Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38255851

RESUMO

HBOT increases the proportion of dissolved oxygen in the blood, generating hyperoxia. This increased oxygen diffuses into the mitochondria, which consume the majority of inhaled oxygen and constitute the epicenter of HBOT effects. In this way, the oxygen entering the mitochondria can reverse tissue hypoxia, activating the electron transport chain to generate energy. Furthermore, intermittent HBOT is sensed by the cell as relative hypoxia, inducing cellular responses such as the activation of the HIF-1α pathway, which in turn, activates numerous cellular processes, including angiogenesis and inflammation, among others. These effects are harnessed for the treatment of various pathologies. This review summarizes the evidence indicating that the use of medium-pressure HBOT generates hyperoxia and activates cellular pathways capable of producing the mentioned effects. The possibility of using medium-pressure HBOT as a direct or adjunctive treatment in different pathologies may yield benefits, potentially leading to transformative therapeutic advancements in the future.


Assuntos
Oxigenoterapia Hiperbárica , Hiperóxia , Humanos , Oxigênio , Hipóxia , Inflamação
2.
Biol Res ; 56(1): 41, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37438828

RESUMO

BACKGROUND: Hyperbaric oxygen treatment (HBOT) has been reported to modulate the proliferation of neural and mesenchymal stem cell populations, but the molecular mechanisms underlying these effects are not completely understood. In this study, we aimed to assess HBOT somatic stem cell modulation by evaluating the role of the mTOR complex 1 (mTORC1), a key regulator of cell metabolism whose activity is modified depending on oxygen levels, as a potential mediator of HBOT in murine intestinal stem cells (ISCs). RESULTS: We discovered that acute HBOT synchronously increases the proliferation of ISCs without affecting the animal's oxidative metabolism through activation of the mTORC1/S6K1 axis. mTORC1 inhibition by rapamycin administration for 20 days also increases ISCs proliferation, generating a paradoxical response in mice intestines, and has been proposed to mimic a partial starvation state. Interestingly, the combination of HBOT and rapamycin does not have a synergic effect, possibly due to their differential impact on the mTORC1/S6K1 axis. CONCLUSIONS: HBOT can induce an increase in ISCs proliferation along with other cell populations within the crypt through mTORC1/S6K1 modulation without altering the oxidative metabolism of the animal's small intestine. These results shed light on the molecular mechanisms underlying HBOT therapeutic action, laying the groundwork for future studies.


Assuntos
Oxigenoterapia Hiperbárica , Transdução de Sinais , Células-Tronco , Animais , Camundongos , Proliferação de Células , Intestinos/citologia , Alvo Mecanístico do Complexo 1 de Rapamicina , Oxigênio , Sirolimo/farmacologia , Células-Tronco/efeitos dos fármacos
3.
Clinics ; Clinics;68(11): 1440-1445, 1jan. 2013. tab, graf
Artigo em Inglês | LILACS | ID: lil-690628

RESUMO

OBJECTIVE: Our aim was to investigate the effects of growth hormone (GH), hyperbaric oxygen and combined therapy on normal and ischemic colonic anastomoses in rats. METHODS: Eighty male Wistar rats were divided into eight groups (n = 10). In the first four groups, non-ischemic colonic anastomosis was performed, whereas in the remaining four groups, ischemic colonic anastomosis was performed. In groups 5, 6, 7, and 8, colonic ischemia was established by ligating 2 cm of the mesocolon on either side of the anastomosis. The control groups (1 and 5) received no treatment. Hyperbaric oxygen therapy was initiated immediately after surgery and continued for 4 days in groups 3 and 4. Groups 2 and 6 received recombinant human growth hormone, whereas groups 4 and 8 received GH and hyperbaric oxygen treatment. Relaparotomy was performed on postoperative day 4, and a perianastomotic colon segment 2 cm in length was excised for the detection of biochemical and mechanical parameters of anastomotic healing and histopathological evaluation. RESULTS: Combined treatment with hyperbaric oxygen and GH increased the mean bursting pressure values in all of the groups, and a statistically significant increase was noted in the ischemic groups compared to the controls (p<0.05). This improvement was more evident in the ischemic and normal groups treated with combined therapy. In addition, a histopathological evaluation of anastomotic neovascularization and collagen deposition showed significant differences among the groups. CONCLUSIONS: Combined treatment with recombinant human growth hormone and hyperbaric oxygen resulted in a favorable therapeutic effect on the healing of ischemic colonic anastomoses. .


Assuntos
Animais , Masculino , Ratos , Colo/cirurgia , Hormônio do Crescimento Humano/uso terapêutico , Oxigenoterapia Hiperbárica/métodos , Isquemia/terapia , Cicatrização/efeitos dos fármacos , Anastomose Cirúrgica , Terapia Combinada , Colágeno/análise , Colo/irrigação sanguínea , Colo/patologia , Modelos Animais de Doenças , Necrose , Neovascularização Fisiológica , Pressão , Ratos Wistar , Reprodutibilidade dos Testes , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA