Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 89(1): 148-158, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38467551

RESUMO

Gestational diabetes mellitus (GDM) is a risk factor for both mother and fetus/neonate during and after the pregnancy. Inconsistent protocols and cumbersome screening procedures warrant the search for new and easily accessible biomarkers. We investigated a potential of serum N-glycome to differentiate between healthy pregnant women (n = 49) and women with GDM (n = 53) using a lectin-based microarray and studied the correlation between the obtained data and parameters of glucose and lipid metabolism. Four out of 15 lectins used were able to detect the differences between the control and GDM groups in fucosylation, terminal galactose/N-acetylglucosamine (Gal/GlcNAc), presence of Galα1,4Galß1,4Glc (Gb3 antigen), and terminal α2,3-sialylation with AUC values above 60%. An increase in the Gb3 antigen and α2,3-sialylation correlated positively with GDM, whereas the amount of fucosylated glycans correlated negatively with the content of terminal Gal/GlcNAc. The content of GlcNAc oligomers correlated with the highest number of blood analytes, indices, and demographic characteristics, but failed to discriminate between the groups. The presence of terminal Gal residues correlated positively with the glucose levels and negatively with the LDL levels in the non-GDM group only. The results suggest fucosylation, terminal galactosylation, and the presence of Gb3 antigen as prediction markers of GDM.


Assuntos
Diabetes Gestacional , Recém-Nascido , Gravidez , Feminino , Humanos , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/metabolismo , Prognóstico , Glicosilação , Lectinas/metabolismo , Glucose
2.
Br J Pharmacol ; 181(12): 1857-1873, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38382564

RESUMO

BACKGROUND AND PURPOSE: The holotoxin A1, isolated from Apostichopus japonicus, exhibits potent antifungal activities, but the mechanism and efficacy against candidiasis are unclear. In this study we have studied the antifungal effects and mechanism of holotoxin A1 against Candida albicans and in murine oropharyngeal and intra-abdominal candidiasis. EXPERIMENTAL APPROACH: The antifungal effect of holotoxin A1 against C. albicans was tested in vitro. To explore the antifungal mechanism of holotoxin A1, the transcriptome, ROS levels, and mitochondrial function of C. albicans was evaluated. Effectiveness and systematic toxicity of holotoxin A1 in vivo was assessed in the oropharyngeal and intra-abdominal candidiasis models in mice. KEY RESULTS: Holotoxin A1 was a potent fungicide against C. albicans SC5314, clinical strains and drug-resistant strains. Holotoxin A1 inhibited oxidative phosphorylation and induced oxidative damage by increasing intracellular accumulation of ROS in C. albicans. Holotoxin A1 induced dysfunction of mitochondria by depolarizing the mitochondrial membrane potential and reducing the production of ATP. Holotoxin A1 directly inhibited the enzymatic activity of mitochondrial complex I and antagonized with the rotenone, an inhibitor of complex I, against C. albicans. Meanwhile, the complex I subunit NDH51 null mutants showed a decreased susceptibility to holotoxin A1. Furthermore, holotoxin A1 significantly reduced fungal burden and infections with no significant systemic toxicity in oropharyngeal and intra-abdominal candidiasis in murine models. CONCLUSION AND IMPLICATIONS: Holotoxin A1 is a promising candidate for the development of novel antifungal agents against both oropharyngeal and intra-abdominal candidiasis, especially when caused by drug-resistant strains.


Assuntos
Antifúngicos , Candida albicans , Estresse Oxidativo , Espécies Reativas de Oxigênio , Animais , Feminino , Camundongos , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Candidíase Bucal/tratamento farmacológico , Candidíase Bucal/microbiologia , Infecções Intra-Abdominais/tratamento farmacológico , Infecções Intra-Abdominais/microbiologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Stichopus/microbiologia
3.
Front Cell Infect Microbiol ; 14: 1366193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38292462

RESUMO

[This corrects the article DOI: 10.3389/fcimb.2023.1289359.].

4.
Front Cell Infect Microbiol ; 13: 1289359, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035327

RESUMO

Cytolethal distending toxins (CDTs) are intracellular-acting bacterial genotoxins generated by a diverse group of mucocutaneous human pathogens. CDTs must successfully bind to the plasma membrane of host cells in order to exert their modulatory effects. Maximal toxin activity requires all three toxin subunits, CdtA, CdtB, and CdtC, which, based primarily on high-resolution structural data, are believed to preassemble into a tripartite complex necessary for toxin activity. However, biologically active toxin has not been experimentally demonstrated to require assembly of the three subunits into a heterotrimer. Here, we experimentally compared concentration-dependent subunit interactions and toxin cellular activity of the Campylobacter jejuni CDT (Cj-CDT). Co-immunoprecipitation and dialysis retention experiments provided evidence for the presence of heterotrimeric toxin complexes, but only at concentrations of Cj-CdtA, Cj-CdtB, and Cj-CdtC several logs higher than required for Cj-CDT-mediated arrest of the host cell cycle at the G2/M interface, which is triggered by the endonuclease activity associated with the catalytic Cj-CdtB subunit. Microscale thermophoresis confirmed that Cj-CDT subunit interactions occur with low affinity. Collectively, our data suggest that at the lowest concentrations of toxin sufficient for arrest of cell cycle progression, mixtures of Cj-CdtA, Cj-CdtB, and Cj-CdtC consist primarily of non-interacting, subunit monomers. The lack of congruence between toxin tripartite structure and cellular activity suggests that the widely accepted model that CDTs principally intoxicate host cells as preassembled heterotrimeric structures should be revisited.


Assuntos
Toxinas Bacterianas , Campylobacter jejuni , Humanos , Toxinas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Ciclo Celular
5.
Toxins (Basel) ; 14(6)2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35737057

RESUMO

Non-toxic derivatives of the cholera toxin are extensively used in neuroscience, as neuronal tracers to reveal the location of cells in the central nervous system. They are, also, being developed as vaccine components and drug-delivery vehicles. Production of cholera-toxin derivatives is often non-reproducible; the quality and quantity require extensive fine-tuning to produce them in lab-scale settings. In our studies, we seek a resolution to this problem, by expanding the molecular toolbox of the Escherichia coli expression system with suitable production, purification, and offline analytics, to critically assess the quality of a probe or drug delivery, based on a non-toxic derivative of the cholera toxin. We present a re-engineered Cholera Toxin Complex (rCTC), wherein its toxic A1 domain was replaced with Maltose Binding Protein (MBP), as a model for an rCTC-based targeted-delivery vehicle. Here, we were able to improve the rCTC production by 11-fold (168 mg/L vs. 15 mg/L), in comparison to a host/vector combination that has been previously used (BL21(DE3) pTRBAB5-G1S). This 11-fold increase in the rCTC production capability was achieved by (1) substantial vector backbone modifications, (2) using Escherichia coli strains capable of growth-decoupling (V strains), (3) implementing a well-tuned fed-batch production protocol at a 1 L scale, and (4) testing the stability of the purified product. By an in-depth characterization of the production process, we revealed that secretion of rCTC across the E. coli Outer Membrane (OM) is processed by the Type II secretion-system general secretory pathway (gsp-operon) and that cholera toxin B-pentamerization is, likely, the rate-limiting step in complex formation. Upon successful manufacturing, we have validated the biological activity of rCTC, by measuring its binding affinity to its carbohydrate receptor GM1 oligosaccharide (Kd = 40 nM), or binding to Jurkat cells (93 pM) and delivering the cargo (MBP) in a retrograde fashion to the cell.


Assuntos
Toxina da Cólera , Toxina da Cólera/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos
6.
J Food Sci Technol ; 57(6): 2283-2292, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32431354

RESUMO

In this study, the saponin-rich fractions of five individual (two Red and three Black) sea cucumbers (Apostichopus japonicus) in South Korea were investigated for their antiproliferative effect against HL-60, B16F10, MCF-7, and Hep3B tumor cell lines. The red sea cucumber saponin-rich fraction (SSC) from Jeju Island (JRe) decreased the growth of HL-60 with an IC50 value of 23.55 ± 3.40 µg/mL, which represented the strongest anticancer activity among the extracts. Further, SSC downregulated B-cell lymphoma extra-large (Bcl-xL), while upregulating, to different degrees, Bcl-2-associated X protein (Bax), caspase-9, caspase-3, PARP cleavage, and apoptotic bodies in cancer cells. Evidence for SSC inducing apoptosis via the mitochondria-mediated pathway was found. The contents of SSCs were determined using ultra high-performance liquid chromatography coupled with a quadrupole orbitrap mass spectrometry to comparatively evaluate the regional influence. In West Sea, the total SSC content of A. japonicus was 15.5 mg/g, representing the highest content, while A. japonicus in the South Sea yielded the lowest content at 8 mg/g. The major saponin constituent in SSC was identified as Holotoxin A1, which may the anti-tumor compound in A. japonicus.

7.
Pathog Dis ; 74(6)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27369899

RESUMO

The active subunit (S1) of pertussis toxin (PT), a major virulence factor of Bordetella pertussis, ADP-ribosylates Gi proteins in the mammalian cell cytosol to inhibit GPCR signaling. The intracellular pathway of PT includes endocytosis and retrograde transport to the trans-Golgi network (TGN) and endoplasmic reticulum (ER). Subsequent translocation of S1 to the cytosol is presumably preceded by dissociation from the holotoxin. In vitro, such dissociation is stimulated by interaction of PT with ATP. To investigate the role of this interaction in cellular events, we engineered a form of PT (PTDM) with changes to two amino acids involved in the interaction with ATP. PTDM was reduced in (1) binding to ATP, (2) dissociability by interaction with ATP, (3) in vitro enzymatic activity and (4) cellular ADP-ribosylation activity. In cells treated with PTDM carrying target sequences for organelle-specific modifications, normal transport to the TGN and ER occurred, but N-glycosylation patterns of the S1 and S4 subunits were consistent with an inability of PTDM to dissociate in the ER. These results indicate a requirement for interaction with ATP for PT dissociation in the ER and cellular activity. They also indicate that the retrograde transport route is the cellular intoxication pathway for PT.


Assuntos
Trifosfato de Adenosina/metabolismo , Toxina Pertussis/metabolismo , Trifosfato de Adenosina/química , Animais , Modelos Animais de Doenças , Ativação Enzimática , Espaço Intracelular/metabolismo , Camundongos , Toxina Pertussis/química , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico
8.
Methods Mol Biol ; 1403: 683-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27076160

RESUMO

Ricin is one of the most potent and lethal toxins known to which there is no available antidote. Currently, the most promising therapy is based on neutralizing antibodies elicited by active vaccination or given passively. Here, detailed protocols are provided for the production of two ricin holotoxin-based vaccines: monomerized subunit-based vaccine, and a formaldehyde-based ricin toxoid vaccine. Both vaccines were found to be stable with no toxic activity reversion even after long-term storage while eliciting high anti-ricin antibody titers possessing a potent neutralizing activity. The use of these vaccines is highly suitable for both the production of sera that can be used in passive protection experiments and immunization aimed to isolate potent anti-ricin monoclonal antibodies.


Assuntos
Anticorpos Neutralizantes/imunologia , Glicosídeos/imunologia , Ricina/imunologia , Triterpenos/imunologia , Vacinas/imunologia , Glicosídeos/química , Células HEK293 , Humanos , Imunização , Modelos Moleculares , Conformação Proteica , Ricina/química , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA