant differences between raw and processed samples during the 35 days of storage. An increase in the activity of polyphenol oxidase immediately after processing (about 150%) was confirmed, which was generally similar or higher during storage compared with the raw samples. Regarding the volatile profile of the product, it was seen that the compounds associated with melon represented the biggest relative percentage and processed samples revealed a decrease in the relative quantity of these compounds compared to unprocessed. Broadly speaking, HPP was shown to be efficient in maintaining the stability and overall quality of the product while assuring microbial safety (by inactivating purposely inoculated microorganisms), which allows for longer shelf life (7 versus 28 days for unprocessed and processed fruit salad, respectively).

5.
Foods ; 13(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731786

RESUMO

This study primarily aimed to enhance the extraction of cutin from industrial tomato peel residues. Initially, the conventional extraction process was optimized using response surface methodology (RSM). Subsequently, high-pressure homogenization (HPH) was introduced to improve extraction efficiency and sustainability. The optimization process focused on determining the optimal conditions for conventional extraction via chemical hydrolysis, including temperature (100-130 °C), time (15-120 min), and NaOH concentration (1-3%). The optimized conditions, determined as 130 °C, 120 min, and 3% NaOH solution, yielded a maximum cutin extraction of 32.5%. Furthermore, the results indicated that applying HPH pre-treatment to tomato peels before alkaline hydrolysis significantly increased the cutin extraction yield, reaching 46.1%. This represents an approximately 42% increase compared to the conventional process. Importantly, HPH pre-treatment enabled cutin extraction under milder conditions using a 2% NaOH solution, reducing NaOH usage by 33%, while still achieving a substantial cutin yield of 45.6%. FT-IR analysis confirmed that cutin obtained via both conventional and HPH-assisted extraction exhibited similar chemical structures, indicating that the main chemical groups and structure of cutin remained unaltered by HPH treatment. Furthermore, cutin extracts from both conventional and HPH-assisted extraction demonstrated thermal stability up to approximately 200 °C, with less than 5% weight loss according to TGA analysis. These findings underscore the potential of HPH technology to significantly enhance cutin extraction yield from tomato peel residues while utilizing milder chemical hydrolysis conditions, thereby promoting a more sustainable and efficient cutin extraction process.

6.
Eur J Obstet Gynecol Reprod Biol X ; 22: 100307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38736524

RESUMO

Introduction: In the WHO eligibility criteria, there is agreement that hypertensive women taking Oral Contraceptive Hormonal Combined (OCHC) may be at increased risk of cardiovascular disease. The risk-to-benefit ratio hinges on the severity of the condition. While a mild increase in blood pressure is a common occurrence in consumers of OCHC, the potential for developing high blood pressure exists during oral contraceptive use. Consequently, there is a possibility of increased cardiovascular risk, with limited available data on this issue. Objective: To evaluate the potential effects of OCHC on blood pressure through a systematic review with statistical analysis of existing randomized controlled trials. Method: This systematic review with statistical comparison adheres to the recommendations outlined in the PRISMA (Principal Reporting Items for Systematic Reviews and Meta-analyses) guidelines. The analysis strategy involves comparing the mean difference in blood pressure change according to the type of treatment, in addition to the calculation of clinically relevant outcomes (CRO). Results: Our findings suggest a clinically relevant outcome related to the increase in blood pressure in users of ethinyl estradiol combined with gestodene in a cyclic regimen over 6 months. Conversely, a decrease in blood pressure was observed among users of ethinyl estradiol combined with chlormadinone over 24 months of usage. Conclusion: While our study found minor variations in blood pressure across varying forms of oral contraceptives, these differences are not significant enough to warrant specific clinical recommendations. However, the results suggest that individuals with hypertension should exercise caution with ethinyl estradiol, particularly when administered cyclically alongside gestodene, due to the potential risk of increased blood pressure. Additionally, the use of oral contraceptives containing ethinyl estradiol paired with chlormadinone acetate or ethinyl estradiol combined with drospirenone may be more suitable for individuals at a high risk of developing hypertension.

7.
Heliyon ; 10(9): e29516, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707316

RESUMO

Vitamin C (VC) possesses antioxidant and whitening effects. However, its effectiveness is hindered by challenges such as instability, impaired solubility, and limited bioavailability hinder. In this study, VC was encapsulated in nanoliposomes by primary emulsification and high-pressure homogenization. The VC nanoliposomes were comprehensively characterized for their microscopic morphology, particle size, polydispersity index (PDI), and encapsulation efficiency (EE). Orthogonal experiments were designed to optimize the optimal preparation process, and the antioxidant activity, whitening efficacy, transdermal absorption, and stability of VC nanoliposomes were evaluated based on this optimized process. The findings demonstrated the high reproducibility of the optimal process, with particle size, PDI, and EE values of 113.502 ± 4.360 nm, 0.104 ± 0.010, and 56.09 ± 1.01 %, respectively. Differential scanning calorimetry analysis showed effective encapsulation of VC nanoliposomes with better thermal stability than aqueous VC solution. Besides, the VC nanoliposomes demonstrated excellent antioxidant and whitening effects in efficacy experiments, stronger skin permeability in transdermal experiments and fluorescence tracking. Furthermore, storage stability tests indicated that the VC in nanoliposomes remained relatively stable after 60 days of storage. These findings highlighted the potential use of VC nanoliposomes in a wide range of applications for the cosmetic market, especially in the development of ingredients for skin care products.

8.
ChemSusChem ; : e202400440, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713146

RESUMO

The cathodic reduction of pressurized CO2 (PrCO2CR) at suitable cathodes can allow to produce various chemicals, such as formic acid/formate and carbon monoxide or synthesis gas, with high faradic efficiencies (FEs) and productivities. Here, we have performed the conversion of CO2 in an undivided pressurized electrochemical reactor using silver cathode in order to determine the optimal values of CO2 pressure and current density. It was found that the plot FE vs. pressure resulted in a curve with a maximum. Similarly, an optimal value of current density can be selected for the PrCO2CR. The competition between the production of carbon monoxide and formic acid/formate is strongly affected by both the pressure and the current density. Eventually the effect of pressure and current density on the economic figures of the process was evaluated.

9.
Food Chem ; 452: 139611, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38749141

RESUMO

High pressure processing is a safe and green novel non-thermal processing technique for modulating food protein aggregation behavior. However, the systematic relationship between high pressure processing conditions and protein deaggregation has not been sufficiently investigated. Major royal jelly proteins, which are naturally highly fibrillar aggregates, and it was found that the pressure level and exposure time could significantly promote protein deaggregation. The 100-200 MPa treatment favoured the deaggregation of proteins with a significant decrease in the sulfhydryl group content. Contrarily, at higher pressure levels (>400 MPa), the exposure time promoted the formation of disordered agglomerates. Notably, the inter-conversion of α-helix and ß-strands in major royal jelly proteins after high pressure processing eliminates the solvent-free cavities inside the aggregates, which exerts a 'collapsing' effect on the fibrillar aggregates. Furthermore, the first machine learning model of the high pressure processing conditions and the protein deaggregation behaviour was developed, which provided digital guidance for protein aggregation regulation.

10.
Int J Biol Macromol ; 270(Pt 1): 132042, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710248

RESUMO

Anthocyanins, natural plant pigments responsible for the vibrant hues in fruits, vegetables, and flowers, boast antioxidant properties with potential human health benefits. However, their susceptibility to degradation under conditions such as heat, light, and pH fluctuations necessitates strategies to safeguard their stability. Recent investigations have focused on exploring the interactions between anthocyanins and biomacromolecules, specifically proteins and polysaccharides, with the aim of enhancing their resilience. Notably, proteins like soy protein isolate and whey protein, alongside polysaccharides such as pectin, starch, and chitosan, have exhibited promising affinities with anthocyanins, thereby enhancing their stability and functional attributes. High-pressure processing (HPP), emerging as a non-thermal technology, has garnered attention for its potential to modulate these interactions. The application of high pressure can impact the structural features and stability of anthocyanin-protein/polysaccharide complexes, thereby altering their functionalities. However, caution must be exercised, as excessively high pressures may yield adverse effects. Consequently, while HPP holds promise in upholding anthocyanin stability, further exploration is warranted to elucidate its efficacy across diverse anthocyanin variants, macromolecular partners, pressure regimes, and their effects within real food matrices.

11.
Pharm Dev Technol ; : 1-17, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713634

RESUMO

OBJECTIVE: Posaconazole (PCZ) is an antifungal drug, which acts by inhibiting the lanosterol-14α-demethylase enzyme. It is a biopharmaceutical classification system class II drug with its bioavailability being limited by poor aqueous solubility. The aim of this study was to improve the oral bioavailability of PCZ by preparing nanocrystalline solid dispersion (NCS). METHODS: PCZ-NCS was prepared by a combination of precipitation and high-pressure homogenization followed by freeze-drying. Several different surfactants and polymers were screened to produce NCS with smaller particle size and higher stability. RESULTS: The optimized NCS formulation containing 0.2% Eudragit S100 and 0.2% SLS was found to provide the average particle size of 73.31 ± 4.7 nm with a polydispersity index of 0.23 ± 0.03. Scanning electron microscopy revealed the preparation of homogeneous and rounded particles. Differential scanning calorimetry and X-ray diffraction confirmed crystalline nature of NCS. Nanonization increased the saturation solubility of PCZ by about 18-fold in comparison with the neat drug. Intrinsic dissolution study showed 93% dissolution of PCZ within the first 10 min. In vivo pharmacokinetic study in Wistar rats showed that Cmax and AUC total of PCZ-NCS increased by 2.58 and 2.64-fold compared to the marketed formulation. CONCLUSION: PCZ-NCS formulation presents a viable approach for enhancing the oral bioavailability of PCZ.

12.
Sci Rep ; 14(1): 10729, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730055

RESUMO

Due to the BCS theory, hydrogen, the lightest element, would be the prospect of room-temperature superconductor after metallization, but because of the difficulty of the hydrogen metallization, the theory about hydrogen pre-compression was proposed that the hydrogen-rich compounds could be a great option for the high Tc superconductors. The superior properties of TmH6, YbH6 and LuH6 indicated the magnificent potential of heavy rare earth elements for low-pressure stability. Here, we designed XTmH12 (X = Y, Yb, Lu, and La) to obtain higher Tc while maintaining low pressure stability. Most prominently, YbTmH12 can stabilize at a pressure of 60 GPa. Compared with binary TmH6 hydride, its Tc was increased to 48 K. The results provide an effective method for the rational design of moderate pressure stabilized hydride superconductors.

13.
Chem Asian J ; : e202400191, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735841

RESUMO

This review article aims to provide an overview of the strategies employed to prepare noble gas anions under different environments and experimental conditions, and of the bonding motifs typically occurring in these species. Observed systems include anions fixed into synthesized salts, detected in the gas phase or in high-pressure devices. The major role of the theoretical calculations is also highlighted, not only in support of the experiments, but also as effective in predicting still unreported species. The chemistry of noble gas anions overall appears as a varied and rich paint, offering fascinating opportunities for both experimentalists and theoreticians.

14.
Chemistry ; : e202401581, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771299

RESUMO

Transition metal carbides find widespread use throughout industry due to their high strength and resilience under extreme conditions. However, they remain largely limited to compounds formed from the early d-block elements, since the mid-to-late transition metals do not form thermodynamically stable carbides. We report here the high-pressure bulk synthesis of large single crystals of a novel metastable manganese carbide compound,MnCxP63/mmc, which adopts the anti-NiAs-type structure with significant substoichiometry at the carbon sites. We demonstrate how synthesis pressure modulates the carbon loading, with~40% occupancy being achieved at 9.9 GPa.

15.
Nano Lett ; 24(20): 6002-6009, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739273

RESUMO

Two-dimensional van der Waals heterostructures (2D-vdWHs) based on transition metal dichalcogenides (TMDs) provide unparalleled control over electronic properties. However, the interlayer coupling is challenged by the interfacial misalignment and defects, which hinders a comprehensive understanding of the intertwined electronic orders, especially superconductivity and charge density wave (CDW). Here, by using pressure to regulate the interlayer coupling of non-centrosymmetric 6R-TaS2 vdWHs, we observe an unprecedented phase diagram in TMDs. This phase diagram encompasses successive suppression of the original CDW states from alternating H-layer and T-layer configurations, the emergence and disappearance of a new CDW-like state, and a double superconducting dome induced by different interlayer coupling effects. These results not only illuminate the crucial role of interlayer coupling in shaping the complex phase diagram of TMD systems but also pave a new avenue for the creation of a novel family of bulk heterostructures with customized 2D properties.

16.
Front Chem ; 12: 1259032, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690011

RESUMO

In this study, we report the synthesis of a new cubic neodymium-rhenium metallic alloy NdRe2 through the utilization of high pressure and laser heating in a diamond anvil cell. NdRe2 crystallizes in the Fd3¯m space group with a lattice parameter equal to 7.486 (2) Å and Z = 8 at 24 (1) GPa and 2,200 (100) K. It was studied using high-pressure single-crystal X-ray diffraction. The compound crystallizes in the cubic MgCu2 structure type. Its successful synthesis further proves that high-pressure high-temperature conditions can be used to obtain alloys holding a Laves phase structure. Ab initio calculations were done to predict the mechanical properties of the material. We also discuss the usage of extreme conditions to synthesize and study materials present in the nuclear waste.

17.
Food Chem ; 451: 139507, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38696940

RESUMO

In the domain of infant nutrition, optimizing the absorption of crucial nutrients such as vitamin D3 (VD3) is paramount. This study harnessed dynamic-high-pressure microfluidization (DHPM) on soybean protein isolate (SPI) to engineer SPI-VD3 nanoparticles for fortifying yogurt. Characterized by notable binding affinity (Ka = 0.166 × 105 L·mol-1) at 80 MPa and significant surface hydrophobicity (H0 = 3494), these nanoparticles demonstrated promising attributes through molecular simulations. During simulated infant digestion, the 80 MPa DHPM-treated nanoparticles showcased an impressive 74.4% VD3 bioaccessibility, delineating the pivotal roles of hydrophobicity, bioaccessibility, and micellization dynamics. Noteworthy was their traversal through the gastrointestinal tract, illuminating bile salts' crucial function in facilitating VD3 re-encapsulation, thereby mitigating crystallization and augmenting absorption. Moreover, DHPM treatment imparted enhancements in nanoparticle integrity and hydrophobic properties, consequently amplifying VD3 bioavailability. This investigation underscores the potential of SPI-VD3 nanoparticles in bolstering VD3 absorption, thereby furnishing invaluable insights for tailored infant nutrition formulations.

18.
Adv Mater ; : e2400428, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747751

RESUMO

The discovery of superconducting states in diverse topological materials generates a burgeoning interest to explore a topological superconductor and to realize a fault-tolerant topological quantum computation. A variety of routes to realize topological superconductors are proposed, and many types of topological materials are developed. However, a pristine topological material with a natural superconducting state is relatively rare as compared to topological materials with artificially induced superconductivity. Here, it is reported that the planar honeycomb structured 3D topological Dirac semimetal (TDS) SrCuBi, which is the Zintl phase, shows a natural surface superconductivity at 2.1 K under ambient pressure. It is clearly identified from theoretical calculations that a topologically nontrivial state exists on the (100) surface. Further, its superconducting transition temperature (Tc) increases by applying pressure, exhibiting a maximal Tc of 4.8 K under 6.2 GPa. It is believed that this discovery opens up a new possibility of exploring exotic Majorana fermions at the surface of 3D TDS superconductors.

19.
Chemistry ; : e202401428, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717583

RESUMO

Sn3P8N16 combines the structural versatility of nitridophosphates and Sn within one compound. It was synthesized as dark gray powder in a high-pressure high-temperature reaction at 800 °C and 6 GPa from Sn3N4 and P3N5. The crystal structure was elucidated from single-crystal diffraction data (space group C2/m (no. 12), a = 12.9664(4), b = 10.7886(4), c = 4.8238(2) Å, ß = 109.624(1)°) and shows a 3D-network of PN4 tetrahedra, incorporating Sn in oxidation states +II and +IV. The Sn cations are located within eight-membered rings of vertex-sharing PN4 tetrahedra, stacked along the [001] direction. A combination of solid-state nuclear magnetic resonance spectroscopy, 119Sn Mössbauer spectroscopy and density functional theory calculations was used to confirm the mixed oxidation of Sn. Temperature-dependent powder X-ray diffraction measurements reveal a low thermal expansion of 3.6 ppm/K up to 750 °C, beyond which Sn3P8N16 starts to decompose.

20.
Artigo em Inglês | MEDLINE | ID: mdl-38728046

RESUMO

SnGe4N4O4 was synthesized at high pressure (16 and 20 GPa) and high temperature (1200 and 1500°C) in a large-volume press. Powder X-ray diffraction experiments using synchrotron radiation indicate that the derived samples are mixtures of known and unknown phases. However, the powder X-ray diffraction patterns are not sufficient for structural characterization. Transmission electron microscopy studies reveal crystals of several hundreds of nanometres in size with different chemical composition. Among them, crystals of a previously unknown phase with stoichiometry SnGe4N4O4 were detected and investigated using automated diffraction tomography (ADT), a three-dimensional electron diffraction method. Via ADT, the crystal structure could be determined from single nanocrystals in space group P63mc, exhibiting a nolanite-type structure. This was confirmed by density functional theory calculations and atomic resolution scanning transmission electron microscopy images. In one of the syntheses runs a rhombohedral 6R polytype of SnGe4N4O4 could be found together with the nolanite-type SnGe4N4O4. The structure of this polymorph was solved as well using ADT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...