Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Genes (Basel) ; 15(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062673

RESUMO

Aminoacyl-tRNA synthetases are essential enzymes for the accurate translation of genetic information. IARS1 and IARS2 are isoleucyl-tRNA synthetases functioning in the cytoplasm and mitochondria, respectively, with genetic mutations in these enzymes causing diverse clinical phenotypes in specific organs and tissues. Mutations in IARS1 and IARS2 have recently been linked to mitochondrial diseases. This review aims to explore the relationship between IARS1 and IARS2 and these diseases, providing a comprehensive overview of their association with mitochondrial diseases. Mutations in IARS1 cause weak calf syndrome in cattle and mitochondrial diseases in humans, leading to growth retardation and liver dysfunction. Mutations in IARS2 are associated with Leigh syndrome, craniosynostosis and abnormal genitalia syndrome. Future research is expected to involve genetic analysis of a larger number of patients, identifying new mutations in IARS1 and IARS2, and elucidating their impact on mitochondrial function. Additionally, genetically modified mice and the corresponding phenotypic analysis will serve as powerful tools for understanding the functions of these gene products and unraveling disease mechanisms. This will likely promote the development of new therapies and preventive measures.


Assuntos
Isoleucina-tRNA Ligase , Doenças Mitocondriais , Mutação , Humanos , Animais , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Isoleucina-tRNA Ligase/genética , Bovinos , Mitocôndrias/genética , Camundongos
2.
Mol Genet Genomic Med ; 12(1): e2326, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014478

RESUMO

BACKGROUND: Isoleucinyl-tRNA synthetase (IARS) is encoded by the IARS1 gene and catalyzes the binding of isoleucine to specific tRNA. OBJECTIVE: This study aims to investigate the pathogenicity of novel IARS1 variants and the genotype-phenotype association, in order to expand the spectrum of pathogenic variants and phenotypes of IARS1-related disease and provide new evidence for the phenotypic spectrum of IARS1 variants. METHODS: Clinical data of the proband were collected, and trio whole-exome sequencing (WES) was performed on the proband and the parents. Candidate variants were validated using Sanger sequencing. Bioinformatics software was utilized to analyze the functional consequences of identified variants and predict their potential deleteriousness. RESULTS: A 17-month-old female patient presented with microcephaly, left external ear malformation, decreased muscle strength and tone in all limbs, epileptic seizures, global developmental delay, and developmental regression. Trio WES identified compound heterozygous variants in the IARS1 gene, c.120-1G>A and c.2164C>A, which were novel pathogenic and likely pathogenic variants, respectively. The phenotype of developmental regression has not been reported before. Only one patient with IARS1 compound heterozygous variants has been reported in the world to have an epileptic phenotype, and this is the second patient with an epileptic phenotype. Bioinformatics analysis revealed that the splicing variant disrupted the canonical splice donor site, while the missense variant altered the local electrostatics of the IARS1 protein surface, potentially leading to functional abnormalities. CONCLUSION: This study identified novel IARS1 variants and the phenotype of developmental regression, expanding the spectrum of pathogenic variants and phenotypes of IARS1-related diseases and providing new evidence for the rare phenotype of epileptic seizures caused by IARS1 variants.


Assuntos
Deficiências do Desenvolvimento , Epilepsia , Criança , Humanos , Feminino , Lactente , Deficiências do Desenvolvimento/genética , Fenótipo , Epilepsia/genética , Convulsões , China
3.
Orphanet J Rare Dis ; 18(1): 108, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37158969

RESUMO

BACKGROUND: Pompe disease is a lysosomal storage disease treated with life-long enzyme replacement therapy (ERT). Home-based ERT has been provided in the Netherlands since 2008 because it diminishes the burden of treatment, increases patient flexibility and autonomy, and is thus a more patient-centred approach to ERT. METHODS: All Dutch Pompe patients receiving alglucosidase alfa infusions at home were approached to participate in a questionnaire to validate the safety of home-based ERT. Prospective data on symptoms occurring during or within 48 h after infusion and retrospective data on infusion associated reactions (IARs) in the last three months were collected four times during one year. RESULTS: In total, 116 out of 120 eligible patients (17 classic infantile, 2 atypical infantile, 15 childhood onset and 82 adult) filled out 423 questionnaires (response rate: 88.1%). Symptoms during or after infusion were reported 27 times in 17 patients. Fatigue was the most commonly reported health complaint (in 9.5% of patients). Four health complaints were judged to be IARs and reported to the Erasmus MC University Medical Center. None of the IARs reported in this study warranted emergency clinical care. CONCLUSIONS: Our data demonstrate that home-based ERT in Pompe disease can be safely implemented as few, mostly mild, symptoms were reported during or after infusion. Insights from this study can be used as a base for implementing home-based ERT in other countries and to further optimize patient care, as unreported mild symptoms do not pose a health risk but may still be relevant to the patient.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Humanos , Adulto , Criança , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Estudos Prospectivos , Terapia de Reposição de Enzimas , Estudos Retrospectivos , Fadiga
4.
Discov Oncol ; 14(1): 25, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36820928

RESUMO

PURPOSE: Cancer cells require a supply of amino acids, particularly essential amino acids such as branched-chain amino acids (BCAAs, i.e., valine, leucine, and isoleucine), to meet the increased nutrient demands of malignant tumors. The cell-autonomous and non-autonomous roles of altered BCAA supply have been implicated in cancer progression. The critical proteins involved in BCAA uptake, transport, metabolism, etc. serve as potential therapeutic biomarkers in human cancers. Here, we summarize the potential anti-tumor mechanism of BCAA by exploring the chain reaction triggered by increased BCAA supply in the tumor. METHOD: A system-wide strategy was employed to provide a generic solution to establish the links between BCAA and cancer based on comprehensive omics, molecular experimentation, and data analysis. RESULTS: BCAA over-supplementation (900 mg/kg) significantly inhibited tumor growth and reduced tumor burden, with isoleucine having the most pronounced effect. Surprisingly, isoleucine inhibited tumor growth independently of mTORC1 activation, a classical amino acid sensor. Exploratory transcriptome analysis revealed that Phosphatase and tensin homolog (PTEN) is the critical factor in the anti-tumor effect of isoleucine. By inhibiting PTEN ubiquitination, isoleucine can promote PTEN nuclear import and maintain PTEN nuclear stability. Interestingly, this process was regulated by isoleucine-tRNA ligase, cytoplasmic (IARS), a direct target of isoleucine. We demonstrated the enhanced interaction between IARS and PTEN in the presence of excess isoleucine. At the same time, IARS knockout leads to loss of isoleucine tumor suppressor ability. CONCLUSION: Overall, our results provide insights into the regulation of the IARS-PTEN anti-tumor axis by isoleucine and reveal a unique therapeutic approach based on enhancing cellular isoleucine supply.

5.
Open Med (Wars) ; 18(1): 20220613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36694627

RESUMO

This study aims to explore the role and mechanism of circ-IARS in non-small-cell lung cancer (NSCLC) progression. Expression of circ-IARS, microRNA (miR)-1252-5p, and hepatoma-derived growth factor (HDGF) was measured by real-time quantitative PCR and western blotting. The interactions among circ-IARS, miR-1252-5p, and HDGF were determined by dual-luciferase reporter assay and RNA immunoprecipitation. Cell behaviors were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, scratch wound assay, and transwell assay, and validated in in vivo xenograft model. Exosomes were isolated using commercial kit, and the expression and functions of exosomal circ-IARS (exo-circ-IARS) were analyzed as described above. Results showed that the expression of circ-IARS was upregulated in NSCLC cells, NSCLC tissues, and serum exosomes from NSCLC patients. circ-IARS exhaustion antagonized cell proliferation, cell cycle progression, migration, and invasion and promoted apoptosis in NSCLC. Molecularly, circ-IARS could sponge miR-1252-5p to modulate the expression of the downstream gene HDGF. In addition, miR-1252-5p downregulation attenuated circ-IARS exhaustion-mediated effects in H1299 and A549 cells. MiR-1252-5p mimic-induced effects were relieved by increasing HDGF expression in H1299 and A549 cells. Exo-circ-IARS promoted H460 cell proliferation, migration, and invasion and inhibited cell apoptosis. Silencing circ-IARS retarded tumor growth of NSCLC cells in vivo. Thus, circ-IARS, secreted by exosomes, was a novel oncogene in NSCLC and regulated the malignant development of NSCLC cells via circ-IARS/miR-1252-5p/HDGF competing endogenous RNA regulatory axis.

6.
Cell Commun Signal ; 20(1): 185, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36419191

RESUMO

BACKGROUND: The Isoleucyl-tRNA synthetase (IARS) catalyzes isoleucine to the corresponding tRNA, maintaining the accuracy of gene translation. Its role in psoriasis has been not investigated so far. In this study, we aimed to investigate the mechanisms underlying the efficacy of IARS inhibitor, mupirocin, treatment for psoriasis. METHODS: The expression of IARS was determined by immunofluorescence, Western blot and qRT-PCR in normal healthy control- and psoriatic human skin. An imiquimod (IMQ) -induced psoriasis-like skin disease model was used to study the phenotypes changed by an IARS inhibitor, mupirocin (MUP). Endotypes were analyzed by RNA-seq, R&D Luminex multi-factor technique, ELISA, immunofluorescence and flow cytometry. Additionally, the effect of MUP on epidermal keratinocytes (KCs) were conducted in-vitro in primary cultured human KCs. RESULTS: We found the expression of IARS was higher in psoriatic skin than in healthy controls. In IMQ-induced psoriasis-like C57BL/6 J mouse model, MUP reversed IMQ-induced keratinocytes proliferation, expression of inflammatory cytokines and infiltration of immune cells. Furthermore, in cultured human keratinocytes, MUP inhibited proliferation, but promoted apoptosis, which may be related with STAT3 signaling pathway. CONCLUSION: Our finding of blocking the infiltration of immune cells by inhibiting the formation of IARS, could be one mechanism to explain the effect of MUP in the treatment of psoriasis. Developing strategies targeting suppression IARS should open new perspectives for the treatment of psoriasis. Video Abstract.


Assuntos
Psoríase , Dermatopatias , Animais , Humanos , Camundongos , Imiquimode , Isoleucina-tRNA Ligase , Camundongos Endogâmicos C57BL , Mupirocina , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico
7.
Mol Genet Metab Rep ; 31: 100878, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782619

RESUMO

Mucopolysaccharidosis type II (MPS II) is a multisystemic lysosomal storage disorder caused by deficiency of the iduronate 2-sulfatase enzyme. Currently, enzyme replacement therapy (ERT) with recombinant idursulfase is the main treatment available to decrease morbidity and improve quality of life. However, infusion-associated reactions (IARs) are reported and may limit access to treatment. When premedication or infusion rate reductions are ineffective for preventing IARs, desensitization can be applied. To date, only two MPS II patients are reported to have undergone desensitization. We report a pediatric patient with recurrent IARs during infusion successfully managed with gradual desensitization. Our protocol started at 50% of the standard dosage infused at concentrations from 0.0006 to 0.06 mg/ml on weeks 1 and 2, followed by 75% of the standard dosage infused at concentrations from 0.0009 to 0.09 mg/ml on weeks 3 and 4, and full standard dosage thereafter, infused at progressively increasing concentrations until the standard infusion conditions were reached at 3 months. Our experience can be used in the management of MPS II patients presenting IARs to idursulfase infusion, even when general preventive measures are already administered.

8.
BMC Pediatr ; 22(1): 329, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35668413

RESUMO

BACKGROUND: Aminoacyl-tRNA synthetases (ARSs) are enzymes responsible for attaching amino acids to tRNA, which enables protein synthesis. Mutations in isoleucyl-tRNA synthetase (IARS1) have recently been reported to be a genetic cause for growth retardation, intellectual disability, muscular hypotonia, and infantile hepatopathy (GRIDHH). CASE PRESENTATION: In this study, we reported an additional case of compound heterozygous missense variations c.701 T > C (p.L234P) and c.1555C > T (p.R519C) in IARS1, which were identified using medical exome sequencing; c.701 T > C (p.L234P) was a novel variant, and c.1555C > T (p.R519C) was found in GnomAD. Unlike other reported patients, this individual presented prominently with recurrent liver failure, which led to her death at an early age of 19 months. She also had significant growth retardation, muscular hypotonia, chubby and flabby face, recurrent loose stools, and abnormal brain computed tomography (CT), while zinc deficiency and hearing loss were not present. Studies in zebrafish embryo modeling recapitulated some of the key phenotypic traits in embryo development, neurodevelopment, liver development, and myogenesis, demonstrating that these variations caused a loss of gene function in IARS1. CONCLUSIONS: We have found a novel mutation point c.701 T > C (p.L234P) in IARS1. Compound heterozygous mutations of c.701 T > C (p.L234P) and c.1555C > T (p.R519C) in IARS1 are pathogenic, which can cause GRIDHH in child.


Assuntos
Falência Hepática , Hipotonia Muscular , Animais , China , Feminino , Transtornos do Crescimento , Humanos , Falência Hepática/genética , Mutação , Peixe-Zebra/genética
9.
Clin Case Rep ; 10(2): e05401, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35228874

RESUMO

Isoleucyl-tRNA synthetase 2 (IARS2) encodes mitochondrial isoleucine-tRNA synthetase. Pathogenic variants in the IARS2 gene are associated with mitochondrial disease. We report a female with IARS2 compound heterozygous variants, p.Val499Glyfs*14 and p.Arg784Trp who presented with infantile spasms, Leigh disease and Wolff-Parkinson White (WPW) pattern. This report expands the phenotypic spectrum of IARS2-related disease.

10.
Front Pediatr ; 10: 1080664, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704128

RESUMO

Background: IARS2 (EC6.1.5) is a mitochondrial isoleucine-tRNA synthetase. Despite the fact that only fewer than 30 patients have been reported in the literature, mitochondrial disorders caused by pathogenic variants in the IARS2 gene (OMIM: 616007) have a very broad and variable clinical phenotype spectrum. We present a child who has sideroblastic anemia and hypoparathyroidism as a result of a previously unreported mutation in the IARS2 gene. Case presentation: A 14-year-old girl who had been anemic for 12 years was diagnosed with pure red cell aplasia (hemoglobin 42 g/L, reference range 110-160) at the age of 2. Her anemia was resistant to high-dose intravenous gamma globulin and cyclosporine therapy and required monthly blood transfusions to maintain normal hemoglobin levels. She developed cataracts at the age of 6 and was cured by phacoemulsification. At the age of 8, she visited the endocrine department, because of mental and physical retardation accompanied by repeated convulsions, and the antiepileptic treatment was ineffective. She was diagnosed with hypoparathyroidism. To control the convulsions, she was given calcitriol orally as well as large doses of calcium supplements. Due to severe growth and development delays, delayed sexual development, and hypokinesia at the age of 13.5Y, the parents agreed to a whole-exon gene sequencing test. IARS2 gene compound heterozygous variants c.2450G > A (p.Arg817His) and c.2511del (p.Leu838Phefs*69) were discovered. The girl was then diagnosed with IARS2-related disease and given a cocktail therapy of coenzyme Q10, vitamin B2, L-Carnitine and vitamin E. Although the child's clinical symptoms improved, she still experienced intermittent claudication and hip joint pain. The vitamin B6 was discontinued after three months due to its ineffectiveness in treating anemia. Because the child's ferritin levels remained elevated, she was also prescribed long-term oral deferiprone therapy. Conclusion: Our findings broaden the clinical and genetic spectrum of IARS2-associated disease, and case summaries help raise clinical awareness of IARS2-associated disease and reduce under- and misdiagnosis.

11.
Aging Cell ; 20(3): e13315, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33539668

RESUMO

Chromatin organization and transcriptional profiles undergo tremendous reordering during senescence. However, uncovering the regulatory mechanisms between chromatin reconstruction and gene expression in senescence has been elusive. Here, we depicted the landscapes of both chromatin accessibility and gene expression to reveal gene regulatory networks in human umbilical vein endothelial cell (HUVEC) senescence and found that chromatin accessibilities are redistributed during senescence. Particularly, the intergenic chromatin was massively shifted with the increased accessibility regions (IARs) or decreased accessibility regions (DARs), which were mainly enhancer elements. We defined AP-1 transcription factor family as being responsible for driving chromatin accessibility reconstruction in IARs, where low DNA methylation improved binding affinity of AP-1 and further increased the chromatin accessibility. Among AP-1 transcription factors, we confirmed ATF3 was critical to reconstruct chromatin accessibility to promote cellular senescence. Our results described a dynamic landscape of chromatin accessibility whose remodeling contributes to the senescence program, we identified that AP-1 was capable of reorganizing the chromatin accessibility profile to regulate senescence.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Senescência Celular , Cromatina/metabolismo , Metilação de DNA/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica
12.
J Vet Med Sci ; 83(2): 254-259, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33298632

RESUMO

Bovine isoleucyl-tRNA synthetase (IARS) disorder, a major cause of weak calf syndrome, is caused by a homozygous missense (c.235G>C) mutation in the bovine IARS gene of Japanese Black (JB) cattle, which was identified in 2013. However, the extent to which the carrier rate has changed at Kagoshima prefecture, Japan, and whether the carrier status is associated with any clinical or reproductive problems, have yet to be ascertained. In this study, using a real-time polymerase chain reaction-based genotyping assay, we determined the carrier rate in a regional JB cow population at Kagoshima prefecture. Comparative analyses were performed on the metabolic profile test (MPT) results and reproductive performance data obtained for heterozygous carrier and homozygous wild-type cows. In 2009 and 2018, DNA samples were collected from 130 and 462 clinically healthy JB cows, respectively, in Kagoshima prefecture. MPT results and reproductive performance data were evaluated for 62 cows, comprising four heterozygous carriers and 58 wild-type cows. Genotyping revealed that the carrier rate was 6.9% in 2009 and 1.5% in 2018, the difference of which was statistically significant (P<0.005). There were no statistically significant differences between the carrier and wild-type cows with respect to either MPT results or reproductive performance, indicating that the carrier cows have necessary IARS activity to maintain minimal health and reproductive potential.


Assuntos
Doenças dos Bovinos , Isoleucina-tRNA Ligase/genética , Animais , Bovinos , Doenças dos Bovinos/genética , Feminino , Heterozigoto , Humanos , Japão , Mutação , Reprodução/genética
13.
Oncol Lett ; 20(2): 1093-1100, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32724348

RESUMO

IARS2, which encodes the mitochondrial form of isoleucyl-tRNA synthetase, has been found to play an important role in a range of diseases, including cancer. However, the relationship between IARS2 and melanoma is still unclear. To evaluate the role of IARS2 in melanoma, we constructed a stable A375 cell line with IARS2 knockdown via lentivirus-mediated small interfering RNAs. The expression of IARS2 was measured by real time-quantitative Polymerase Chain Reaction and western blot analysis. Cell counting, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and colony formation assay were conducted to assess the effect of IARS2 on melanoma cell proliferation. Flow cytometry assay was used to determine cell apoptosis and cell cycle distribution in melanoma A375 cells. Finally, immunohistochemistry was employed to validate the expression of IARS2 protein in melanoma tissues. In this study it was found that IARS2 was highly expressed in melanoma cell lines. Furthermore, IARS2 protein also exhibited elevated expression in the tumour tissues obtained from melanoma patients. After suppression of the mRNA expression of IARS2, the proliferation and colony formation ability of the A375 cells were significantly inhibited, while the proportion of apoptotic A375 cells increased significantly, as indicated by an enhanced phosphatidylserine externalization and caspase 3/7 activity after IARS2 knockdown. Further investigations found that knockdown of IARS2 arrested cells in the G1 phase. The results suggested that IARS2 is critical for proliferation and apoptosis of melanoma cells.

14.
Life Sci ; 224: 51-57, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30905780

RESUMO

The pathogenesis of abdominal aortic aneurysm remains unclear. The aim of the present study was to establish whether isoleucyl-tRNA synthetase (Iars) regulates the differentiation and apoptosis of vascular smooth muscle cells (VSMCs) during the development of abdominal aortic aneurysm (AAA). In addition, the contribution of various signaling pathways towards this process was ascertained. The study demonstrated that the expression of Iars, p-p38, osteopontin (OPN) and Bcl-2-associated X protein (Bax) clearly increased, while levels of p-PI3K and smooth muscle 22 alpha (SM22α) decreased significantly in AAA tissues. Inhibition of Iars significantly reduced the incidence of angiotensin II (AngII)-induced AAA in mice, coincident with decreased activity of the p38 MAPK pathway and increased PI3K pathway activity. AngII-induced phenotypic switching and apoptosis of VSMCs decreased following the inhibition of Iars in vitro. Upregulation of the IARS gene induced phenotypic switching and apoptosis in VSMCs in addition to increased p38 MAPK pathway activation and reduced PI3K pathway activation. Following pretreatment with an activator of the PI3K pathway, expression of Iars and the phenotypic markers of VSMCs were not affected, while apoptosis of VSMCs decreased. Similarly, inhibition of the p38 MAPK pathway in VSMCs did not affect the expression of Iars or the degree of cell apoptosis, but reduced phenotypic switching was observed. Conclusively, upregulation of Iars regulates the phenotypic switching and apoptosis of VSMCs. Targeting Iars may be a promising strategy to prevent abdominal aortic aneurysm.


Assuntos
Aneurisma da Aorta Abdominal/patologia , Apoptose , Regulação da Expressão Gênica , Isoleucina-tRNA Ligase/metabolismo , Músculo Liso Vascular/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Aneurisma da Aorta Abdominal/metabolismo , Proliferação de Células , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Transdução de Sinais
16.
BMC Med Genet ; 19(1): 196, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30419932

RESUMO

BACKGROUND: IARS2 encodes a mitochondrial isoleucyl-tRNA synthetase, a highly conserved nuclear-encoded enzyme required for the charging of tRNAs with their cognate amino acid for translation. Recently, pathogenic IARS2 variants have been identified in a number of patients presenting broad clinical phenotypes with autosomal recessive inheritance. These phenotypes range from Leigh and West syndrome to a new syndrome abbreviated CAGSSS that is characterised by cataracts, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, and skeletal dysplasia, as well as cataract with no additional anomalies. METHODS: Genomic DNA from Iranian probands from two families with consanguineous parental background and overlapping CAGSSS features were subjected to exome sequencing and bioinformatics analysis. RESULTS: Exome sequencing and data analysis revealed a novel homozygous missense variant (c.2625C > T, p.Pro909Ser, NM_018060.3) within a 14.3 Mb run of homozygosity in proband 1 and a novel homozygous missense variant (c.2282A > G, p.His761Arg) residing in an ~ 8 Mb region of homozygosity in a proband of the second family. Patient-derived fibroblasts from proband 1 showed normal respiratory chain enzyme activity, as well as unchanged oxidative phosphorylation protein subunits and IARS2 levels. Homology modelling of the known and novel amino acid residue substitutions in IARS2 provided insight into the possible consequence of these variants on function and structure of the protein. CONCLUSIONS: This study further expands the phenotypic spectrum of IARS2 pathogenic variants to include two patients (patients 2 and 3) with cataract and skeletal dysplasia and no other features of CAGSSS to the possible presentation of the defects in IARS2. Additionally, this study suggests that adult patients with CAGSSS may manifest central adrenal insufficiency and type II esophageal achalasia and proposes that a variable sensorineural hearing loss onset, proportionate short stature, polyneuropathy, and mild dysmorphic features are possible, as seen in patient 1. Our findings support that even though biallelic IARS2 pathogenic variants can result in a distinctive, clinically recognisable phenotype in humans, it can also show a wide range of clinical presentation from severe pediatric neurological disorders of Leigh and West syndrome to both non-syndromic cataract and cataract accompanied by skeletal dysplasia.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Catarata/genética , Perda Auditiva Neurossensorial/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Isoleucina-tRNA Ligase/genética , Doença de Leigh/genética , Doenças Mitocondriais/genética , Adulto , Sequência de Aminoácidos , Doenças do Desenvolvimento Ósseo/diagnóstico , Doenças do Desenvolvimento Ósseo/patologia , Catarata/diagnóstico , Catarata/patologia , Consanguinidade , Feminino , Expressão Gênica , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Homozigoto , Humanos , Doença de Leigh/diagnóstico , Doença de Leigh/patologia , Masculino , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/patologia , Modelos Moleculares , Mutação de Sentido Incorreto , Linhagem , Conformação Proteica , Subunidades Proteicas/genética , Síndrome , Sequenciamento do Exoma
17.
Mol Cell Biochem ; 443(1-2): 93-100, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29071539

RESUMO

The purpose of the article is to investigate the role of IARS2 in proliferation, apoptosis, and cell cycle of gastric cancer (GC) cells in vitro. The IARS2-shRNA lentiviral vector was established and used to infect the GC cell line AGS. qRT-PCR and Western blot were employed to determine the efficiency of IARS2 knockdown. The effects of IARS2 knockdown on cell proliferation, cell clone formation, and cell cycle were assessed by MTT assay, colony formation assay, and flow cytometer analysis, respectively. Finally, a PathScan Antibody Array Kit was used to detect the expression levels of cell cycle-related proteins after IARS2 knockdown in AGS cells to elucidate the underlying mechanisms. Compared with negative control group, IARS2 was significantly knocked down by transfection with lentivirus encoding shRNA of IARS2 in AGS cells. IARS2 knockdown significantly inhibited the proliferation and colony formation ability and induced cycle arrest at G2/M phase of AGS cells. IARS2 knockdown significantly decreased the expression levels of phosphorylation of (p-Smad2), p-SAPK/JUK, cleavage-Caspase-7, and p-TAK1, but increased the expression levels of p-53 and cleavage-PARP in AGS cells compared to shCtrl group. We demonstrated that IARS2 knockdown inhibits proliferation, suppresses colony formation, and causes cell cycle arrest in AGS cells. We also found that IARS2 regulates key molecules of cell apoptosis-related signaling pathway.


Assuntos
Aminoacil-tRNA Sintetases/genética , Apoptose/genética , Proteínas de Ciclo Celular , Proliferação de Células/genética , Proteínas de Neoplasias , Transdução de Sinais/genética , Neoplasias Gástricas , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
18.
Am J Med Genet A ; 173(4): 1102-1108, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28328135

RESUMO

Since the original description of the IARS2-related cataracts, growth hormone deficiency, sensory neuropathy, sensorineural hearing loss, skeletal dysplasia syndrome (CAGSSS; OMIM 616007) in an extended consanguineous family of French-Canadian descent, no further patients have been reported. IARS2 (OMIM 612801) encodes the mitochondrial isoleucine-tRNA synthetase which belongs to the class-I aminoacyl-tRNA synthetase family, and has been implicated in CAGSSS and a form of Leigh syndrome. Here, we report on a female Danish patient with a novel homozygous IARS2 mutation, p.Gly874Arg, who presented at birth with bilateral hip dislocation and short stature. At 3 months, additional dysmorphic features were noted and at 18 months her radiographic skeletal abnormalities were suggestive of an underlying spondyloepimetaphyseal dysplasia (SEMD). Retrospective analysis of the neonatal radiographs confirmed that the skeletal changes were present at birth. It was only with time that several of the other manifestations of the CAGSSS emerged, namely, cataracts, peripheral neuropathy, and hearing loss. Growth hormone deficiency has not (yet) manifested. We present her clinical features and particularly highlight her skeletal findings, which confirm the presence of a primary SEMD skeletal dysplasia in a growing list of mitochondrial-related disorders including CAGSSS, CODAS, EVEN-PLUS, and X-linked SEMD-MR syndromes.


Assuntos
Catarata/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Hormônio do Crescimento/deficiência , Perda Auditiva Neurossensorial/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Isoleucina-tRNA Ligase/genética , Mutação , Osteocondrodisplasias/genética , Catarata/diagnóstico , Catarata/patologia , Criança , Exoma , Feminino , Expressão Gênica , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Osteocondrodisplasias/diagnóstico , Osteocondrodisplasias/patologia , Radiografia , Síndrome
19.
Clin Genet ; 91(6): 913-917, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27891590

RESUMO

Recently, bi-allelic mutations in cytosolic isoleucyl-tRNA synthetase (IARS) have been described in three individuals with growth delay, hepatic dysfunction, and neurodevelopmental disabilities. Here we report an additional subject with this condition identified by whole-exome sequencing. Our findings support the association between this disorder and neonatal cholestasis with distinct liver pathology. Furthermore, we provide functional data on two novel missense substitutions and expand the phenotype to include mild developmental delay, skin hyper-elasticity, and hypervitaminosis D.


Assuntos
Colestase/genética , Deficiências do Desenvolvimento/genética , Retardo do Crescimento Fetal/genética , Isoleucina-tRNA Ligase/genética , Alelos , Sequência de Aminoácidos/genética , Colestase/patologia , Deficiências do Desenvolvimento/patologia , Retardo do Crescimento Fetal/patologia , Predisposição Genética para Doença , Homozigoto , Humanos , Lactente , Recém-Nascido , Fígado/patologia , Masculino , Mutação , Linhagem , Sequenciamento do Exoma
20.
Anim Sci J ; 87(9): 1178-81, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27229878

RESUMO

Isoleucyl-tRNA synthetase (IARS) c.235G > C (p.V79L) is a causative mutation for a recessive disease called IARS disorder in Japanese black cattle. The disease is involved in weak calf syndrome and is characterized by low birth weight, weakness and poor suckling. The gestation period is often slightly extended, implying that intrauterine growth is retarded. In a previous analysis of 2597 artificial insemination (AI) procedures, we suggested that the IARS mutation might contribute toward an increase in the incidence of prenatal death. In this study, we extended this analysis to better clarify the association between the IARS mutation and prenatal death. The IARS genotypes of 92 animals resulting from crosses between carrier (G/C) × G/C were 27 normal (G/G), 55 G/C and 10 affected animals (C/C) (expected numbers: 23, 46 and 23, respectively). Compared to the expected numbers, there were significantly fewer affected animals in this population (P < 0.05), suggesting that more than half of the affected embryos died prenatally. When the number of AI procedures examined was increased to 11 580, the frequency of re-insemination after G/C × G/C insemination was significantly higher at 61-140 days (P < 0.001). The findings suggested that the homozygous IARS mutation not only causes calf death, but also embryonic or fetal death.


Assuntos
Doenças dos Bovinos/genética , Bovinos/genética , Morte Fetal/etiologia , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/veterinária , Isoleucina-tRNA Ligase/genética , Mutação , Animais , Doenças dos Bovinos/epidemiologia , Feminino , Retardo do Crescimento Fetal/epidemiologia , Genótipo , Idade Gestacional , Homozigoto , Hibridização Genética/genética , Incidência , Inseminação Artificial , Gravidez , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA