Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120323, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417356

RESUMO

Accumulation of persistent organic pollutants polycyclic aromatic hydrocarbons (PAHs) in soil has become a global problem. Composting is considered one of the more economical methods of soil remediation and is important for the resourceful use of wastes. Agroforestry waste is produced in huge amounts and is utilized at low rates, hence there is an urgent need to manage it. Here, leaf (LVS) or rice straw (SVS) was co-composting with aged contaminated soil to investigate bacteria interaction to PAHs degradation and humus formation. The degradation rate of high molecular weight PAHs (HMW-PAHs) in LVS and SVS reached 58.9% and 52.5%, and the low molecular weight PAHs (LMW-PAHs) were 77.5% and 65%. Meanwhile, the humus increased by 44.8% and 60.5% in LVS and SVS at the end of co-composting. The topological characteristics and community assembly of the bacterial community showed that LVS had higher complexity and more keystones than SVS, suggesting that LVS might more beneficial for the degradation of PAHs. The stability of the co-occurrence network and stochastic processes (dispersal limitation) dominated community assembly made SVS beneficial for humus formation. Mantel test and structural equation models indicated that the transformation of organic matter was important for PAHs degradation and humus formation. Degradation of HMW-PAHs led to bacterial succession, which affected the formation of precursors and ultimately increased the humus content. This study provided potential technology support for improving the quality of agroforestry organic waste composting and degrading PAHs in aged contaminated soil.


Assuntos
Compostagem , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Poluentes do Solo/análise , Solo/química , Bactérias/metabolismo , Microbiologia do Solo
2.
World J Microbiol Biotechnol ; 39(9): 240, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37392253

RESUMO

Microbial shikimic acid is an important intermediate metabolite in the synthesis of aromatic amino acids which are precursors for forming humus during composting process. Generally, the pathways producing shikimic acid and its downstream products are collectively referred as shikimic acid pathway (SKP). Microbial SKP can produce phenols, and tyrosine. Pyrogallol is the precursor of phenols. And, tyrosine can form an ammoniated monomer. Therefore, regulation of SKP can promote shikimic acid production, which is beneficial in promoting humus production and humification. However, SKP present in microbial cells is distinctive because of providing precursors for humification process, which needs to be recognized during composting. Due to the different structures of various organic wastes, it is difficult to control the SKP efficiency and shikimic acid production. Therefore, it is valuable to review the synthesis of shikimic acid by microorganisms and propose how to promote SKP during different materials composting. Furthermore, we have attempted to illustrate the application of metabolites from SKP in forming humus during organic waste composting. Finally, a series of regulating methods has been outlined to enhance microbial SKP, which are effective to promote humus aromatization and to improve humus formation during different materials composting.


Assuntos
Compostagem , Ácido Chiquímico , Fenóis , Solo , Tirosina
3.
Bioresour Technol ; 373: 128717, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773812

RESUMO

This study was aimed at exploring the effect of antagonism of Trichoderma reesei (T.r) and Phanerochaete chrysosporium (P.c) on humification during fermentation of rice (RS) and canola straw (CS). Results showed that exogeneous fungi accelerated straw degradation and enzyme activities of CMCase, xylanase and LiP. P.c inhibited the activity of LiP when co-existing with T.r beginning, it promoted the degradation of lignin and further increased the production of humus-like substances (HLS) and humic-like acid (HLA) in later fermentation when nutrients were insufficient. The HLS of RTP was 54.9 g/kg RS, higher than the other treatments, and displayed more complex structure and higher thermostability. Brucella and Bacillus were the main HLA bacterial producers. P.c was the HLA fungal producer, while T.r assisted FLA and polyphenol transformation. Therefore, RTP was recommended to advance technologies converting crop straw into humus resources.


Assuntos
Phanerochaete , Trichoderma , Phanerochaete/metabolismo , Solo , Antibiose , Lignina/metabolismo , Trichoderma/metabolismo
4.
Bioresour Technol ; 365: 128149, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36265785

RESUMO

The aim of this study was to investigate the effect of tricarboxylic acid (TCA) cycle regulators on CO2 emissions, the conversion of organic components and humus formation during composting. The addition of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NADH) reduced CO2 emissions during rice straw composting. According to co-occurrence networks results, ATP enhanced the connectivity and complexity of the network; NADH enhanced microbial interactions. The different kind of TCA cycle regulators had different effect on humus formation pathway. The structural equation model showed that ATP might promote lignin transformation into humus via the sugar-amine condensation pathway and lignin-protein pathway while NADH may promote cellulose degradation into soluble sugar and organic matter, which are transformed into humus. This work will provide valuable guidance for exploring the mechanism of TCA cycle regulators in promoting organic carbon fixation and reducing inorganic carbon mineralization.


Assuntos
Compostagem , Oryza , Solo/química , Ciclo do Ácido Cítrico , Lignina , Dióxido de Carbono , NAD , Bactérias , Açúcares , Trifosfato de Adenosina , Esterco
5.
Bioresour Technol ; 363: 127949, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108576

RESUMO

This study was the first to explore the effect of shell powder (SP) on lignin degradation and humus (HS) formation during composting. The results showed that the treatment group (T) with SP consumed more polyphenols, reducing sugar and amino acids than the control group (CK), especially the rate of reducing sugar consumption in T (50.61 %) was significantly higher than CK (28.40 %). SP greatly enhanced the efficiency of lignin degradation (T:45.47 %; CK:24.63 %) and HS formation (T:34.93 %; CK:20.16 %). The content of HA in T was 12.94 mg/g while CK was 12.06 mg/g. SP maintained a continuous increase in the relative abundance of AA1, AA3 after cooling phase. Meanwhile, T (48.98 %) significantly increased the abundance of Actinobacteria compared with CK (37.19 %). Actinobacteria, AA1 and AA3 were identified as the main factors promoting lignin degradation and HS formation by correlation analysis. Therefore, adding SP could be a novel strategy to improve compost quality.


Assuntos
Actinobacteria , Compostagem , Actinobacteria/metabolismo , Aminoácidos , Bactérias/metabolismo , Açúcares da Dieta , Lignina/metabolismo , Esterco , Pós , Solo , Açúcares
6.
Bioresour Technol ; 346: 126577, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34923079

RESUMO

Transforming organic waste into stable carbon by composting is an eco-friendly way. However, the complex environment, huge microbial community and complicated metabolic of composting have limited the directional transformation of organic carbon, which is also not conducive to the fixation of organic carbon. Therefore, this review is based on the formation of humus, a stable by-product of composting, to expound how to promote carbon fixation by increasing the yield of humus. Firstly, we have clarified the transformation regularity of organic matter during composting. Meanwhile, the microhabitat factors affecting microbial catabolism and anabolism were deeply analyzed, in order to provide a theoretical basis for the micro habitat regulation of directional transformation of organic matter during composting. Given that, a method to adjust the directional humification and stabilization of organic carbon has been proposed. Hoping the rapid reduction and efficient stabilization of organic waste can be realized according to this method.


Assuntos
Compostagem , Carbono , Sequestro de Carbono , Esterco , Solo
7.
Bioresour Technol ; 338: 125546, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34274584

RESUMO

The aim of this study was to use metagenomics to investigate how Illite/smectite clay (I/S) affected Auxiliary Activities (AA1, AA2, AA3) thereby enhancing lignin decomposition and humification. Metagenomics analysis illustrated that the abundances of AA1, AA2, AA3 in test group (TG) with 10% I/S were 28.98%, 15.18%, 14.36% higher than that in reference group (RG), respectively. Meanwhile, I/S greatly boosted the efficiency of lignin degradation (17.96%) and humus formation (7.16%) compared with RG (13.10%, 3.49%). Furthermore, Actinobacteria was the microorganism with the greatest contribution in RG and TG to secreting AA1 (41.12%, 57.37%), AA2 (62.42%, 65.28%), AA3 (47.04%, 55.47%). Redundancy analysis (RDA) demonstrated that I/S could make the laccase encoding gene-AA1 contribute more to HS formation relative to AA2 and AA3. In conclusion, applying I/S in cattle manure composting effectively improved the abundance, bioavailability of lignin degradation functional gene enzymes and the composting efficiency.


Assuntos
Compostagem , Animais , Bovinos , Argila , Ecossistema , Lacase/genética , Lignina , Esterco , Metagenômica , Minerais , Silicatos , Solo
8.
Bioresour Technol ; 340: 125639, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34315126

RESUMO

This study was aimed at exploring the mechanism of promoting humus formation by the addition of exogenous amino acids. Amino acids not only participated in the synthesis of humus directly as precursors, but also changed the functions of bacterial communities. The composition and diversity of bacterial community changed with the addition of amino acids. The ability of bacterial community to degrade lignocellulose was enhanced, which provided precursors for humus synthesis. The key bacteria for humus formation and organic matter transformation were identified using random forests. These bacteria showed growth advantage with the addition of amino acids. The results showed that exogenous amino acids tended to transform organic matter and synthesize humus. Variance partitioning analysis confirmed that the bacterial community was the driving force of humus synthesis. These results were further verified by the structural equation model. These findings provided new ideas and understanding for straw waste composting.


Assuntos
Compostagem , Aminoácidos , Biomassa , Substâncias Húmicas/análise , Lignina , Solo
9.
Bioresour Technol ; 319: 124121, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32957045

RESUMO

The study aimed to identify the preference of pathways of humus formation. Five lab-scale composting experiments were established: the control (CK), montmorillonite addition (M), illite addition (I), thermal treatment montmorillonite addition (M-) and thermal treatment illite addition (I-). Results showed humus content was increased by 11.5%, 39.3%, 37.2%, 30.9% and 27.6% during CK, M-, M, I- and I composting. Meanwhile, Redundancy analysis indicated the bands of bacteria community related to humic acid (HA) were more abundant in the M- and I- treatments. Furthermore, structural equation model and variance partitioning analysis demonstrated that M- and I- treatments promoted precursors to synthesize HA by coordinated regulation of biotic pathway and abiotic pathway, the increase of HA in the M and I treatments mainly through the abiotic pathway. In summary, an effective method was proposed to improve humus production by adjusting the preference of biotic and abiotic pathways of humus formation.


Assuntos
Compostagem , Animais , Bentonita , Galinhas , Substâncias Húmicas , Esterco , Minerais , Solo
10.
Bioresour Technol ; 311: 123500, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32422555

RESUMO

The aim of this study was to identify the effects of ammonia-oxidizing bacteria (AOB) inoculation on humus formation. Both nitrogen conversion and humus formation were considered as the main processes, because NH4+-N-like compounds not only substrates of nitrification, but also precursors of humus. During composting, the inoculation of AOB indeed increased humus concentration by fixing NH3 emission as NH4+-N, but it has also promoted nitrogen transformation. While the main reason was the changed bacteria community structure caused by inoculating AOB. Moreover, the relationship between bacteria and nitrogen transformation and humus formation has become closer. And bacteria were more likely to synthesize humus. Therefore, it is conjectured that AOB inoculation could not only provide NH4+-N for humus formation, but also enhance the anabolism of microorganisms. This suppose has been confirmed by structural equation model in this study. Therefore, AOB inoculation has a driving effect on promoting humus formation.


Assuntos
Compostagem , Amônia , Archaea , Bactérias , Nitrificação , Oxirredução , Solo , Microbiologia do Solo
11.
Bioresour Technol ; 303: 122927, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32050125

RESUMO

The aim of this study is to detect the action properties of functional materials (FM) in transforming waste into resource products with high humus content. FM (MnO2 and reducing sugar) were added in different periods of chicken manure composting. During composting, concentration of humic acids (HA) as aromatic fraction of humus, was increased by FM. The promotive effects of adding FM in later period was the most obvious. While adding FM in the beginning period could accelerate organic matter degradation, but it did not promote HA formation. Meanwhile, the microbial diversity was higher in groups by adding FM in the beginning and thermophilic periods. Therefore, it was speculated that FM might improve HA formation by promoting the abiotic polymerization of precursors. Eventually, structural equation model showed that FM was beneficial to abiotic pathway of HA formation. But the formation efficiency was reduced by interfering with biotic pathway.


Assuntos
Compostagem , Animais , Galinhas , Compostos de Manganês , Esterco , Óxidos , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA