Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.350
Filtrar
1.
Front Immunol ; 15: 1385135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756783

RESUMO

Background: The assessment of long-term humoral and cellular immunity post-vaccination is crucial for establishing an optimal vaccination strategy. Methods: This prospective cohort study evaluated adults (≥18 years) who received a BA.4/5 bivalent vaccine. We measured the anti-receptor binding domain immunoglobulin G antibody and neutralizing antibodies (NAb) against wild-type and Omicron subvariants (BA.5, BQ.1.1, BN.1, XBB.1 and EG.5) up to 9 months post-vaccination. T-cell immune responses were measured before and 4 weeks after vaccination. Results: A total of 108 (28 SARS-CoV-2-naïve and 80 previously infected) participants were enrolled. Anti-receptor binding domain immunoglobulin G (U/mL) levels were higher at 9 months post-vaccination than baseline in SAR-CoV-2-naïve individuals (8,339 vs. 1,834, p<0.001). NAb titers against BQ.1.1, BN.1, and XBB.1 were significantly higher at 9 months post-vaccination than baseline in both groups, whereas NAb against EG.5 was negligible at all time points. The T-cell immune response (median spot forming unit/106 cells) was highly cross-reactive at both baseline (wild-type/BA.5/XBB.1.5, 38.3/52.5/45.0 in SARS-CoV-2-naïve individuals; 51.6/54.9/54.9 in SARS-CoV-2-infected individuals) and 4 weeks post-vaccination, with insignificant boosting post-vaccination. Conclusion: Remarkable cross-reactive neutralization was observed against BQ.1.1, BN.1, and XBB.1 up to 9 months after BA.4/5 bivalent vaccination, but not against EG.5. The T-cell immune response was highly cross-reactive.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Imunidade Celular , Imunidade Humoral , SARS-CoV-2 , Vacinação , Humanos , Masculino , COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Feminino , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Pessoa de Meia-Idade , Adulto , Estudos Prospectivos , Idoso , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Linfócitos T/imunologia
2.
Hum Antibodies ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38758995

RESUMO

Following infection and vaccination against SARS-CoV-2, humoral components of the adaptive immune system play a key role in protecting the host. Specifically, B cells generate high-affinity antibodies against various antigens of the virus. In this review, we discuss the mechanisms of immunity initiation through both natural infection and vaccination, shedding light on the activation of B cell subsets in response to SARS-CoV-2 infection and vaccination. The innate immune system serves as the initial line of primary and nonspecific defence against viruses. However, within several days following infection or a vaccine dose, a virus-specific immune response is initiated, primarily by B cells that produce antibodies. These antibodies contribute to the resolution of the disease. Subsequently, these B cells transition into memory B cells, which play a crucial role in providing long-term immunity against the virus. CD4+ T helper cells initiate a cascade, leading to B cell somatic hypermutation, germinal center memory B cells, and the production of neutralizing antibodies. B-cell dysfunction can worsen disease severity and reduce vaccine efficacy. Notably, individuals with B cell immunodeficiency show lower IL-6 production. Furthermore, this review delves into several aspects of immune responses, such as hybrid immunity, which has shown promise in boosting broad-spectrum protection. Cross-reactive immunity is under scrutiny as well, as pre-existing antibodies can offer protection against the disease. We also decipher breakthrough infection mechanisms, especially with the novel variants of the virus. Finally, we discuss some potential therapeutic solutions regarding B cells including convalescent plasma therapy, B-1 cells, B regulatory cell (Breg) modulation, and the use of neutralizing monoclonal antibodies in combating the infection. Ongoing research is crucial to grasp population immunity trends and assess the potential need for booster doses in maintaining effective immune responses against potential viral threats.

3.
Animals (Basel) ; 14(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731330

RESUMO

The African swine fever virus (ASFV) encodes numerous proteins characterized by complex immune escape mechanisms. At present, the structure and function of these proteins, including the F317L protein, have yet to be fully elucidated. In this study, we examined the immunogenicity of the F317L protein. Mice were subcutaneously immunized with the F317L protein using initial and subsequent booster doses, and, at the 28th day post-treatment, we assessed the humoral and cellular immune responses of mice. The F317L protein stimulated production of specific antibodies and activated humoral immune responses. In addition, F317L stimulated the production of large amounts of IFN-γ by splenic lymphocytes, thereby activating cellular immune responses. Using informatics technology, we predicted and synthesized 29 F317L protein T cell epitopes, which were screened using IFN-γ ELISpot. Among these, the F25 (246SRRSLVNPWT255) peptide was identified as having a stronger stimulatory effect than the full-length protein. Collectively, our findings revealed that the ASFV F317L protein can stimulate both strong humoral and cellular immunity in mice, and that the F25 (246SRRSLVNPWT255) peptide may be a potential active T cell epitope. These findings will provide a reference for further in-depth studies of the F317L protein and screening of antigenic epitopes.

4.
Int Immunopharmacol ; 134: 112141, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38733819

RESUMO

BACKGROUND: Novel coronaviruses constitute a significant health threat, prompting the adoption of vaccination as the primary preventive measure. However, current evaluations of immune response and vaccine efficacy are deemed inadequate. OBJECTIVES: The study sought to explore the evolving dynamics of immune response at various vaccination time points and during breakthrough infections. It aimed to elucidate the synergistic effects of epidemiological factors, humoral immunity, and cellular immunity. Additionally, regression curves were used to determine the correlation between the protective efficacy of the vaccine and the stimulated immune response. METHODS: Employing LASSO for high-dimensional data analysis, the study utilised four machine learning algorithms-logistical regression, random forest, LGBM classifier, and AdaBoost classifier-to comprehensively assess the immune response following booster vaccination. RESULTS: Neutralising antibody levels exhibited a rapid surge post-booster, escalating to 102.38 AU/mL at one week and peaking at 298.02 AU/mL at two weeks. Influential factors such as sex, age, disease history, and smoking status significantly impacted post-booster antibody levels. The study further constructed regression curves for neutralising antibodies, non-switched memory B cells, CD4+T cells, and CD8+T cells using LASSO combined with the random forest algorithm. CONCLUSION: The establishment of an artificial intelligence evaluation system emerges as pivotal for predicting breakthrough infection prognosis after the COVID-19 booster vaccination. This research underscores the intricate interplay between various components of immunity and external factors, elucidating key insights to enhance vaccine effectiveness. 3D modelling discerned distinctive interactions between humoral and cellular immunity within prognostic groups (Class 0-2). This underscores the critical role of the synergistic effect of humoral immunity, cellular immunity, and epidemiological factors in determining the protective efficacy of COVID-19 vaccines post-booster administration.

5.
Immunol Cell Biol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715314

RESUMO

Long-lived plasma cells are important for preventing infection by maintaining baseline antibody titers. However, the cues leading to plasma cell differentiation remain unclear. In this article, we discuss recent work assessing the role of affinity on plasma cell differentiation.

6.
Cell ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38772371

RESUMO

Peripheral sensory neurons widely innervate various tissues to continuously monitor and respond to environmental stimuli. Whether peripheral sensory neurons innervate the spleen and modulate splenic immune response remains poorly defined. Here, we demonstrate that nociceptive sensory nerve fibers extensively innervate the spleen along blood vessels and reach B cell zones. The spleen-innervating nociceptors predominantly originate from left T8-T13 dorsal root ganglia (DRGs), promoting the splenic germinal center (GC) response and humoral immunity. Nociceptors can be activated by antigen-induced accumulation of splenic prostaglandin E2 (PGE2) and then release calcitonin gene-related peptide (CGRP), which further promotes the splenic GC response at the early stage. Mechanistically, CGRP directly acts on B cells through its receptor CALCRL-RAMP1 via the cyclic AMP (cAMP) signaling pathway. Activating nociceptors by ingesting capsaicin enhances the splenic GC response and anti-influenza immunity. Collectively, our study establishes a specific DRG-spleen sensory neural connection that promotes humoral immunity, suggesting a promising approach for improving host defense by targeting the nociceptive nervous system.

7.
Insect Sci ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772748

RESUMO

C-type lectins (CTLs) act as pattern recognition receptors (PRRs) to initiate the innate immune response in insects. A CTL with dual carbohydrate recognition domains (CRDs) (named immulectin-4 [IML-4]) was selected from the Ostrinia furnacalis transcriptome dataset for functional studies. We cloned the full-length complementary DNA of O. furnacalis IML-4 (OfIML-4). It encodes a 328-residue protein with a Glu-Pro-Asn (EPN) and Gln-Pro-Asp (QPD) motifs in 2 CRDs, respectively. OfIML-4 messenger RNA levels increased significantly upon the bacterial and fungal infection. Recombinant OfIML-4 (rIML-4) and its individual CRDs (rCRD1 and rCRD2) exhibited the binding ability to various microorganisms including Escherichia coli, Micrococcus luteus, Pichia pastoris, and Beauveria bassiana, and the cell wall components including lipopolysaccharide from E. coli, peptidoglycan from M. luteus or Bacillus subtilis, and curdlan from Alcaligenes faecalis. The binding further induced the agglutination of E. coli, M. luteus, and B. bassiana in the presence of calcium, the phagocytosis of Staphylococcus aureus by the hemocytes, in vitro encapsulation and melanization of nickel-nitrilotriacetic acid beads, and a significant increase in phenoloxidase activity of plasma. In addition, rIML-4 significantly enhanced the phagocytosis, nodulation, and resistance of O. furnacalis to B. bassiana. Taken together, our results suggest that OfIML-4 potentially works as a PRR to recognize the invading microorganisms, and functions in the innate immune response in O. furnacalis.

8.
Clin Exp Immunol ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767466

RESUMO

This paper aims to compare the cellular immune response to the SARS-CoV2 BNT162b2 vaccine of pediatric patients with autoimmune inflammatory rheumatic disease (pAIIRD) and healthy controls. A prospective longitudinal study was conducted between April 2021 to December 2022 at the Tel Aviv Medical Center. Children<18 years, with pediatric-onset AIIRD and healthy controls, who have received at least two doses of the BNT162b2 vaccine, were included. Humoral response was evaluated by serum levels of anti-SARS-CoV-2 receptor-binding domain antibodies. Cellular response was evaluated by flow cytometry, measuring IFNγ and TNFα production by CD4+ T-cells following stimulation with SARS-CoV-2 Spike peptide mix. The study included 20 pAIIRD patients and 11 controls. The mean age of participants was 12.6±2.94 years, with 58.1% females. The cellular response to the BNT162b2 vaccine was statistically similar in both groups. However, the humoral response was statistically lower in pAIIRD compared with the healthy control group. There was no statistically significant correlation between the humoral response and cellular response. During the study period, 43.75% AIIRD children and 72.7% controls had a breakthrough COVID-19 infection (p=0.48). Bivariate models examining the effect of the cellular response and presence of an AIIRD on breakthrough infections found no effect. Compared with healthy controls, pAIIRD demonstrated similar cellular responses. Patients showed reduced humoral response compared with healthy adolescents, but similar breakthrough infection rates. These findings may support the importance of the cellular response in protecting against COVID-19 infections.

9.
Front Immunol ; 15: 1400514, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576609

RESUMO

[This corrects the article DOI: 10.3389/fimmu.2023.1276357.].

10.
J Infect Chemother ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570139

RESUMO

INTRODUCTION: To control the spread of severe disease caused by mutant strains of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), it is necessary to determine whether continued vaccination enhances humoral and cellular immunity. AIM: In this study, we examined the changes in humoral and cellular immunity to SARS-CoV-2 after administration of the third vaccination in Japanese adults who had received the second dose of messenger ribonucleic acid (mRNA)-1273 vaccine and the third vaccination (BNT162b2 or mRNA-1273). METHODS: We measured anti-spike antibodies in immunoglobulin G (IgG) and anti-nucleocapsid IgG titers in the serum of the vaccinated subjects. To evaluate cellular immunity, the peripheral blood mononuclear cells of inoculated individuals were cultured with spiked proteins, including those of the SARS-CoV-2 conventional strain and Omicron strain, and then subjected to enzyme-linked immunospot (ELISPOT). RESULTS: The results revealed that the anti-SARS-CoV-2 spike protein antibody titer increased after the third vaccination and was maintained; however, a decrease was observed at 6 months after vaccination. SARS-CoV-2 antigen-specific T helper (Th)1 and Th2 cell responses were also induced after the third vaccination and were maintained for 6 months after vaccination. Furthermore, induction of cellular immunity against Omicron strains by the omicron non-compliant vaccines, BNT162b2 or mRNA-1273, was observed. CONCLUSION: These findings demonstrate the effectiveness of vaccination against unknown mutant strains that may occur in the future and provide important insights into vaccination strategies.

11.
Periodontol 2000 ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641953

RESUMO

The aim of this narrative review is to relate the contribution of European researchers to the complex topic of the host immune system in periodontal disease, focusing on acquired immunity. Other chapters in this volume will address the genetics and autoantibody responses and other forms of immunity to periodontal disease. While the contribution of European authors is the focus, global literature is included in this descriptive narrative for contextual clarity, albeit many with European co-authors. The topic is relatively intense and is thus broken down into sections outlined below, tackled as descriptive narratives to enhance understanding. Any attempt at a systematic or scoping review was quickly abandoned given the descriptive nature and marked variation of approach in almost all publications. Even the most uniform area of this acquired periodontal immunology literature, antibody responses to putative pathogens in periodontal diseases, falls short of common structures and common primary outcome variables one would need and expect in clinical studies, where randomized controlled clinical trials (RCTs) abound. Addressing 'the host's role' in immunity immediately requires a discussion of host susceptibility, which necessitates consideration of genetic studies (covered elsewhere in the volume and superficially covered here).

12.
Front Cell Infect Microbiol ; 14: 1370859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572317

RESUMO

Background: The aim of the study was to evaluate the humoral and cellular immunity after SARS-CoV-2 infection and/or vaccination according to the type of vaccine, number of doses and combination of vaccines. Methods: Volunteer subjects were sampled between September 2021 and July 2022 in Hospital Clínico San Carlos, Madrid (Spain). Participants had different immunological status against SARS-CoV-2: vaccinated and unvaccinated, with or without previous COVID-19 infection, including healthy and immunocompromised individuals. Determination of IgG against the spike protein S1 subunit receptor-binding domain (RBD) was performed by chemiluminescence microparticle immunoassay (CMIA) using the Architect i10000sr platform (Abbott). The SARS-CoV-2-specific T-cell responses were assessed by quantification of interferon gamma release using QuantiFERON SARS-CoV-2 assay (Qiagen). Results: A total of 181 samples were collected, 170 were from vaccinated individuals and 11 from unvaccinated. Among the participants, 41 were aware of having previously been infected by SARS-CoV-2. Vaccinated people received one or two doses of the following vaccines against SARS-CoV-2: ChAdOx1-S (University of Oxford-AstraZeneca) (AZ) and/orBNT162b2 (Pfizer-BioNTech)(PZ). Subjects immunized with a third-booster dose received PZ or mRNA-1273 (Moderna-NIAID)(MD) vaccines. All vaccinees developed a positive humoral response (>7.1 BAU/ml), but the cellular response varied depending on the vaccination regimen. Only AZ/PZ combination and 3 doses of vaccination elicited a positive cellular response (median concentration of IFN- γ > 0.3 IU/ml). Regarding a two-dose vaccination regimen, AZ/PZ combination induced the highest humoral and cellular immunity. A booster with mRNA vaccine resulted in increases in median levels of IgG-Spike antibodies and IFN-γ as compared to those of two-dose of any vaccine. Humoral and cellular immunity levels were significantly higher in participants with previous infection compared to those without infection. Conclusion: Heterologous vaccination (AZ/PZ) elicited the strongest immunity among the two-dose vaccination regimens. The immunity offered by the third-booster dose of SARS-CoV-2 vaccine depends not only on the type of vaccine administered but also on previous doses and prior infection. Previous exposure to SARS-CoV-2 antigens by infection strongly affect immunity of vaccinated individuals.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Vacinação , Imunidade Celular , Imunoglobulina G , Anticorpos Antivirais , Imunidade Humoral
13.
Heliyon ; 10(7): e29116, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601689

RESUMO

Our understanding of cellular immunity in response to COVID-19 infection or vaccination is limited because of less commonly used techniques. We investigated both the cellular and humoral immune responses before and after the administration of a third dose of the SARS-CoV-2 vaccine among a group of healthcare workers. Cellular immunity was evaluated using the VIDAS interferon-gamma (IFNγ) RUO test, which enables automated measurement of IFNγ levels after stimulating peripheral blood lymphocytes. Booster doses significantly enhanced both cellular and humoral immunity. Concerning cellular response, the booster dose increased the percentage of positive IFNγ release assay (IGRA) results but no difference in IFNγ release was found. The cellular response was not associated with protection against SARS-CoV-2 infection. Interestingly, vaccinated and infected healthcare workers exhibited the highest levels of anti-spike and neutralizing antibodies. In conclusion, the IGRA is a simple method for measuring cellular immune responses after vaccination. However, its usefulness as a complement to the study of humoral responses is yet to be demonstrated in future research.

14.
Front Immunol ; 15: 1358477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38633249

RESUMO

B cell transcriptomic signatures hold promise for the early prediction of vaccine-induced humoral immunity and vaccine protective efficacy. We performed a longitudinal study in 232 healthy adult participants before/after a 3rd dose of MMR (MMR3) vaccine. We assessed baseline and early transcriptional patterns in purified B cells and their association with measles-specific humoral immunity after MMR vaccination using two analytical methods ("per gene" linear models and joint analysis). Our study identified distinct early transcriptional signatures/genes following MMR3 that were associated with measles-specific neutralizing antibody titer and/or binding antibody titer. The most significant genes included: the interleukin 20 receptor subunit beta/IL20RB gene (a subunit receptor for IL-24, a cytokine involved in the germinal center B cell maturation/response); the phorbol-12-myristate-13-acetate-induced protein 1/PMAIP1, the brain expressed X-linked 2/BEX2 gene and the B cell Fas apoptotic inhibitory molecule/FAIM, involved in the selection of high-affinity B cell clones and apoptosis/regulation of apoptosis; as well as IL16 (encoding the B lymphocyte-derived IL-16 ligand of CD4), involved in the crosstalk between B cells, dendritic cells and helper T cells. Significantly enriched pathways included B cell signaling, apoptosis/regulation of apoptosis, metabolic pathways, cell cycle-related pathways, and pathways associated with viral infections, among others. In conclusion, our study identified genes/pathways linked to antigen-induced B cell proliferation, differentiation, apoptosis, and clonal selection, that are associated with, and impact measles virus-specific humoral immunity after MMR vaccination.


Assuntos
Vacina contra Sarampo-Caxumba-Rubéola , Sarampo , Adulto , Humanos , Imunidade Humoral , Estudos Longitudinais , Anticorpos Antivirais , Perfilação da Expressão Gênica , Proteínas do Tecido Nervoso
15.
Sci Rep ; 14(1): 8426, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637521

RESUMO

SARS-CoV-2 lipid nanoparticle mRNA vaccines continue to be administered as the predominant prophylactic measure to reduce COVID-19 disease pathogenesis. Quantifying the kinetics of the secondary immune response from subsequent doses beyond the primary series and understanding how dose-dependent immune waning kinetics vary as a function of age, sex, and various comorbidities remains an important question. We study anti-spike IgG waning kinetics in 152 individuals who received an mRNA-based primary series (first two doses) and a subset of 137 individuals who then received an mRNA-based booster dose. We find the booster dose elicits a 71-84% increase in the median Anti-S half life over that of the primary series. We find the Anti-S half life for both primary series and booster doses decreases with age. However, we stress that although chronological age continues to be a good proxy for vaccine-induced humoral waning, immunosenescence is likely not the mechanism, rather, more likely the mechanism is related to the presence of noncommunicable diseases, which also accumulate with age, that affect immune regulation. We are able to independently reproduce recent observations that those with pre-existing asthma exhibit a stronger primary series humoral response to vaccination than compared to those that do not, and further, we find this result is sustained for the booster dose. Finally, via a single-variate Kruskal-Wallis test we find no difference between male and female humoral decay kinetics, however, a multivariate approach utilizing  Least Absolute Shrinkage and Selection Operator (LASSO) regression for feature selection reveals a statistically significant (p < 1 × 10 - 3 ), albeit small, bias in favour of longer-lasting humoral immunity amongst males.


Assuntos
COVID-19 , Imunidade Humoral , Feminino , Masculino , Humanos , Meia-Vida , SARS-CoV-2 , COVID-19/prevenção & controle , Anticorpos , RNA Mensageiro , Anticorpos Antivirais , Vacinação
16.
Pathogens ; 13(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38668250

RESUMO

This study investigated the dietary immunomodulatory effects of Terminalia arjuna bark powder (TABP) in Labeo rohita, a freshwater fish model. Four iso-nitrogenous and iso-caloric diets containing graded levels of TABP (0, 1, 10, and 15 g/kg were fed to fish for 90 days, followed by a 10 day challenge with pathogenic bacteria Aeromonas hydrophila and Edwardsiella tarda. An integrated biomarker response (IBR) approach assessed the impact of TABP on hematological, adaptive, and humoral immune parameters, along with liver histomorphology. Dietary TABP at 10 g/kg significantly enhanced (p < 0.05) hematological indices (hemoglobin, red blood cell count, hematocrit), specific immune parameters (lysosomal enzyme activity, phagocytosis, respiratory burst), and non-specific immune parameters (serum lysozyme, alternative complement activity), and exhibited improvements in liver architecture consistent with the enhanced immune response. Broken line regression analysis showed 11.5 g/kg to be an optimum dose. However, at 15 g/kg, a compromised trend was observed in some parameters. These findings suggest an optimal dosage range for TABP's immunomodulatory effects. The study highlights the potential of TABP as a natural immunomodulator in fish aquaculture. The improved immune response and concomitant liver health observed in Labeo rohita opens avenues for further research on TABP's applicability in animal health, using fish as a model organism. Additionally, the IBR approach proved effective in evaluating TABP's immunomodulatory properties, paving the way for similar studies on other natural products in aquaculture.

17.
Front Immunol ; 15: 1388947, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638439

RESUMO

Sepsis is a systemic inflammatory response to a severe, life-threatening infection with organ dysfunction. Although there is no effective treatment for this fatal illness, a deeper understanding of the pathophysiological basis of sepsis and its underlying mechanisms could lead to the development of new treatment approaches. Here, we demonstrate that the selective Bruton's tyrosine kinase (Btk) inhibitor acalabrutinib augments survival rates in a lipopolysaccharide (LPS)-induced septic model. Our in vitro and in vivo findings both indicate that acalabrutinib reduces IL-6 production specifically in marginal zone B (MZ B) cells rather than in macrophages. Furthermore, Btk-deficient MZ B cells exhibited suppressed LPS-induced IL-6 production in vitro. Nuclear factor-kappa B (NF-κB) signaling, which is the downstream signaling cascade of Toll-like receptor 4 (TLR4), was also severely attenuated in Btk-deficient MZ B cells. These findings suggest that Btk blockade may prevent sepsis by inhibiting IL-6 production in MZ B cells. In addition, although Btk inhibition may adversely affect B cell maturation and humoral immunity, antibody responses were not impaired when acalabrutinib was administered for a short period after immunization with T-cell-independent (TI) and T-cell-dependent (TD) antigens. In contrast, long-term administration of acalabrutinib slightly impaired humoral immunity. Therefore, these findings suggest that Btk inhibitors may be a potential option for alleviating endotoxic shock without compromising humoral immunity and emphasize the importance of maintaining a delicate balance between immunomodulation and inflammation suppression.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Linfócitos B , Interleucina-6 , Choque Séptico , Animais , Camundongos , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Benzamidas , Lipopolissacarídeos/toxicidade , NF-kappa B , Pirazinas , Choque Séptico/induzido quimicamente , Choque Séptico/tratamento farmacológico , Linfócitos B/imunologia
18.
Epidemiologia (Basel) ; 5(2): 167-186, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38651389

RESUMO

Our goal was to determine the cellular immune response (CIR) in a sample of the Borriana COVID-19 cohort (Spain) to identify associated factors and their relationship with infection, reinfection and sequelae. We conducted a nested case-control study using a randomly selected sample of 225 individuals aged 18 and older, including 36 individuals naïve to the SARS-CoV-2 infection and 189 infected patients. We employed flow-cytometry-based immunoassays for intracellular cytokine staining, using Wuhan and BA.2 antigens, and chemiluminescence microparticle immunoassay to detect SARS-CoV-2 antibodies. Logistic regression models were applied. A total of 215 (95.6%) participants exhibited T-cell response (TCR) to at least one antigen. Positive responses of CD4+ and CD8+ T cells were 89.8% and 85.3%, respectively. No difference in CIR was found between naïve and infected patients. Patients who experienced sequelae exhibited a higher CIR than those without. A positive correlation was observed between TCR and anti-spike IgG levels. Factors positively associated with the TCR included blood group A, number of SARS-CoV-2 vaccine doses received, and anti-N IgM; factors inversely related were the time elapsed since the last vaccine dose or infection, and blood group B. These findings contribute valuable insights into the nuanced immune landscape shaped by SARS-CoV-2 infection and vaccination.

19.
Pestic Biochem Physiol ; 201: 105852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685211

RESUMO

C-type lectins (CTLs) play essential roles in humoral and cellular immune responses of invertebrates. Previous studies have demonstrated the involvement of CTLs in the humoral immunity of Tribolium castaneum, a worldwide pest in stored products. However, the function of CTLs in cellular immunity remains unclear. Here, we identified a CTL gene located on chromosome X and designated it as CTL2 (TcCTL2) from T. castaneum. It encodes a protein of 305 amino acids with a secretion signal peptide and a carbohydrate-recognition domain. TcCTL2 was mainly expressed in the early pupae and primarily distributed in the hemocytes in the late larvae. It was significantly upregulated after larvae were infected with Escherichia coli or Staphylococcus aureus, while knockdown of TcCTL2 exacerbates larval mortality and bacterial colonization after infection. The purified recombinant TcCTL2 (rTcCTL2) can bind to pathogen-associated molecular patterns and microbes and promote hemocyte-mediated encapsulation, melanization and phagocytosis in vitro. rTcCTL2 also induced bacterial agglutination in a Ca2+-dependent manner. Knockdown of TcCTL2 drastically suppressed encapsulation, melanization, and phagocytosis. Furthermore, silencing of TcCTL2 followed by bacterial infection significantly decreased the expression of transcription factors in Toll and IMD pathways, antimicrobial peptides, and prophenoloxidases and phenoloxidase activity. These results unveiled that TcCTL2 mediates both humoral and cellular immunity to promote bacterial clearance and protect T. castaneum from infectious microbes, which will deepen the understanding of the interaction between CTLs and innate immunity in T. castaneum and permit the optimization of pest control strategies by a combination of RNAi technology and bacterial infection.


Assuntos
Imunidade Celular , Imunidade Humoral , Proteínas de Insetos , Lectinas Tipo C , Staphylococcus aureus , Tribolium , Animais , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Staphylococcus aureus/imunologia , Tribolium/imunologia , Tribolium/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Hemócitos/imunologia , Hemócitos/metabolismo , Escherichia coli , Fagocitose , Larva/imunologia , Larva/microbiologia
20.
Microbiol Spectr ; : e0022924, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687066

RESUMO

Given low seroconversion rates following human papillomavirus (HPV) infection, fixed external cutoffs may lead to errors in estimating HPV seroprevalence. We evaluated finite mixture modeling (FMM) and group-based trajectory modeling (GBTM) among unvaccinated, sexually active, HPV-exposed women to determine study-specific HPV16 and HPV18 seropositivity thresholds. We included 399 women (aged 18-24 years) enrolled in the HPV Infection and Transmission Among Couples Through Heterosexual Activity (HITCH) cohort study between 2005 and 2011 in Montreal, Canada. Participants' blood samples from up to six visits spanning 2 years were tested by multiplex serology for antibodies [median fluorescence intensity (MFI)] specific to bacterially expressed HPV16 and HPV18 L1 glutathione S-transferase fusion proteins. We applied FMM and GBTM to baseline and longitudinal antibody titer measurements, respectively, to define HPV type-specific seronegative and seropositive distributions. Study-specific thresholds were generated as five standard deviations above the mean seronegative antibody titers, mimicking cutoffs (HPV16: 422 MFI; HPV18: 394 MFI) derived from an external population of sexually inactive, HPV DNA-negative Korean women (aged 15-29 years). Agreement (kappa) of study-specific thresholds was evaluated against external cutoffs. Seroprevalence estimates using FMM (HPV16: 27.5%-43.2%; HPV18: 21.7%-49.5%) and GBTM (HPV16: 11.8%-11.8%; HPV18: 9.9%-13.4%) thresholds exceeded those of external cutoffs (HPV: 10.2%; HPV18: 9.7%). FMM thresholds showed slight-to-moderate agreement with external cutoffs (HPV16: 0.26%-0.46%; HPV18: 0.20%-0.56%), while GBTM thresholds exhibited high agreement (HPV16: 0.92%-0.92%; HPV18: 0.82%-0.99%). Kappa values suggest that GBTM, used for longitudinal serological data, and otherwise FMM, for cross-sectional data, are robust methods for determining the HPV serostatus without prior classification rules.IMPORTANCEWhile human papillomavirus (HPV) seropositivity has been employed as an epidemiologic determinant of the natural history of genital HPV infections, only a fraction of women incidentally infected with HPV respond by developing significant antibody levels. HPV seropositivity is often determined by a dichotomous fixed cutoff based on the seroreactivity of an external population of women presumed as seronegative, given the lack of evidence of HPV exposure. However, considering the variable nature of seroreactivity upon HPV infection, which arguably varies across populations, such externally defined cutoffs may lack specificity to the population of interest, causing inappropriate assessment of HPV seroprevalence and related epidemiologic uses of that information. This study demonstrates that finite mixture modeling (FMM) and group-based trajectory modeling (GBTM) can be used to independently estimate seroprevalence or serve as the basis for defining study-specific seropositivity thresholds without requiring prior subjective assumptions, consequently providing a more apt internally valid discrimination of seropositive from seronegative individuals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...