Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Front Cell Dev Biol ; 12: 1418296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39184917

RESUMO

Introduction: Aromatic (Ar)-turmerone is a bioactive component of turmeric oil obtained from Curcuma longa. We recently identified a novel analog (A2) of ar-turmerone that protects dopaminergic neurons from toxic stimuli by activating nuclear factor erythroid 2-related factor 2 (Nrf2). D-cysteine increases Nrf2, leading to the activation of chaperone-mediated autophagy (CMA), a pathway in the autophagy-lysosome protein degradation system, in primary cultured cerebellar Purkinje cells. In this study, we attempted to identify novel analogs of ar-turmerone that activate Nrf2 more potently and investigated whether these analogs activate CMA. Methods: Four novel analogs (A4-A7) from A2 were synthesized. We investigated the effects of A2 and novel 4 analogs on Nrf2 expression via immunoblotting and CMA activity via fluorescence observation. Results: Although all analogs, including A2, increased Nrf2 expression, only A4 activated CMA in SH-SY5Y cells. Additionally, A4-mediated CMA activation was not reversed by Nrf2 inhibition, indicating that A4 activated CMA via mechanisms other than Nrf2 activation. We focused on p38, which participates in CMA activation. Inhibition of p38 significantly prevented A4-mediated activation of CMA. Although all novel analogs significantly increased the phosphorylation of p38 6 h after drug treatment, only A4 significantly increased phosphorylation 24 h after treatment. Finally, we revealed that A4 protected SH-SY5Y cells from the cytotoxicity of rotenone, and that this protection was reversed by inhibiting p38. Conclusion: These findings suggest that the novel ar-turmerone analog, A4, activates CMA and protects SH-SY5Y cells through the persistent activation of p38.

2.
Biochem Biophys Res Commun ; 736: 150515, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39128268

RESUMO

Heat shock cognate protein 70 (Hsc70/HSPA8) belongs to the Hsp70 family of molecular chaperones. The fundamental functions of Hsp70 family molecular chaperones depend on ATP-dependent allosteric regulation of binding and release of hydrophobic polypeptide substrates. Hsc70 is also involved in various other cellular functions including selective pathways of protein degradation: chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI), in which Hsc70 recruits substrate proteins containing a KFERQ-like pentapeptide motif from the cytosol to lysosomes and late endosomes, respectively. However, whether the interaction between Hsc70 and the pentapeptide motif is direct or mediated by other molecules has remained unknown. In the present study, we introduced a photo-crosslinker near the KFERQ motif in a CMA/eMI model substrate and successfully detected its crosslinking with Hsc70, revealing the direct interaction between Hsc70 and the KFERQ motif for the first time. In addition, we demonstrated that the loss of the Hsc70 ATPase activity by the D10 N mutation appreciably reduced the crosslinking efficiency. Our present results suggested that the ATP allostery of Hsc70 is involved in the direct interaction of Hsc70 with the KFERQ-like pentapeptide.

3.
Protein Sci ; 33(8): e5105, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39012012

RESUMO

The Hsp70 system is essential for maintaining protein homeostasis and comprises a central Hsp70 and two accessory proteins that belong to the J-domain protein (JDP) and nucleotide exchange factor families. Posttranslational modifications offer a means to tune the activity of the system. We explore how phosphorylation of specific residues of the J-domain of DNAJA2, a class A JDP, regulates Hsc70 activity using biochemical and structural approaches. Among these residues, we find that pseudophosphorylation of Y10 and S51 enhances the holding/folding balance of the Hsp70 system, reducing cochaperone collaboration with Hsc70 while maintaining the holding capacity. Truly phosphorylated J domains corroborate phosphomimetic variant effects. Notably, distinct mechanisms underlie functional impacts of these DNAJA2 variants. Pseudophosphorylation of Y10 induces partial disordering of the J domain, whereas the S51E substitution weakens essential DNAJA2-Hsc70 interactions without a large structural reorganization of the protein. S51 phosphorylation might be class-specific, as all cytosolic class A human JDPs harbor a phosphorylatable residue at this position.


Assuntos
Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP40 , Domínios Proteicos , Dobramento de Proteína , Humanos , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Modelos Moleculares , Fosforilação
4.
Virus Res ; 347: 199433, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38992806

RESUMO

The process of viruses entering host cells is complex, involving multiple aspects of the molecular organization of the cell membrane, viral proteins, the interaction of receptor molecules, and cellular signaling. Most viruses depend on endocytosis for uptake, when viruses reach the appropriate location, they are released from the vesicles, undergo uncoating, and release their genomes. Heat shock cognate protein 70(HSC70): also known as HSPA8, a protein involved in mediating clathrin-mediated endocytosis (CME), is involved in various viral entry processes. In this mini-review, our goal is to provide a summary of the function of HSC70 in viral entry. Understanding the interaction networks of HSC70 with viral proteins helps to provide new directions for targeted therapeutic strategies against viral infections.


Assuntos
Endocitose , Proteínas de Choque Térmico HSC70 , Internalização do Vírus , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSC70/genética , Humanos , Animais , Proteínas Virais/metabolismo , Proteínas Virais/genética , Viroses/virologia , Viroses/metabolismo , Interações Hospedeiro-Patógeno , Vírus/metabolismo , Vírus/genética
5.
Am J Physiol Gastrointest Liver Physiol ; 327(2): G267-G283, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38860860

RESUMO

Biliary atresia (BA) is the leading indication for pediatric liver transplantation. Rhesus rotavirus (RRV)-induced murine BA develops an obstructive cholangiopathy that mirrors the human disease. We have previously demonstrated the "SRL" motif on RRV's VP4 protein binds to heat shock cognate 70 protein (Hsc70) facilitating entry into cholangiocytes. In this study, we analyzed how binding to Hsc70 affects viral endocytosis, intracellular trafficking, and uniquely activates the signaling pathway that induces murine BA. Inhibition of clathrin- and dynamin-mediated endocytosis in cholangiocytes following infection demonstrated that blocking dynamin decreased the infectivity of RRV, whereas clathrin inhibition had no effect. Blocking early endosome trafficking resulted in decreased viral titers of RRV, whereas late endosome inhibition had no effect. After infection, TLR3 expression and p-NF-κB levels increased in cholangiocytes, leading to increased release of CXCL9 and CXCL10. Infected mice knocked out for TLR3 had decreased levels of CXCL9 and CXCL10, resulting in reduced NK cell numbers. Human patients with BA experienced an increase in CXCL10 levels, suggesting this as a possible pathway leading to biliary obstruction. Viruses that use Hsc70 for cell entry exploit a clathrin-independent pathway and traffic to the early recycling endosome uniquely activating NF-κB through TLR3, leading to the release of CXCL9 and CXCL10 and inducing NK cell recruitment. These results define how the "SRL" peptide found on RRV's VP4 protein modulates viral trafficking, inducing the host response leading to bile duct obstruction.NEW & NOTEWORTHY In this study, we have determined that the presence of the "SRL" peptide on RRV alters its method of endocytosis and intracellular trafficking through viral binding to heat shock cognate 70 protein. This initiates an inflammatory pathway that stimulates the release of cytokines associated with biliary damage and obstruction.


Assuntos
Atresia Biliar , Proteínas do Capsídeo , Modelos Animais de Doenças , Endocitose , Infecções por Rotavirus , Rotavirus , Atresia Biliar/metabolismo , Atresia Biliar/virologia , Animais , Camundongos , Infecções por Rotavirus/metabolismo , Infecções por Rotavirus/virologia , Humanos , Proteínas do Capsídeo/metabolismo , Receptor 3 Toll-Like/metabolismo , Sítios de Ligação , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSC70/genética , Camundongos Knockout , NF-kappa B/metabolismo , Transdução de Sinais , Clatrina/metabolismo , Camundongos Endogâmicos C57BL , Quimiocina CXCL10
6.
Mol Neurobiol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775879

RESUMO

Autophagy is an intracellular recycling process that maintains cellular homeostasis by degrading excess or defective macromolecules and organelles. Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy in which a substrate containing a KFERQ-like motif is recognized by a chaperone protein, delivered to the lysosomal membrane, and then translocated to the lysosome for degradation with the assistance of lysosomal membrane protein 2A. Normal CMA activity is involved in the regulation of cellular proteostasis, metabolism, differentiation, and survival. CMA dysfunction disturbs cellular homeostasis and directly participates in the pathogenesis of human diseases. Previous investigations on CMA in the central nervous system have primarily focus on neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Recently, mounting evidence suggested that brain injuries involve a wider range of types and severities, making the involvement of CMA in the bidirectional processes of damage and repair even more crucial. In this review, we summarize the basic processes of CMA and its associated regulatory mechanisms and highlight the critical role of CMA in brain injury such as cerebral ischemia, traumatic brain injury, and other specific brain injuries. We also discuss the potential of CMA as a therapeutic target to treat brain injury and provide valuable insights into clinical strategies.

7.
Mol Microbiol ; 121(6): 1127-1147, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38629786

RESUMO

Minute virus of canines (MVC) belongs to the genus Bocaparvovirus (formerly Bocavirus) within the Parvoviridae family and causes serious respiratory and gastrointestinal symptoms in neonatal canines worldwide. A productive viral infection relies on the successful recruitment of host factors for various stages of the viral life cycle. However, little is known about the MVC-host cell interactions. In this study, we identified that two cellular proteins (Hsc70 and Hsp70) interacted with NS1 and VP2 proteins of MVC, and both two domains of Hsc70/Hsp70 were mediated for their interactions. Functional studies revealed that Hsp70 was induced by MVC infection, knockdown of Hsc70 considerably suppressed MVC replication, whereas the replication was dramatically promoted by Hsp70 knockdown. It is interesting that low amounts of overexpressed Hsp70 enhanced viral protein expression and virus production, but high amounts of Hsp70 overexpression weakened them. Upon Hsp70 overexpressing, we observed that the ubiquitination of viral proteins changed with Hsp70 overexpression, and proteasome inhibitor (MG132) restored an accumulation of viral proteins. In addition, we verified that Hsp70 family inhibitors remarkably decreased MVC replication. Overall, we identified Hsc70 and Hsp70 as interactors of MVC NS1 and VP2 proteins and were involved in MVC replication, which may provide novel targets for anti-MVC approach.


Assuntos
Proteínas de Choque Térmico HSC70 , Proteínas de Choque Térmico HSP70 , Replicação Viral , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSC70/genética , Animais , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Cães , Bocavirus/genética , Bocavirus/metabolismo , Bocavirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Humanos , Infecções por Parvoviridae/virologia , Infecções por Parvoviridae/metabolismo , Ubiquitinação , Proteínas Virais/metabolismo , Proteínas Virais/genética , Células HEK293 , Interações Hospedeiro-Patógeno , Linhagem Celular , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/genética , Doenças do Cão/virologia
8.
Cell Oncol (Dordr) ; 47(4): 1391-1403, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38607517

RESUMO

PURPOSE: GPX8, which is found in the endoplasmic reticulum lumen, is a member of the Glutathione Peroxidases (GPXs) family. Its role in hepatocellular carcinoma (HCC) is unknown. METHODS: Immunohistochemical staining was used to detect the protein levels of GPX8 in HCC tissue microarrays. A short hairpin RNA lentivirus was used to knock down GPX8, and the main signaling pathways were investigated using transcriptome sequencing and a phosphorylated kinase array. The sphere formation assays, cloning-formation assays and cell migration assays were used to evaluate the stemness and migration ability of HCC cells. Identifying the GPX8-interacting proteins was accomplished through immunoprecipitation and protein mass spectrometry. RESULTS: The GPX8 protein levels were downregulated in HCC patients. Low expression of GPX8 protein was related to early recurrence and poor prognosis in HCC patients. GPX8 knockdown could enhance the stemness and migration ability of HCC cells. Consistently, Based on transcriptome analysis, multiple signaling pathways that include the PI3K-AKT and signaling pathways that regulate the pluripotency of stem cells, were activated after GPX8 knockdown. The downregulation of GPX8 could increase the expression of the tumor stemness markers KLF4, OCT4, and CD133. The in vivo downregulation of GPX8 could also promote the subcutaneous tumor-forming and migration ability of HCC cells. MK-2206, which is a small-molecule inhibitor of AKT, could reverse the tumor-promoting effects both in vivo and in vitro. We discovered that GPX8 and the 71-kDa heat shock cognate protein (Hsc70) have a direct interaction. The phosphorylation of AKT encouraged the translocation of Hsc70 into the nucleus and the expression of the PI3K p110 subunit, thereby increasing the downregulation of GPX8. CONCLUSION: The findings from this study demonstrate the anticancer activity of GPX8 in HCC by inactivating the Hsc70/AKT pathway. The results suggest a possible therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular , Movimento Celular , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação para Baixo/genética , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Fator 4 Semelhante a Kruppel , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
9.
Life (Basel) ; 14(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38541642

RESUMO

The purpose of this study was to evaluate the effects of Dab1 gene silencing on the immunoexpression of light chain 3 beta (Lc3b), glucose regulating protein 78 (Grp78), heat shock cognate 71 (Hsc70), mammalian target of rapamycin (mTOR) and lysosomal-associated membrane protein 2A (Lamp2a) in the lung tissue of developing yotari (Dab1-/-) and wild-type (wt) mice. The lung epithelium and mesenchyme of the embryos at gestational days E13.5 and E15.5 were examined using immunofluorescence and semi-quantitative methods. In the pulmonary mesenchyme and epithelium, Grp78 and Lc3b of moderate fluorescence reactivity was demonstrated in wt mice for both evaluated time points, while yotari mice exhibited only epithelial reactivity for the same markers. Mild punctate expression of Hsc70 was observed for both genotypes. A significant difference was present when analyzing mTOR expression, where wt mice showed strong perinuclear staining in the epithelium. According to our data, Dab1 gene silencing may result in autophagy abnormalities, which could then cause respiratory system pathologies via defective lung cell degradation by lysosome-dependent cell elimination.

10.
FEBS Lett ; 598(7): 818-836, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38418371

RESUMO

Plasmodium falciparum renovates the host erythrocyte to survive during intraerythrocytic development. This renovation requires many parasite proteins to unfold and move outside the parasitophorous vacuolar membrane, and chaperone-regulated protein folding becomes essential for the exported proteins to function. We report on a type-IV J domain protein (JDP), PF3D7_1401100, which we found to be processed before export and trafficked inside the lumen of parasite-derived structures known as J-dots. We found this protein to have holdase activity, as well as stimulate the ATPase and aggregation suppression activity of the human HSP70 chaperone HsHSPA8; thus, we named it "HSPA8-interacting J protein" (A8iJp). Moreover, we found a subset of HsHSPA8 to co-localize with A8iJp inside the infected human erythrocyte. Our results suggest that A8iJp modulates HsHSPA8 chaperone activity and may play an important role in host erythrocyte renovation.


Assuntos
Proteínas de Choque Térmico HSP40 , Plasmodium falciparum , Humanos , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Ligação Proteica , Proteínas de Protozoários/metabolismo , Chaperonas Moleculares/metabolismo , Eritrócitos , Dobramento de Proteína , Proteínas de Choque Térmico HSC70/metabolismo
11.
Adv Sci (Weinh) ; 11(14): e2307749, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38311582

RESUMO

The heart primarily derives its energy through lipid oxidation. In cardiomyocytes, lipids are stored in lipid droplets (LDs) and are utilized in mitochondria, although the structural and functional connections between these two organelles remain largely unknown. In this study, visible evidence have presented indicating that a complex is formed at the mitochondria-LD membrane contact (MLC) site, involving mitochondrion-localized Mfn2 and LD-localized Hsc70. This complex serves to tether mitochondria to LDs, facilitating the transfer of fatty acids (FAs) from LDs to mitochondria for ß-oxidation. Reduction of Mfn2 induced by lipid overload inhibits MLC, hinders FA transfer, and results in lipid accumulation. Restoring Mfn2 reinstates MLC, alleviating myocardial lipotoxicity under lipid overload conditions both in-vivo and in-vitro. Additionally, prolonged lipid overload induces Mfn2 degradation through the ubiquitin-proteasome pathway, following Mfn2 acetylation at the K243 site. This leads to the transition from adaptive lipid utilization to maladaptive lipotoxicity. The experimental findings are supported by clinical data from patients with obesity and age-matched non-obese individuals. These translational results make a significant contribution to the molecular understanding of MLC in the heart, and offer new insights into its role in myocardial lipotoxicity.


Assuntos
GTP Fosfo-Hidrolases , Proteínas de Choque Térmico HSC70 , Gotículas Lipídicas , Metabolismo dos Lipídeos , Miócitos Cardíacos , Humanos , Ácidos Graxos/metabolismo , Hidrolases/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Camundongos , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Coração , Miócitos Cardíacos/metabolismo
12.
Microbiol Spectr ; 11(6): e0094023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37982627

RESUMO

IMPORTANCE: Malaria transmission by Anopheles gambiae mosquitoes is very effective, in part because the parasite expresses a surface protein called Pfs47 that allows it to evade the mosquito immune system. Here we investigate how this protein changes the response of mosquito midgut epithelial cells to invasion by the parasite. Pfs47 is known to interact with P47Rec, a mosquito midgut receptor. We found that Pf47Rec inhibits caspase-mediated apoptosis by interacting with the Hsc70-3. This disrupts nitration of midgut epithelial cells invaded by the parasite and the release of hemocyte-derived microvesicles, which are critical for effective activation of the mosquito complement system that eliminates the parasite.


Assuntos
Anopheles , Malária , Plasmodium , Animais , Humanos , Plasmodium falciparum , Anopheles/parasitologia , Proteínas de Choque Térmico/metabolismo
13.
Int J Mol Sci ; 24(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37834234

RESUMO

The type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family produces the critical lipid regulator phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) in the plasma membrane (PM). Here, we investigated the potential role of PIP5Kγ, a PIP5K isoform, in the Hippo pathway. The ectopic expression of PIP5Kγ87 or PIP5Kγ90, two major PIP5Kγ splice variants, activated large tumor suppressor kinase 1 (LATS1) and inhibited Yes-associated protein (YAP), whereas PIP5Kγ knockdown yielded opposite effects. The regulatory effects of PIP5Kγ were dependent on its catalytic activity and the presence of Merlin and LATS1. PIP5Kγ knockdown weakened the restoration of YAP phosphorylation upon stimulation with epidermal growth factor or lysophosphatidic acid. We further found that PIP5Kγ90 bound to the Merlin's band 4.1/ezrin/radixin/moesin (FERM) domain, forming a complex with PI(4,5)P2 and LATS1 at the PM. Notably, PIP5Kγ90, but not its kinase-deficient mutant, potentiated Merlin-LATS1 interaction and recruited LATS1 to the PM. Consistently, PIP5Kγ knockdown or inhibitor (UNC3230) enhanced colony formation in carcinoma cell lines YAP-dependently. In addition, PIP5Kγ90 interacted with heat shock cognate 71-kDa protein (Hsc70), which also contributed to Hippo pathway activation. Collectively, our results suggest that PIP5Kγ regulates the Hippo-YAP pathway by forming a functional complex with Merlin and LATS1 at the PI(4,5)P2-rich PM and via interplay with Hsc70.


Assuntos
Via de Sinalização Hippo , Neurofibromina 2 , Neurofibromina 2/genética , Neurofibromina 2/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proliferação de Células/fisiologia , Transdução de Sinais
14.
Fish Shellfish Immunol ; 141: 109078, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716494

RESUMO

Heat shock proteins play an important role in host defense, and modulate immune responses against pathogen infection. In this study, a novel HSC70 from the mud crab (designated as SpHSC70) was cloned and characterized. The full length of SpHSC70 contained a 58 bp 5'untranslated region (UTR), an open reading frame (ORF) of 2,046 bp and a 3'UTR of 341 bp. The SpHSC70 protein included the conserved DnaK motif. The mRNA of SpHSC70 was highly expressed in the hemocytes, heart and hepatopancreas, and lowly expressed in the intestine. The subcellular localization results indicated that SpHSC70 was localized in both the cytoplasm and the nucleus. Moreover, SpHSC70 was significantly responsive to bacterial challenge. RNA interference experiment was designed to investigate the roles of SpHSC70 in response to bacterial challenge. V. parahaemolyticus infection induced the expression levels of SpPO, SpHSP70, SpSOD and SpCAT. Knocking down SpHSC70 in vivo can decrease the expression of these genes after V. parahaemolyticus infection. These results suggested that SpHSC70 could play a vital role in defense against V. parahaemolyticus infection via activating the immune response and antioxidant defense signaling pathways in the mud crab.


Assuntos
Braquiúros , Vibrioses , Vibrio parahaemolyticus , Animais , Vibrio parahaemolyticus/fisiologia , Vibrioses/microbiologia , Interferência de RNA , Bactérias/metabolismo , Proteínas de Artrópodes , Filogenia
15.
Toxicology ; 495: 153610, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37541565

RESUMO

Aluminum (Al) is recognized as a neurotoxin. Studies have confirmed that the neurotoxicity induced by Al may be related to tau hyperphosphorylation. Phosphorylated tau is degraded through the ubiquitin-proteasome pathway (UPP), in which the carboxyl terminus of Hsc70-interacting protein (CHIP) plays an important role. However, whether the CHIP plays a role in regulating tau hyperphosphorylation induced by Al is yet to be determined. The purpose of this study was to explore the molecular mechanism of the CHIP in tau hyperphosphorylation induced by AlCl3 in N2a cells. Mouse neuroblastoma cells (N2a) were exposed to different concentrations of AlCl3 (0, 0.5, 1, and 2 mM) and treated with CHIP/CHIP shRNA/CHIP (ΔU-box)/CHIP (ΔTPR) plasmid transfection. The cell viability was determined by the CCK-8 kit. Protein expression was detected by Western blot. The interaction between CHIP and AlCl3 exposure on the proteins was analyzed by factorial design ANOVA. The results showed that Al can cause tau hyperphosphorylation, mainly affecting the pThr231, pSer262, and pSer396 sites of tau in N2a cells. UPP is involved in the degradation of tau hyperphosphorylation induced by Al in N2a cells, of which CHIP may be the main regulatory target. Both the U-box and TPR domains of CHIP are indispensable and play an important role in the regulation of tau hyperphosphorylation induced by AlCl3 in N2a cells.


Assuntos
Proteínas de Choque Térmico HSC70 , Ubiquitina-Proteína Ligases , Camundongos , Animais , Proteínas de Choque Térmico HSC70/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas/metabolismo , Proteínas de Transporte/metabolismo , Transfecção , Proteínas tau/genética , Proteínas tau/toxicidade , Proteínas tau/metabolismo , Fosforilação
16.
Genes (Basel) ; 14(6)2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37372351

RESUMO

HSPA8 is involved in many stroke-associated cellular processes, playing a pivotal role in the protein quality control system. Here we report the results of the pilot study aimed at determining whether HSPA8 SNPs are linked to the risk of ischemic stroke (IS). DNA samples from 2139 Russians (888 IS patients and 1251 healthy controls) were genotyped for tagSNPs (rs1461496, rs10892958, and rs1136141) in the HSPA8 gene using probe-based PCR. SNP rs10892958 of HSPA8 was associated with an increased risk (risk allele G) of IS in smokers (OR = 1.37; 95% CI = 1.07-1.77; p = 0.01) and patients with low fruit and vegetable consumption (OR = 1.36; 95% CI = 1.14-1.63; p = 0.002). SNP rs1136141 of HSPA8 was also associated with an increased risk of IS (risk allele A) exclusively in smokers (OR = 1.68; 95% CI = 1.23-2.28; p = 0.0007) and in patients with a low fruit and vegetable intake (OR = 1.29; 95% CI = 1.05-1.60; p = 0.04). Sex-stratified analysis revealed an association of rs10892958 HSPA8 with an increased risk of IS in males (risk allele G; OR = 1.30; 95% CI = 1.05-1.61; p = 0.01). Thus, SNPs rs10892958 and rs1136141 in the HSPA8 gene represent novel genetic markers of IS.


Assuntos
Proteínas de Choque Térmico , AVC Isquêmico , Masculino , Humanos , Proteínas de Choque Térmico/genética , Projetos Piloto , Proteínas de Choque Térmico HSC70/genética , Genótipo
17.
Br J Pharmacol ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311689

RESUMO

BACKGROUND AND PURPOSE: Chaperone-mediated autophagy (CMA) is a selective type of autophagy targeting protein degradation and maintains high activity in many malignancies. Inhibition of the combination of HSC70 and LAMP2A can potently block CMA. At present, knockdown of LAMP2A remains the most specific method for inhibiting CMA and chemical inhibitors against CMA have not yet been discovered. EXPERIMENTAL APPROACH: Levels of CMA in non-small cell lung cancer (NSCLC) tissue samples were confirmed by tyramide signal amplification dual immunofluorescence assay. High-content screening was performed based on CMA activity, to identify potential inhibitors of CMA. Inhibitor targets were determined by drug affinity responsive target stability-mass spectrum and confirmed by protein mass spectrometry. CMA was inhibited and activated to elucidate the molecular mechanism of the CMA inhibitor. KEY RESULTS: Suppression of interactions between HSC70 and LAMP2A blocked CMA in NSCLC, restraining tumour growth. Polyphyllin D (PPD) was identified as a targeted CMA small-molecule inhibitor through disrupting HSC70-LAMP2A interactions. The binding sites for PPD were E129 and T278 at the nucleotide-binding domain of HSC70 and C-terminal of LAMP2A, respectively. PPD accelerated unfolded protein generation to induce reactive oxygen species (ROS) accumulation by inhibiting HSC70-LAMP2A-eIF2α signalling axis. Also, PPD prevented regulatory compensation of macroautophagy induced by CMA inhibition via blocking the STX17-SNAP29-VAMP8 signalling axis. CONCLUSIONS AND IMPLICATIONS: PPD is a targeted CMA inhibitor that blocked both HSC70-LAMP2A interactions and LAMP2A homo-multimerization. CMA suppression without increasing the regulatory compensation from macroautophagy is a good strategy for NSCLC therapy.

18.
Front Aging Neurosci ; 15: 1090400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251806

RESUMO

Background: Alzheimer's disease (AD) is the most common cause of dementia and cognitive decline, while its pathological mechanism remains unclear. Tauopathies is one of the most widely accepted hypotheses. In this study, the molecular network was established and the expression pattern of the core gene was analyzed, confirming that the dysfunction of protein folding and degradation is one of the critical factors for AD. Methods: This study analyzed 9 normal people and 22 AD patients' microarray data obtained from GSE1297 in Gene Expression Omnibus (GEO) database. The matrix decomposition analysis was used to identify the correlation between the molecular network and AD. The mathematics of the relationship between the Mini-Mental State Examination (MMSE) and the expression level of the genes involved in the molecular network was found by Neural Network (NN). Furthermore, the Support Vector Machine (SVM) model was for classification according to the expression value of genes. Results: The difference of eigenvalues is small in first three stages and increases dramatically in the severe stage. For example, the maximum eigenvalue changed to 0.79 in the severe group from 0.56 in the normal group. The sign of the elements in the eigenvectors of biggest eigenvalue reversed. The linear function of the relationship between clinical MMSE and gene expression values was observed. Then, the model of Neural Network (NN) is designed to predict the value of MMSE based on the linear function, and the predicted accuracy is up to 0.93. For the SVM classification, the accuracy of the model is 0.72. Conclusion: This study shows that the molecular network of protein folding and degradation represented by "BAG2-HSC70-STUB1-MAPT" has a strong relationship with the occurrence and progression of AD, and this degree of correlation of the four genes gradually weakens with the progression of AD. The mathematical mapping of the relationship between gene expression and clinical MMSE was found, and it can be used in predicting MMSE or classification with high accuracy. These genes are expected to be potential biomarkers for early diagnosis and treatment of AD.

19.
Insects ; 14(5)2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37233060

RESUMO

A. m. jemenetica is the indigenous honeybee of the Arabian Peninsula. It is highly adapted to extreme temperatures exceeding 40 °C, yet important molecular aspects of its adaptation are not well documented. In this study we quantify relative expression levels of small- and large-molecular-weight heat-shock proteins (hsp10, hsp28, hsp70, hsp83, hsp90 and hsc70 (mRNAs)) in the thermos-tolerant A. m. jemenetica and thermosusceptible A. m. carnica forager honeybee subspecies under desert (Riyadh) and semi-arid (Baha) summer conditions. The results showed significant day-long higher expression levels of hsp mRNAs in A. m. jemenetica compared to A. m. carnica under the same conditions. In Baha, the expression levels were very modest in both subspecies compared those in Riyadh though the expression levels were higher in A. m. jemenetica. The results also revealed a significant interaction between subspecies, which indicated milder stress conditions in Baha. In conclusion, the higher expression levels of hsp10, hsp28, hsp70ab, hsp83 and hsp90 mRNAs in A. m. jemenetica are key elements in the adaptive nature of A. m. jemenetica to local conditions that enhance its survival and fitness in high summer temperatures.

20.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37213079

RESUMO

Dentin is the major hard tissue of teeth formed by differentiated odontoblasts. How odontoblast differentiation is regulated remains enigmatic. Here, we report that the E3 ubiquitin ligase CHIP is highly expressed in undifferentiated dental mesenchymal cells and downregulated after differentiation of odontoblasts. Ectopic expression of CHIP inhibits odontoblastic differentiation of mouse dental papilla cells, whereas knockdown of endogenous CHIP has opposite effects. Chip (Stub1) knockout mice display increased formation of dentin and enhanced expression of odontoblast differentiation markers. Mechanistically, CHIP interacts with and induces K63 polyubiquitylation of the transcription factor DLX3, leading to its proteasomal degradation. Knockdown of DLX3 reverses the enhanced odontoblastic differentiation caused by knockdown of CHIP. These results suggest that CHIP inhibits odontoblast differentiation by targeting its tooth-specific substrate DLX3. Furthermore, our results indicate that CHIP competes with another E3 ubiquitin ligase, MDM2, that promotes odontoblast differentiation by monoubiquitylating DLX3. Our findings suggest that the two E3 ubiquitin ligases CHIP and MDM2 reciprocally regulate DLX3 activity by catalyzing distinct types of ubiquitylation, and reveal an important mechanism by which differentiation of odontoblasts is delicately regulated by divergent post-translational modifications.


Assuntos
Odontoblastos , Dente , Animais , Camundongos , Diferenciação Celular/genética , Camundongos Knockout , Dente/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA