Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 683
Filtrar
1.
Heliyon ; 10(14): e34155, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39092254

RESUMO

In the present study, the frequency-dependent dielectric relaxation and electrical conduction mechanisms in sol-gel-derived Zn0.5Cd0.5Fe2O4 (ZCFO) spinel ferrite were studied in the temperature range of 343-438 K. The formation of the ZCFO spinel ferrite phase with space group Fd3m was confirmed by X-ray diffraction analysis. The dielectric relaxation and electrical conduction mechanisms were studied using complex impedance spectroscopy (CIS). In the Nyquist plots, depressed semicircles were fitted with an equivalent circuit model with configuration (RGBQGB) (RGQG), signifying the contributions from grain boundaries and grains to the charge transport mechanism in the sample. The frequency-dependent AC conductivity was found to follow Jonscher's power law, and the frequency exponent term depicted the overlapping large polaron hopping (OLPH) model as the dominant transport mechanism. The activation energies for conductivity, electric modulus and impedance were calculated to identify the nature of the charge carriers governing the relaxation and conduction mechanisms in the prepared sample. Complex modulus studies confirmed the non-Debye type of dielectric relaxation, whereas tangent loss and dielectric constant analyses confirmed the thermally activated hopping mechanism of charge carriers in Zn0.5Cd0.5Fe2O4 spinel ferrite.

2.
Pest Manag Sci ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158367

RESUMO

BACKGROUND: The sustainable control of weed populations is a significant challenge facing farmers around the world. Although various methods for the control of weeds exist, the use of small molecule herbicides remains the most effective and versatile approach. Striving to find novel herbicides that combat resistant weeds via the targeting of plant specific modes of action (MoAs), we further investigated the bicyclic class of acyl-acyl carrier protein (ACP) thioesterase (FAT) inhibitors in an effort to find safe and efficacious lead candidates. RESULTS: Utilizing scaffold hopping and bioisosteric replacements strategies, we explored new bicyclic inhibitors of FAT. Amongst the investigated compounds we identified new structural motifs that showed promising target affinity coupled with good in vivo efficacy against commercially important weed species. We further studied the structure-activity relationship (SAR) of the novel dihydropyranopyridine structural class which showed promise as a new type of FAT inhibiting herbicides. CONCLUSION: The current work presents how scaffold hopping approaches can be implemented to successfully find novel and efficacious herbicidal structures that can be further optimized for potential use in sustainable agricultural practices. The identified dihydropyranopyridine bicyclic class of herbicides were demonstrated to have in vitro inhibitory activity against the plant specific MoA FAT as well as showing promising control of a variety of weed species, particularly grass weeds in greenhouse trials on levels competitive with commercial standards. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

3.
Beilstein J Org Chem ; 20: 1880-1893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109294

RESUMO

The concept of bioisostere replacement is of paramount importance in medicinal chemistry, as it can be employed as a rational to expand bioactive chemical space to tackle lead optimization issues like lack of potency, efficacy, and selectivity or pharmacokinetic/dynamic issues. One of the most important building blocks (in the sense of participating in a vast area of chemical space of biological importance) in medicinal chemistry is the 2-phenethyl moiety, a key component of diverse drug-like entities. Although the core 2-phenethylamine structure has been recognized by the drug discovery community, little attention has been given to the various ring-based rescaffolding procedures that can be conducted with this unit. In this regard, a review on the use of 2-heteroarylethylamines displaying pharmacological activity is reported. A detailed description of flexible, amine-opened motifs is provided, that describes therapeutic targets and other potent bioactive examples, which will be a valuable repository of phenyl, heteroaryl, and other replacement units of high value to the drug discovery community.

4.
Sensors (Basel) ; 24(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123857

RESUMO

Frequency hopping (FH) is a well-known technique that is commonly used in communication systems owing to its many advantages, including its strong anti-jamming capability. In this technique, basically, radio signals are transmitted by switching the carrier between different frequency channels. As a result, the FH signal is not stationary; hence, its spectrum is expected to change over time. Therefore, the task of detection and parameter estimation of FH signals is very challenging in practice. To address this challenge, the study presented in this article proposes a method that detects and estimates the parameters of multiple narrowband FH signals. In the proposed method, first, short-time Fourier transform (STFT) is utilized to analyze FH signals, and a practical binarization process based on thresholding is used to detect FH signals. Then, a new algorithm is proposed to ensure that the center frequencies of the detected signals are successfully separated. Next, another algorithm is proposed to estimate the parameters of the detected signals. After estimating the parameters for the entire spectrum, an approach is used to detect FH signals. Lastly, the hop-clustering process is applied to separate the hops into groups without time overlap. The simulation results show that the proposed method can be an efficient way for the fast and accurate parameter estimation and detection of multiple narrowband FH signals.

5.
Bioorg Med Chem ; 112: 117882, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39167978

RESUMO

The bromodomain-containing protein 4 (BRD4), which is a key epigenetic regulator in cancer, has emerged as an attractive target for the treatment of melanoma. In this study, we investigate 7-phenoxy-benzimidazole derivative 12, which is a novel BRD4 inhibitor for the treatment of melanoma, by performing scaffold hopping on the previously reported benzimidazole derivative 1. Despite their good oral and intravenous exposure, the compounds obtained by modifying derivate 1 exhibit mutagenicity, which was confirmed by the positive Ames test results. Based on our hypothesis that the cause of the Ames test positivity is the metabolic intermediates generated from those chemical series, we implemented a scaffold hopping strategy to avoid the N-benzyl moiety by relocating the substituent groups to preserve the essential interaction. Based on this strategy, we successfully obtained compound 12; the Ames test results of this compound were negative. Notably, compound 12 not only exhibited a favorable pharmacokinetic (PK) profile but also significant tumor growth inhibition in a mouse melanoma xenograft model, indicating its potential as a therapeutic agent for the treatment of melanoma.

6.
J Agric Food Chem ; 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39147603

RESUMO

Phytoene desaturase (PDS) is a key rate-limiting enzyme in the carotenoid biosynthesis pathway. Although commercial PDS inhibitors have been developed for decades, it remains necessary to develop novel PDS inhibitors with higher bioactivity. In this work, we used the scaffold hopping and linker modification approaches to design and synthesize a series of compounds (7a-7o, 8a-8l, and 14a-14d). The postemergence application assay demonstrated that 8e and 7e separately showed the best herbicidal activity at 750 g a.i./ha and lower doses (187.5 g, 375g a.i./ha) without no significant toxicity to maize and wheat. The surface plasmon resonance revealed strong binding affinity between 7e and Synechococcus PDS (SynPDS). The HPLC analysis confirmed that 8e at 750 g a.i./ha caused significant phytoene accumulation in Arabidopsis seedlings. This work demonstrates the efficacy of structure-guided optimization through scaffold hopping and linker modification to design potent PDS inhibitors with enhanced bioactivity and crop safety.

7.
Food Chem ; 460(Pt 2): 140594, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39068805

RESUMO

Drying techniques are important for hop storage and quality. The stage of hop addition in beer is another important issue. This study focuses the impact of two drying techniques [freeze-dryer (F) and hot-stove (H)] of Cascade hop, on the chemical, aromatic and sensory quality of beer, comparing beers produced without (BF and BH) and with dry-hopping technique (BFDH and BHDH). Dry-hopping with H significantly increased the bitterness index and reduced the titratable acidity. Isoamyl acetate (450.60 µg/L) and ethyl caprylate (313.60 µg/L) were in high content especially in BH while, ethyl-n-caproate (359.37 µg/L) had the highest content in BF. The beers made with dry-hopping technique, had a significantly higher content in terpenes especially in BFDH (1006.18 µg/L). Sensory evaluation indicated difference preferences, with freeze-dried hop beers generally favored. In conclusion, depending on the type of beer desired, hops dried in different way and a specific hopping technique can be chosen.

8.
Chemphyschem ; : e202400216, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072857

RESUMO

The parasitic formation of singlet oxygen in aprotic alkaline/air batteries presents a challenge for the technical development of these systems. Avoidance strategies and investigation of reaction paths such as disproportionation of LiO2 and NaO2 have been presented. Furthermore, the dissociation of these superoxide systems have been discussed be as an alternative reaction channel. Here, we present a fundamental study of the electronic nature and dissociation behaviour of the alkali superoxides. The molecular systems were calculated at the CASSCF/CASPT2-level of theory. We determined the minimum energy crossing points along the dissociation required to form 3O2 and 1O2. Building on these results, a surface-hopping AIMD-simulation was performed employing the SHARC program package to follow the electronic transitions along the minimum energy crossing pooints during the dissociation. The feasibility of populating the electronic state corresponding to the formation of singlet oxygen during dissociation was demonstrated. For LiO2, 6.85% of the trajectories were found to terminate under formation of 1O2, whereas for NaO2 only 1.68% of the trajectories ended up in 1O2 formation. This represents an inverse trend to that reported in the literature. This observation suggests that the dissociation is a viable, monomolecular reaction path to 1O2 that complements the disproportionation pathway.

9.
Chemphyschem ; : e202400331, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073265

RESUMO

Cations of diamondoids and derivatives thereof have recently become the subject of experimental, spectroscopic studies due to their potential role in astrochemistry. In particular, their electronic spectra and photoinduced dynamics trigger great interest. Here, we report on computational investigations of two nitrogen-containing derivatives of the adamantane cation (Ada+, C10H16+), the amantadine cation (Ama+, C10H15NH2+) and the 1-cyanoadamantane cation (Ada-CN+, C10H15CN+). Specifically, we study electronic (vibrationally resolved) spectra and nonadiabatic molecular dynamics (modeled using the surface hopping approach based on semiempirical electronic structure theory) of these radical cations. The internal conversion time constants as well as reactive relaxation outcomes (cage-opening and hydrogen loss) are compared for the two derivatives and also with the case of Ada+ [Roy et al., Theor. Chem. Acc.2023, 142, 71]. Remarkably, we find a longer ground-state recovery time for Ada-CN+ than for Ama+ (for the same excitation energy window), despite a smaller excitation energy for the former. Thus, a static energy gap law cannot be used to rationalize nonadiabatic dynamics and excited-state lifetimes in this case: Dynamics and details of the couplings between several states play a decisive role.

10.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000539

RESUMO

Isocitrate dehydrogenase 1 (IDH1) is a necessary enzyme for cellular respiration in the tricarboxylic acid cycle. Mutant isocitrate dehydrogenase 1 (mIDH1) has been detected overexpressed in a variety of cancers. mIDH1 inhibitor ivosidenib (AG-120) was only approved by the Food and Drug Administration (FDA) for marketing, nevertheless, a range of resistance has been frequently reported. In this study, several mIDH1 inhibitors with the common backbone pyridin-2-one were explored using the three-dimensional structure-activity relationship (3D-QSAR), scaffold hopping, absorption, distribution, metabolism, excretion (ADME) prediction, and molecular dynamics (MD) simulations. Comparative molecular field analysis (CoMFA, R2 = 0.980, Q2 = 0.765) and comparative molecular similarity index analysis (CoMSIA, R2 = 0.997, Q2 = 0.770) were used to build 3D-QSAR models, which yielded notably decent predictive ability. A series of novel structures was designed through scaffold hopping. The predicted pIC50 values of C3, C6, and C9 were higher in the model of 3D-QSAR. Additionally, MD simulations culminated in the identification of potent mIDH1 inhibitors, exhibiting strong binding interactions, while the analyzed parameters were free energy landscape (FEL), radius of gyration (Rg), solvent accessible surface area (SASA), and polar surface area (PSA). Binding free energy demonstrated that C2 exhibited the highest binding free energy with IDH1, which was -93.25 ± 5.20 kcal/mol. This research offers theoretical guidance for the rational design of novel mIDH1 inhibitors.


Assuntos
Isocitrato Desidrogenase , Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/metabolismo , Isocitrato Desidrogenase/genética , Humanos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Piridonas/química , Piridonas/farmacologia
11.
J Cheminform ; 16(1): 77, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965600

RESUMO

SMILES-based generative models are amongst the most robust and successful recent methods used to augment drug design. They are typically used for complete de novo generation, however, scaffold decoration and fragment linking applications are sometimes desirable which requires a different grammar, architecture, training dataset and therefore, re-training of a new model. In this work, we describe a simple procedure to conduct constrained molecule generation with a SMILES-based generative model to extend applicability to scaffold decoration and fragment linking by providing SMILES prompts, without the need for re-training. In combination with reinforcement learning, we show that pre-trained, decoder-only models adapt to these applications quickly and can further optimize molecule generation towards a specified objective. We compare the performance of this approach to a variety of orthogonal approaches and show that performance is comparable or better. For convenience, we provide an easy-to-use python package to facilitate model sampling which can be found on GitHub and the Python Package Index.Scientific contributionThis novel method extends an autoregressive chemical language model to scaffold decoration and fragment linking scenarios. This doesn't require re-training, the use of a bespoke grammar, or curation of a custom dataset, as commonly required by other approaches.

12.
Bioorg Med Chem Lett ; 111: 129902, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059564

RESUMO

Integrase strand transfer inhibitors (INSTIs) are the most prescribed anchor drug in antiretroviral therapy. Today, there is an increasing need for long-acting treatment of HIV-1 infection. Improving drug pharmacokinetics and anti-HIV-1 activity are key to developing more robust inhibitors suitable for long-acting formulations, but 2nd-generation INSTIs have chiral centers, making it difficult to conduct further exploration. In this study, we designed aza-tricyclic and aza-bicyclic carbamoyl pyridone scaffolds which are devoid of the problematic hemiaminal stereocenter present in dolutegravir (DTG). This scaffold hopping made it easy to introduce several substituents, and evolving structure-activity studies using these scaffolds resulted in several leads with promising properties.


Assuntos
Desenho de Fármacos , Inibidores de Integrase de HIV , Integrase de HIV , HIV-1 , Piridonas , Humanos , Compostos Aza/química , Compostos Aza/farmacologia , Compostos Aza/síntese química , Relação Dose-Resposta a Droga , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/farmacologia , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/síntese química , HIV-1/efeitos dos fármacos , Estrutura Molecular , Piridonas/química , Piridonas/farmacologia , Piridonas/síntese química , Relação Estrutura-Atividade , Integrases/química , Integrases/metabolismo , Integrases/farmacocinética
13.
Sensors (Basel) ; 24(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39066096

RESUMO

The integrated satellite-terrestrial network (ISTN) provides a promising solution to achieve high-data-rate and ubiquitous connectivity in next-generation communication networks. Considering the scarce spectrum resources and unevenly distributed traffic demands, we investigate the resource allocation algorithms for ISTNs, where the beam-hopping (BH)-based satellite system and terrestrial systems share the same frequency band. Taking advantage of the scheduling flexibility of BH technology, the dynamical protection zones are constructed to avoid co-channel interference and improve the spectrum efficiency. Since both spectrum efficiency and user fairness are the key optimization indexes in practical systems, two resource allocation problems are formulated to maximize the weighted sum of capacity (MWSC) and maximize the minimum capacity-to-demand ratio (MMCDR) of ISTNs, respectively. By reformulating the problems as mixed-integer linear programming problems, optimal solutions are obtained. To reduce the computational complexity, two greedy suboptimal algorithms are proposed for the MWSC and MMCDR, respectively. The simulation results show that the proposed algorithms achieve higher spectrum efficiency and guarantee fairness between the satellite and terrestrial systems. It is also shown that both the greedy algorithms perform similarly to the optimal algorithms while having much lower complexity.

14.
Drug Discov Today ; 29(9): 104115, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39067613

RESUMO

Scaffold hopping is a design approach involving alterations to the core structure of an already bioactive scaffold to generate novel molecules to discover bioactive hit compounds with innovative core structures. Scaffold hopping enhances selectivity and potency while maintaining physicochemical, pharmacodynamic (PD), and pharmacokinetic (PK) properties, including toxicity parameters. Numerous molecules have been designed based on a scaffold-hopping strategy that showed potent inhibition activity against multiple targets for the diverse types of malignancy. In this review, we critically discuss recent applications of scaffold hopping along with essential components of medicinal chemistry, such as structure-activity relationship (SAR) profiles. Moreover, we shed light on the limitations and challenges associated with scaffold hopping-based anticancer drug discovery.

15.
J Agric Food Chem ; 72(31): 17599-17607, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39046270

RESUMO

The discovery of readily available and easily modifiable new models is a crucial and practical solution for agrochemical innovation. Antifungal function-oriented fusion of triazole with the prevalidated lead (R)-LE001 affords a novel framework with a broad and enhanced antifungal spectrum. Characterized by the easy accessibility and adjustability of [1,2,4]triazolo[4,3-a]pyridine, modular fine-tuning provided a set of unprecedented leads (e.g., Z23, Z25, Z26, etc.) with superior antifungal potentials than the positive control boscalid. Candidate Z23 exhibited a more promising antifungal activity against Sclerotinia sclerotiorum, Botrytis cinerea, and Phytophthora capsici with EC50 values of 0.7, 0.6, and 0.5 µM, respectively. This candidate could effectively control boscalid-resistant B. cinerea strains and also exhibit good vivo efficacy in controlling gray mold. Noteworthily, both the SDH-inhibition and the efficiency against Oomycete P. capsici are quite distinct from that of the positive control boscalid. A molecular docking simulation also differentiates Z23 from boscalid. These findings highlight the potential of [1,2,4]triazolo[4,3-a]pyridine amide as a novel antifungal model.


Assuntos
Compostos de Anilina , Ascomicetos , Botrytis , Fungicidas Industriais , Niacinamida , Phytophthora , Doenças das Plantas , Triazóis , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Botrytis/efeitos dos fármacos , Botrytis/crescimento & desenvolvimento , Triazóis/química , Triazóis/farmacologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Niacinamida/química , Niacinamida/farmacologia , Relação Estrutura-Atividade , Phytophthora/efeitos dos fármacos , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Ascomicetos/efeitos dos fármacos , Ascomicetos/química , Estrutura Molecular , Oxazóis/química , Oxazóis/farmacologia
16.
Int J Sports Physiol Perform ; 19(9): 949-952, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39019445

RESUMO

PURPOSE: This study investigated the test-retest reliability and usefulness of the foot-ankle rebound-jump test (FARJT) for measuring foot-ankle reactive strength metrics in athletes. METHODS: Thirty-six highly trained, healthy athletes (5 female; 21.5 [3.9] y; 1.80 [0.10] m; 72.7 [10.4] kg) performed 8 repeated bilateral vertical foot-ankle rebound jumps on 2 testing days. Testing days were 1 week apart, and these sessions were preceded by a familiarization session. Reactive strength metrics were calculated by dividing jump height (in meters) by contact time (in seconds) for the reactive strength index (RSI) and flight time (in seconds) by contact time (in seconds) for the reactive strength ratio (RSR). The mean of 4 jumps (excluding the first and last 2 jumps) on each testing session were considered for RSI and RSR reliability and usefulness analysis. RESULTS: We found a high reliability of the FARJT for RSI (intraclass correlation coefficient [ICC] > .90 and coefficient of variation [CV] = 12%) and RSR (ICC ≥ .90 and CV = 8%). Regarding their usefulness, both RSI and RSR were rated as "marginal" in detecting the smallest worthwhile change (typical error > smallest worthwhile change) and "good" in detecting a moderate change in performance. CONCLUSIONS: The results showed that a FARJT is a highly reliable test for measuring foot-ankle reactive strength in athletes and useful for quantifying changes, for example, following a training block. However, its usefulness as an accurate daily or weekly monitoring tool in practice is questionable.


Assuntos
Tornozelo , Teste de Esforço , , Força Muscular , Humanos , Feminino , Reprodutibilidade dos Testes , Pé/fisiologia , Masculino , Adulto Jovem , Teste de Esforço/métodos , Tornozelo/fisiologia , Força Muscular/fisiologia , Atletas , Adulto , Adolescente
17.
Langenbecks Arch Surg ; 409(1): 171, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38829557

RESUMO

PURPOSE: We describe details and outcomes of a novel technique for optimizing the surgical field during robotic distal pancreatectomy (RDP) for distal pancreatic lesions, which has become common with potential advantages over laparoscopic surgery. METHODS: For suprapancreatic lymph node dissection and splenic artery ligation, we used the basic center position with a scope through the midline port. During manipulation of the perisplenic area, the left position was used by moving the scope to the left medial side. The left lateral position is optionally used by moving the scope to the left lateral port when scope access to the perisplenic area is difficult. In addition, early splenic artery clipping and short gastric artery dissection for inflow block were performed to minimize bleeding around the spleen. We evaluated retrospectively the surgical outcomes of our method using a scoring system that allocated one point for blood inflow control and one point for optimizing the surgical view in the left position. RESULTS: We analyzed 34 patients who underwent RDP or R-radical antegrade modular pancreatosplenectomy (RAMPS). The left position was applied in 14 patients, and the left lateral position was applied in 6. Based on the scoring system, only the 0-point group (n = 8) had four bleeding cases (50%) with splenic injury or blood pooling; the other 1-point or 2-point groups (n = 13, respectively) had no bleeding cases (p = 0.0046). CONCLUSION: Optimization of the surgical field using scope transition and inflow control ensured safe dissection during RDP.


Assuntos
Pancreatectomia , Neoplasias Pancreáticas , Procedimentos Cirúrgicos Robóticos , Artéria Esplênica , Humanos , Pancreatectomia/métodos , Pancreatectomia/efeitos adversos , Feminino , Masculino , Procedimentos Cirúrgicos Robóticos/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Artéria Esplênica/cirurgia , Neoplasias Pancreáticas/cirurgia , Excisão de Linfonodo/métodos , Adulto , Resultado do Tratamento , Ligadura , Dissecação/métodos , Laparoscopia/métodos
18.
Molecules ; 29(12)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38930878

RESUMO

Aurones, particular polyphenolic compounds belonging to the class of minor flavonoids and overlooked for a long time, have gained significative attention in medicinal chemistry in recent years. Indeed, considering their unique and outstanding biological properties, they stand out as an intriguing reservoir of new potential lead compounds in the drug discovery context. Nevertheless, several physicochemical, pharmacokinetic, and pharmacodynamic (P3) issues hinder their progression in more advanced phases of the drug discovery pipeline, making lead optimization campaigns necessary. In this context, scaffold hopping has proven to be a valuable approach in the optimization of natural products. This review provides a comprehensive and updated picture of the scaffold-hopping approaches directed at the optimization of natural and synthetic aurones. In the literature analysis, a particular focus is given to nitrogen and sulfur analogues. For each class presented, general synthetic procedures are summarized, highlighting the key advantages and potential issues. Furthermore, the biological activities of the most representative scaffold-hopped compounds are presented, emphasizing the improvements achieved and the potential for further optimization compared to the aurone class.


Assuntos
Nitrogênio , Enxofre , Nitrogênio/química , Humanos , Enxofre/química , Benzofuranos/química , Benzofuranos/síntese química , Benzofuranos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Relação Estrutura-Atividade , Descoberta de Drogas/métodos , Animais , Estrutura Molecular
19.
Sensors (Basel) ; 24(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38931709

RESUMO

Accurate localization of devices within Internet of Things (IoT) networks is driven by the emergence of novel applications that require context awareness to improve operational efficiency, resource management, automation, and safety in industry and smart cities. With the Integrated Localization and Communication (ILAC) functionality, IoT devices can simultaneously exchange data and determine their position in space, resulting in maximized resource utilization with reduced deployment and operational costs. Localization capability in challenging scenarios, including harsh environments with complex geometry and obstacles, can be provided with robust, reliable, and energy-efficient communication protocols able to combat impairments caused by interference and multipath, such as the IEEE 802.15.4 Time-Slotted Channel Hopping (TSCH) protocol. This paper presents an enhancement of the TSCH protocol that integrates localization functionality along with communication, improving the protocol's operational capabilities and setting a baseline for monitoring, automation, and interaction within IoT setups in physical environments. A novel approach is proposed to incorporate a hybrid localization by integrating Direction of Arrival (DoA) estimation and Multi-Carrier Phase Difference (MCPD) ranging methods for providing DoA and distance estimates with each transmitted packet. With the proposed enhancement, a single node can determine the location of its neighboring nodes without significantly affecting the reliability of communication and the efficiency of the network. The feasibility and effectiveness of the proposed approach are validated in a real scenario in an office building using low-cost proprietary devices, and the software incorporating the solution is provided. The experimental evaluation results show that a node positioned in the center of the room successfully estimates both the DoA and the distance to each neighboring node. The proposed hybrid localization algorithm demonstrates an accuracy of a few tens of centimeters in a two-dimensional space.

20.
Bioorg Med Chem ; 109: 117791, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38870715

RESUMO

The flavonoid family is a set of well-known bioactive natural molecules, with a wide range of potential therapeutic applications. Despite the promising results obtained in preliminary in vitro/vivo studies, their pharmacokinetic and pharmacodynamic profiles are severely compromised by chemical instability. To address this issue, the scaffold-hopping approach is a promising strategy for the structural optimization of natural leads to discover more potent analogues. In this scenario, this Perspective provides a critical analysis on how the replacement of the chromon-4-one flavonoid core with other bioisosteric nitrogen/sulphur heterocycles might affect the chemical, pharmaceutical and biological properties of the resulting new chemical entities. The investigated derivatives were classified on the basis of their biological activity and potential therapeutic indications. For each session, the target(s), the specific mechanism of action, if available, and the key pharmacophoric moieties were highlighted, as revealed by X-ray crystal structures and in silico structure-based studies. Biological activity data, in vitro/vivo studies, were examined: a particular focus was given on the improvements observed with the new heterocyclic analogues compared to the natural flavonoids. This overview of the scaffold-hopping advantages in flavonoid compounds is of great interest to the medicinal chemistry community to better exploit the vast potential of these natural molecules and to identify new bioactive molecules.


Assuntos
Flavonoides , Compostos Heterocíclicos , Flavonoides/química , Flavonoides/farmacologia , Flavonoides/síntese química , Humanos , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/síntese química , Química Farmacêutica , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/síntese química , Estrutura Molecular , Relação Estrutura-Atividade , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA