Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 438: 138064, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-37995582

RESUMO

This study successfully constructed a novel multifunctional bio-adsorbent using sodium alginate (SA), ferroferric oxide (FFO), and carboxymethyl Huangshui polysaccharide (CMHSP) with rapid separation, pH sensitivity, efficient adsorption, and reusability for enhancing the removal of methylene blue (MB) in wastewater. FTIR, XRD, SEM, and VSM results indicated CMHSP improved the porosity of the hydrogel spheres, thus significantly enhancing the MB adsorption capacity with the rate-limiting controlled by chemical adsorption, intraparticle diffusion, and film diffusion. The maximum adsorption capacity obtained from Langmuir model of SA-FFO-CMHSP (186.57 mg/g) was obviously higher than that of SA-FFO (178.82 mg/g). Thermodynamic results showed that the MB adsorption process was endothermic, spontaneous, and favorable, and physical adsorption was dominant. Remarkably, MB adsorption maintained 87% ∼ 95% of the initial after four adsorption-desorption cycles, and proper carboxymethylation was conducive to MB adsorption over a broader range pH. These findings provided reference for designing new efficient bio-adsorbents and the recyclable utilization of Huangshui by-products, which was of great value.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Alginatos , Azul de Metileno , Adsorção , Hidrogéis , Corantes , Purificação da Água/métodos , Cinética , Concentração de Íons de Hidrogênio
2.
Int J Biol Macromol ; 216: 157-171, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35780922

RESUMO

Huangshui (HS), a typical by-product of traditional Chinese Baijiu, has attracted more and more attention since its rich resources of polysaccharides. However, there's little information on hydrogels preparation by Huangshui polysaccharides (HSPs). A series of novel HSP-loaded hydrogels were synthesized using crude HSP (cHSP), polyvinyl alcohol (PVA), sodium carboxyl methyl cellulose (CMC), and in situ incorporation of Fe3O4 for methylene blue (MB) adsorption for the first time. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and texture tests indicated the paramagnetic hydrogels with porous structure were formed via physical crosslinking, and cHSP had no effect on hydrogel texture. Notably, cHSP enhanced the swelling capacity and MB adsorption ability of the hydrogels, and the corresponding maximum value was 38.67 g/g and 71.07 mg/g, respectively, when the additive amount of cHSP to the hydrogels was 2 % at 25°Ð¡. In addition, the swelling kinetics of hydrogels followed the Schott's second-order kinetics model, while MB adsorption fitted well with the Freundlich isotherm and pseudo-second-order model. Furthermore, intraparticle and film diffusion-controlled MB adsorption process. Significantly, cHSP amount could counteract the negative influence of high temperature on MB adsorption, and the prepared hydrogels could be reusable, demonstrating cHSP effectively promoted the properties of hydrogels and had potential application in MB removal. The adsorption mechanism of MB onto the hydrogels involved ion-exchange, hydrogen bonding, electrostatic interaction, and chemical reaction according to the above results together with the analysis by X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray (EDX) characterizations, thermodynamic, etc.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Hidrogéis/química , Cinética , Metilcelulose , Azul de Metileno/química , Álcool de Polivinil/química , Sódio , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA