Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Front Immunol ; 15: 1404649, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39100665

RESUMO

The type I interferon (IFN) pathway is important for eukaryotic cells to resist viral infection, as well as an impediment to efficient virus replication. Therefore, this study aims to create an IFNAR1 knockout (KO) Madin-Darby bovine kidney (MDBK) cell line using CRISPR/Cas9 and investigate its application and potential mechanism in increasing viral replication of bovines. The IFNAR1 KO cells showed increased titers of bovine viral diarrhea virus (BVDV) (1.5 log10), with bovine enterovirus and bovine parainfluenza virus type 3 (0.5-0.8 log10). RNA-seq revealed reduced expression of the genes related IFN-I pathways including IFNAR1, STAT3, IRF9, and SOCS3 in IFNAR1 KO cells compared with WT cells. In WT cells, 306 differentially expressed genes (DEGs) were identified between BVDV-infected and -uninfected cells. Of these, 128 up- and 178 down-regulated genes were mainly associated with growth cycle and biosynthesis, respectively. In IFNAR1 KO cells, 286 DEGs were identified, with 82 up-regulated genes were associated with signaling pathways, and 204 down-regulated genes. Further, 92 DEGs were overlapped between WT and IFNAR1 KO cells including ESM1, IL13RA2, and SLC25A34. Unique DEGs in WT cells were related to inflammation and immune regulation, whereas those unique in IFNAR1 KO cells involved in cell cycle regulation through pathways such as MAPK. Knocking down SLC25A34 and IL13RA2 in IFNAR1 KO cells increased BVDV replication by 0.3 log10 and 0.4 log10, respectively. Additionally, we constructed an IFNAR1/IFNAR2 double-knockout MDBK cell line, which further increased BVDV viral titers compared with IFNAR1 KO cells (0.6 log10). Overall, the IFNAR1 KO MDBK cell line can support better replication of bovine viruses and therefore provides a valuable tool for bovine virus research on viral pathogenesis and host innate immune response.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Inativação de Genes , Receptor de Interferon alfa e beta , Replicação Viral , Animais , Bovinos , Receptor de Interferon alfa e beta/genética , Linhagem Celular , Vírus da Diarreia Viral Bovina/fisiologia , Vírus da Diarreia Viral Bovina/genética
2.
J Neuroinflammation ; 21(1): 166, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956653

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) and obstructive sleep apnea (OSA) are mutual risk factors, with both conditions inducing cognitive impairment and anxiety. However, whether OSA exacerbates cognitive impairment and anxiety in patients with T2DM remains unclear. Moreover, TREM2 upregulation has been suggested to play a protective role in attenuating microglia activation and improving synaptic function in T2DM mice. The aim of this study was to explore the regulatory mechanisms of TREM2 and the cognitive and anxiety-like behavioral changes in mice with OSA combined with T2DM. METHODS: A T2DM with OSA model was developed by treating mice with a 60% kcal high-fat diet (HFD) combined with intermittent hypoxia (IH). Spatial learning memory capacity and anxiety in mice were investigated. Neuronal damage in the brain was determined by the quantity of synapses density, the number and morphology of brain microglia, and pro-inflammatory factors. For mechanism exploration, an in vitro model of T2DM combined with OSA was generated by co-treating microglia with high glucose (HG) and IH. Regulation of TREM2 on IFNAR1-STAT1 pathway was determined by RNA sequencing and qRT-PCR. RESULTS: Our results showed that HFD mice exhibited significant cognitive dysfunction and anxiety-like behavior, accompanied by significant synaptic loss. Furthermore, significant activation of brain microglia and enhanced microglial phagocytosis of synapses were observed. Moreover, IH was found to significantly aggravate anxiety in the HFD mice. The mechanism of HG treatment may potentially involve the promotion of TREM2 upregulation, which in turn attenuates the proinflammatory microglia by inhibiting the IFNAR1-STAT1 pathway. Conversely, a significant reduction in TREM2 in IH-co-treated HFD mice and HG-treated microglia resulted in the further activation of the IFNAR1-STAT1 pathway and consequently increased proinflammatory microglial activation. CONCLUSIONS: HFD upregulated the IFNAR1-STAT1 pathway and induced proinflammatory microglia, leading to synaptic damage and causing anxiety and cognitive deficits. The upregulated TREM2 inT2DM mice brain exerted a negative regulation of the IFNAR1-STAT1 pathway. Mice with T2DM combined with OSA exacerbated anxiety via the downregulation of TREM2, causing heightened IFNAR1-STAT1 pathway activation and consequently increasing proinflammatory microglia.


Assuntos
Ansiedade , Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Hipóxia , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta , Receptores Imunológicos , Transdução de Sinais , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Ansiedade/etiologia , Ansiedade/metabolismo , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos , Hipóxia/metabolismo , Hipóxia/complicações , Masculino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/psicologia , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Microglia/metabolismo , Fator de Transcrição STAT1/metabolismo , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/psicologia
3.
Int J Biol Macromol ; 268(Pt 2): 131721, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38649079

RESUMO

Interferon (IFN) alpha/beta receptor 1 (IFNAR1) is indispensable for antiviral responses and the immune regulation. Dysregulation of the IFNAR1-mediaetd signaling pathways leads to deleterious autoimmune diseases such as systemic lupus erythematosus (SLE). QX006N, a humanized therapeutic monoclonal antibody, specifically targets human IFNAR1 and is in the clinical trial phase for treating SLE, but the molecular mechanism underlying the QX006N-mediated recognition of IFNAR1 remains unclear. Here, we report the high neutralization activities of QX006N against IFNAR1-mediated signal transduction. Meanwhile, we determine the structures of the fragment antigen-binding domain (Fab) of QX006N (QX006N-Fab) and QX006N-Fab in complex with the subdomains 1-3 of IFNAR1 (IFNAR1-SD123) at 2.87 Å and 2.68 Å resolutions, respectively. In the structure of the QX006N-Fab/IFNAR1-SD123 complex, QX006N-Fab only recognizes the SD3 subdomain of IFNAR1 by the hydrophobic, hydrogen-bonding and electrostatic interactions. Compared with the structure of the IFN/IFNAR1/IFNAR2 complex, the binding of QX006N-Fab to IFNAR1-SD3 blocks its association with IFN due to steric hindrance, which inhibits the IFN/IFNAR1/IFNAR2 complex formation for signal transduction. The results of this study provide the structural evidence for the specific targeting of IFNAR1 by the therapeutic antibody QX006N and pave the way for the rational design of antibody drugs to combat IFNAR1-related autoimmune diseases.


Assuntos
Anticorpos Monoclonais Humanizados , Lúpus Eritematoso Sistêmico , Receptor de Interferon alfa e beta , Receptor de Interferon alfa e beta/metabolismo , Receptor de Interferon alfa e beta/química , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/imunologia , Humanos , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Ligação Proteica , Modelos Moleculares , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/imunologia , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade
4.
Protein Cell ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530808

RESUMO

Direct conversion of cardiac fibroblasts (CFs) to cardiomyocytes (CMs) in vivo to regenerate heart tissue is an attractive approach. After myocardial infarction (MI), heart repair proceeds with an inflammation stage initiated by monocytes infiltration of the infarct zone establishing an immune microenvironment. However, whether and how the MI microenvironment influences the reprogramming of CFs remains unclear. Here, we found that in comparison with cardiac fibroblasts (CFs) cultured in vitro, CFs that transplanted into infarct region of MI mouse models resisted to cardiac reprogramming. RNA-seq analysis revealed upregulation of interferon (IFN) response genes in transplanted CFs, and subsequent inhibition of the IFN receptors increased reprogramming efficiency in vivo. Macrophage-secreted IFN-ß was identified as the dominant upstream signaling factor after MI. CFs treated with macrophage-conditioned medium containing IFN-ß displayed reduced reprogramming efficiency, while macrophage depletion or blocking the IFN signaling pathway after MI increased reprogramming efficiency in vivo. Co-IP, BiFC and Cut-tag assays showed that phosphorylated STAT1 downstream of IFN signaling in CFs could interact with the reprogramming factor GATA4 and inhibit the GATA4 chromatin occupancy in cardiac genes. Furthermore, upregulation of IFN-IFNAR-p-STAT1 signaling could stimulate CFs secretion of CCL2/7/12 chemokines, subsequently recruiting IFN-ß-secreting macrophages. Together, these immune cells further activate STAT1 phosphorylation, enhancing CCL2/7/12 secretion and immune cell recruitment, ultimately forming a self-reinforcing positive feedback loop between CFs and macrophages via IFN-IFNAR-p-STAT1 that inhibits cardiac reprogramming in vivo. Cumulatively, our findings uncover an intercellular self-stimulating inflammatory circuit as a microenvironmental molecular barrier of in situ cardiac reprogramming that needs to be overcome for regenerative medicine applications.

5.
Viruses ; 16(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38543756

RESUMO

CD8+ T cells are critical to the adaptive immune response against viral pathogens. However, overwhelming antigen exposure can result in their exhaustion, characterised by reduced effector function, failure to clear virus, and the upregulation of inhibitory receptors, including programmed cell death 1 (PD-1). However, exhausted T cell responses can be "re-invigorated" by inhibiting PD-1 or the primary ligand of PD-1: PD-L1. Further, the absence of the type I interferon receptor IFNAR1 also results in T cell exhaustion and virus persistence in lymphocytic choriomeningitis virus Armstrong (LCMV-Arm)-infected mice. In this study, utilizing single- and double-knockout mice, we aimed to determine whether ablation of PD-1 could restore T cell functionality in the absence of IFNAR1 signalling in LCMV-Arm-infected mice. Surprisingly, this did not re-invigorate the T cell response and instead, it converted chronic LCMV-Arm infection into a lethal disease characterized by severe lung inflammation with an infiltration of neutrophils and T cells. Depletion of CD8+ T cells, but not neutrophils, rescued mice from lethal disease, demonstrating that IFNAR1 is required to prevent T cell exhaustion and virus persistence in LCMV-Arm infection, and in the absence of IFNAR1, PD-L1 is required for survival. This reveals an important interplay between IFNAR1 and PD-L1 with implications for therapeutics targeting these pathways.


Assuntos
Interferon Tipo I , Coriomeningite Linfocítica , Camundongos , Animais , Vírus da Coriomeningite Linfocítica , Linfócitos T CD8-Positivos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Camundongos Knockout , Interferon Tipo I/metabolismo , Camundongos Endogâmicos C57BL
6.
Emerg Microbes Infect ; 13(1): 2287681, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37994664

RESUMO

Type I interferons (IFN-Is) have key roles in immune defense and treatments for various diseases, including chronic hepatitis B virus (HBV) infection. All IFN-Is signal through a shared IFN-I heterodimeric receptor complex comprising IFN-α receptor 1 (IFNAR1) and IFNAR2 subunits, but differences in antiviral and immunomodulatory responses among IFN-I subtypes remain largely unknown. Because the IFN-IFNAR interactions are species-specific, mice exhibit weak responses to human IFN-I. To more fully characterize the actions of human IFN-α and its subtypes in vivo, a gene targeting strategy was employed to generate gene knock-in mice with extracellular-humanized IFNAR1/2 (IFNAR-hEC) in the C57BL/6N strain. IFNAR-hEC mice actively responded to human IFN-I, and endogenous mouse IFN-I signalling remained active in heterozygous mice (IfnarhEC/+). Analyses of IFNAR-hEC mice and isolated cells showed that human IFN-α2 and α14 subtypes exerted differential effect on the activation of JAK-STAT signalling and immune responses. Compared with IFN-α2, IFN-α14 induced greater activation of STAT1/2 and IFN-stimulated genes, synergistically elicited IFN-α and -γ signalling, and induced higher numbers of antigen-specific CD8+ T cells. Moreover, IFNAR-hEC mice with HBV replication displayed long-term viral suppression upon treatment with the clinically-used PEGylated hIFN-α2. These results indicate that IFNAR-hEC mice may be useful for elucidating antiviral and immunomodulatory functions of human IFN-Is and for conducting preclinical studies. A better understanding of the distinct activities of IFN-α subtypes can provide insights concerning the development of improved IFN-based therapy.


Assuntos
Hepatite B Crônica , Interferon Tipo I , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Hepatite B Crônica/tratamento farmacológico , Camundongos Endogâmicos C57BL , Interferon-alfa , Antivirais/farmacologia
7.
Pathology ; 56(1): 92-97, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37973454

RESUMO

Mutations of the human interferon alpha and beta receptor subunit 1 (IFNAR1) gene are associated with severe viral infections. Individuals homozygous for the Glu386∗ variant have impaired type I interferon signalling and can suffer severe illness when exposed to certain viruses and live attenuated virus vaccines. Glu386∗ heterozygotes are clinically unaffected, but can pass the variant allele to their descendants. We aimed to develop an assay that can identify IFNAR1 Glu386∗ homozygotes and heterozygotes to support urgent clinical diagnosis, and that can use dried blood spots (DBS) sent at ambient temperature to overcome geographical logistical challenges in the South Pacific region. The tri-allelic genotyping assay interrogates a single nucleotide polymorphism (rs201609461) located in IFNAR1. The reference allele G encodes for wild-type IFNAR1. Minor alleles A (c.1156G>A) and T (c.1156G>T) encode for Glu386Lys and a truncated IFNAR1 protein (p.Glu386∗), respectively. Synthetic oligonucleotides were mixed in equal molar ratio to create six different genotypes which were randomly assigned to 960 genotyping reactions by R software. Three different fluorescence probes were designed to discriminate the three alleles (G, T and A) within a pair of flanking primers in a single genotyping reaction. The assay discriminated all three alleles using DBS from Guthrie cards randomly spiked with synthetic oligonucleotides. We correctly identified all the different genotypes in 960 reactions in these blinded experiments. These findings validate the genotyping assay for rapidly identifying the IFNAR1 Glu386∗ variant from DBS.


Assuntos
Interferon-alfa , Receptor de Interferon alfa e beta , Humanos , Interferon-alfa/genética , Alelos , Genótipo , Receptor de Interferon alfa e beta/genética , Oligonucleotídeos
8.
Immunity ; 57(1): 68-85.e11, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38141610

RESUMO

Tissue factor (TF), which is a member of the cytokine receptor family, promotes coagulation and coagulation-dependent inflammation. TF also exerts protective effects through unknown mechanisms. Here, we showed that TF bound to interferon-α receptor 1 (IFNAR1) and antagonized its signaling, preventing spontaneous sterile inflammation and maintaining immune homeostasis. Structural modeling and direct binding studies revealed binding of the TF C-terminal fibronectin III domain to IFNAR1, which restricted the expression of interferon-stimulated genes (ISGs). Podocyte-specific loss of TF in mice (PodΔF3) resulted in sterile renal inflammation, characterized by JAK/STAT signaling, proinflammatory cytokine expression, disrupted immune homeostasis, and glomerulopathy. Inhibiting IFNAR1 signaling or loss of Ifnar1 expression in podocytes attenuated these effects in PodΔF3 mice. As a heteromer, TF and IFNAR1 were both inactive, while dissociation of the TF-IFNAR1 heteromer promoted TF activity and IFNAR1 signaling. These data suggest that the TF-IFNAR1 heteromer is a molecular switch that controls thrombo-inflammation.


Assuntos
Transdução de Sinais , Tromboplastina , Animais , Camundongos , Inflamação , Interferon-alfa , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Tromboplastina/genética
9.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1045662

RESUMO

@#Abstract: Type I interferons play an important role in the pathogenesis of autoimmune diseases such as systemic lupus erythematosus (SLE). Monoclonal antibody shows therapeutic potential by blocking the signaling pathway. This study used recombinant human subunit 1 of the type I interferon receptor (IFNAR1) protein to immunize New Zealand white rabbits, and applied B cell cloning technology to screen and obtain rabbit parental antibodies. After humanization modification, QX006N was obtained. In vitro biological studies showed that QX006N could specifically bind to human IFNAR1 with an affinity of 108 pmol/L, and neutralize the type I interferon signaling pathway and this pathway mediated biological effects. This study provides a solid foundation for the development of antibody drugs targeting the type I interferon signaling pathway for the treatment of SLE.

10.
Pathogens ; 12(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38003785

RESUMO

Host genetic factors significantly influence susceptibility to SARS-CoV-2 infection and COVID-19 severity. Among these genetic factors are single-nucleotide variants (SNVs). IFNAR2 and IFNAR1 genes have been associated with severe COVID-19 in populations from the United Kingdom, Africa, and Latin America. IFNAR1 and IFNAR2 are subunits forming the type I interferon receptor (IFNAR). SNVs in the IFNAR genes impact protein function, affecting antiviral response and disease phenotypes. This systematic review aimed to describe IFNAR1 and IFNAR2 variants associated with COVID-19 susceptibility and severity. Accordingly, the current review focused on IFNAR1 and IFNAR2 studies published between January 2021 and February 2023, utilizing the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol. The electronic search was conducted in PubMed databases using Boolean operators and inclusion and exclusion criteria. Of the 170 literature pieces, 11 studies were included. We include case reports of rare SNVs, defined by minor allele frequency (MAF) < 1%, and genome-wide associated studies (GWAS). Variants in IFNAR1 and IFNAR2 could potentially be new targets for therapies that limit the infection and the resulting inflammation by SARS-CoV-2 infection.

11.
J Drug Target ; 31(9): 976-985, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37851377

RESUMO

The eradication of chronic hepatitis B (CHB) caused by hepatitis B virus (HBV) infection is a crucial goal in clinical practice. Enhancing the anti-HBV activity of interferon type I (IFNI) is a key strategy for achieving a functional cure for CHB. In this study, we investigated the effect of combined treatment with IFNα and Desmethoxycurcumin (DMC) on HBV replication in HepG2 cells and explored the underlying mechanism. Our results indicated IFNα alone was ineffective in completely inhibiting HBV replication, which was attributed to the virus-induced down-regulation of IFNI receptor 1 (IFNAR1) protein. However, the addition of a low dose of DMC significantly synergized with IFNα, leading to notable enhancement of IFNα anti-HBV activity. This effect was achieved by stabilising the IFNAR1 protein. Further investigation revealed that low dose DMC effectively blocked the ubiquitination-mediated degradation of IFNAR1, which was accomplished by rescuing the protein levels of alphaB-crystallin (CRYAB) and orchestrating the interaction between CRYAB and the E3 ubiquitin ligase, ß-Trcp. Importantly, over-expression of CRYAB was found to favour the antiviral activity of IFNα against HBV replication. In conclusion, our study demonstrates that low-dose DMC enhanced the anti-HBV activity of IFNα by counteracting the reduction of CRYAB and stabilising the IFNAR1 protein.


Assuntos
Curcumina/análogos & derivados , Vírus da Hepatite B , Interferon-alfa , Interferon-alfa/farmacologia , Marrocos , Vírus da Hepatite B/fisiologia , Proteínas de Transporte
12.
Cell Rep ; 42(11): 113275, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37874678

RESUMO

Type I interferon (IFN-I) response is the first line of host defense against invading viruses. In the absence of definite mouse models, the role of IFN-I in SARS-CoV-2 infection remains perplexing. Here, we develop two mouse models, one with constitutively high IFN-I response (hACE2; Irgm1-/-) and the other with dampened IFN-I response (hACE2; Ifnar1-/-), to comprehend the role of IFN-I response. We report that hACE2; Irgm1-/- mice are resistant to lethal SARS-CoV-2 infection. In contrast, a severe SARS-CoV-2 infection along with immune cell infiltration, cytokine storm, and enhanced pathology is observed in the lungs and brain of hACE2; Ifnar1-/- mice. The hACE2; Irgm1-/-Ifnar1-/- double-knockout mice display loss of the protective phenotype observed in hACE2; Irgm1-/- mice, suggesting that heightened IFN-I response accounts for the observed immunity. Taking the results together, we demonstrate that IFN-I protects from lethal SARS-CoV-2 infection, and Irgm1 (IRGM) could be an excellent therapeutic target against SARS-CoV-2.


Assuntos
COVID-19 , Interferon Tipo I , Camundongos , Animais , Camundongos Transgênicos , SARS-CoV-2 , Camundongos Knockout , Anticorpos , Modelos Animais de Doenças , Pulmão
14.
Chinese Journal of Biologicals ; (12): 145-150+157, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-965608

RESUMO

@#Objective To knockout interferon alpha/beta receptor subunit 1(IFNAR1) gene in human colorectal adenocarcinoma cells Caco-2 using clustered regularly interspaced short palinmic repeats(CRISPR)/CRISPR-associated protein 9(Cas9)system to construct IFNAR1 knockout Caco-2 cell line.Methods The single guide RNA(sgRNA)sequence was designed to specifically recognize the exon region of IFNAR1 gene using CRISPR/Cas9 technology,and the LentiCRISPRv2-IFNAR1-sgRNA recombinant plasmid was constructed.Caco-2 cells were infected with the plasmid packaged by lentivirus and screened by puromycin resistance.The obtained monoclonal cell lines were cultured by limited dilution method,which were verified for the effect of IFNAR1 gene knockout by target gene sequencing and Western blot,and detected for the mRNA levels of CXC chemokine ligand 10(CXCL10)and interferon-stimulatd gene 20(ISG20)in IFNAR1knockout cells by adding exogenous IFNβ.Results Sequencing results of plasmid LentiCRISPRv2-IFNAR1-sgRNA showed that the insertion sites were all located at the sticky end of BsmBⅠenzyme digestion.Two IFNAR1 knockout monoclonal cell lines were obtained.The sequencing results showed that Caco-2-IFNAR1-KO1 had 5 bp deletion in the sixth exon of IFNAR1,and Caco-2-IFNAR1-KO2 had 18 bp deletion and 1 bp insertion in the seventh exon.Compared with wild-type Caco-2 cells,Caco-2-IFNAR1-KO1 and Caco-2-IFNAR1-KO2 cells showed no expression of IFNAR1 protein.Compared with no IFNβ stimulation,the mRNA levels of CXCL10 gene(t = 0.566 and 1.268 respectively,P>0.05)and ISG20 gene(t =1.522 and 1.733 respectively,P>0.05)in Caco-2-IFNAR1-KO1 and Caco-2-IFNAR1-KO2 cells stimulated by 50 ng/mL IFNβ showed no significant increase.While compared with those of wild-type Caco-2 cells,the mRNA levels of CXCL10gene(t = 6.763 and 6.777 respectively,P<0.05)and ISG20 gene(t = 5.664 and 5.65 respectively,P<0.05)in Caco-2-IFNAR1-KO1 and Caco-2-IFNAR1-KO2 cells decreased significantly under the stimulation of 50 ng/mL exogenous IFNβ.Conclusion Caco-2 cell line with IFNAR1 knockout was successfully constructed by using CRISPR/Cas9 technology,and the downstream molecules activated by IFNAR(interferon alpha/beta receptor)in this cell line were obviously inhibited,which provided a powerful tool for further exploration of the innate immune response and replication packaging mechanism of Caco-2 cells after virus infection.

15.
Cancer Res Commun ; 2(4): 246-257, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-36187936

RESUMO

Many patients with breast cancer have a poor prognosis with limited therapeutic options. Here, we investigated the potential of chemo-immunogenic therapy as an avenue of treatment. We utilized two syngeneic mouse mammary tumor models, 4T1 and E0771, to examine the chemo-immunogenic potential of cyclophosphamide and the mechanistic contributions of cyclophosphamide-activated type-I interferon (IFN) signaling to therapeutic activity. Chemically-activated cyclophosphamide induced robust IFNα/ß receptor-1-dependent signaling linked to hundreds of IFN-stimulated gene responses in both cell lines. Further, in 4T1 tumors, cyclophosphamide given on a medium-dose, 6-day intermittent metronomic schedule induced strong IFN signaling but comparatively weak immune cell infiltration associated with long-term tumor growth stasis. Induction of IFN signaling was somewhat weaker in E0771 tumors but was followed by widespread downstream gene responses, robust immune cell infiltration and extensive, prolonged tumor regression. The immune dependence of these effective anti-tumor responses was established by CD8 T-cell immunodepletion, which blocked cyclophosphamide-induced E0771 tumor regression and led to tumor stasis followed by regrowth. Strikingly, IFNα/ß receptor-1 antibody blockade was even more effective in preventing E0771 immune cell infiltration and blocked the major tumor regression induced by cyclophosphamide treatment. Type-I IFN signaling is thus essential for the robust chemo-immunogenic response of these tumors to cyclophosphamide administered on a metronomic schedule.


Assuntos
Neoplasias Encefálicas , Interferon Tipo I , Camundongos , Animais , Neoplasias Encefálicas/tratamento farmacológico , Administração Metronômica , Ciclofosfamida/farmacologia , Imunidade Inata , Interferon Tipo I/farmacologia , Modelos Animais de Doenças
16.
Viruses ; 14(10)2022 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-36298780

RESUMO

For industrial vaccine production, overwhelming the existing antiviral innate immune response dominated by type I interferons (IFN-I) in cells would be a key factor improving the effectiveness and production cost of vaccines. In this study, we report the construction of an IFN-I receptor 1 (IFNAR1)-knockout DF-1 cell line (KO-IFNAR1), which supports much more efficient replication of the duck Tembusu virus (DTMUV), Newcastle disease virus (NDV) and gammacoronavirus infectious bronchitis virus (IBV). Transcriptomic analysis of DTMUV-infected KO-IFNAR1 cells demonstrated that DTMUV mainly activated genes and signaling pathways related to cell growth and apoptosis. Among them, JUN, MYC and NFKBIA were significantly up-regulated. Furthermore, knockdown of zinc-fingered helicase 2 (HELZ2) and interferon-α-inducible protein 6 (IFI6), the two genes up-regulated in both wild type and KO-IFNAR1 cells, significantly increased the replication of DTMUV RNA. This study paves the way for further studying the mechanism underlying the DTMUV-mediated IFN-I-independent regulation of virus replication, and meanwhile provides a potential cell resource for efficient production of cell-based avian virus vaccines.


Assuntos
Infecções por Flavivirus , Flavivirus , Interferon Tipo I , Doenças das Aves Domésticas , Animais , Patos , Galinhas/genética , Transcriptoma , Flavivirus/genética , Linhagem Celular , Interferon Tipo I/genética , Antivirais , Apoptose , RNA , Interferon-alfa/genética , Zinco
17.
Cytokine ; 159: 156008, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36063748

RESUMO

IFN-α receptor (IFNAR) is critical for maintaining the crosstalk between cancer cells and lymphocytes. We investigated IFNAR1 expression in peripheral blood CD4+ and CD8+ T cells and explored their relationships with plasma cytokines, chemosensitivity and infiltrated T cells in the tumor microenvironment (TME) of colorectal cancer (CRC). The levels of IFNAR1, IFN-γ, and PD1 in peripheral T cells were tested using flow cytometry. Immunohistochemical staining of IFNAR1 in CRC tissues was performed. A cytometric bead array was used to determine the plasma concentrations of cytokines. In CRC patients, IFNAR1 levels were significantly increased in peripheral blood T cells, and plasma IL-6 levels were also significantly increased. Pearson correlation analysis revealed that IFNAR1 expression in CD8+ T cells was negatively associated with plasma IL-2, IFN-γ, and TNFα. IFNAR1 expression in CD4+ T cells was positively associated with TME infiltrated levels of CD8+ T cells. The levels of CD8+ T cells with IFNAR1 and plasma IFN-γ were associated with chemosensitivity. Collectively, IFNAR1 levels in CD4+ and CD8+ T cells were significantly upregulated in CRC patients and positively associated with T-cell infiltration. IFNAR1 may be a chemotherapy biomarker for predicting response.


Assuntos
Neoplasias Colorretais , Linfócitos do Interstício Tumoral , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/metabolismo , Citocinas/metabolismo , Humanos , Interleucina-2/metabolismo , Interleucina-6/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo
18.
Virol Sin ; 37(6): 894-903, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35985475

RESUMO

Casein kinase 1α (CK1α) mediates the phosphorylation and degradation of interferon-α/ß receptor 1 (IFNAR1) in response to viral infection. However, how CK1α regulates hepatitis B virus (HBV) replication and the anti-HBV effects of IFN-α are less reported. Here we show that CK1α can interact with IFNAR1 in hepatoma carcinoma cells and increased the abundance of IFNAR1 by reducing the ubiquitination levels in the presence of HBV. Furthermore, CK1α promotes the IFN-α triggered JAK-STAT signaling pathway and consequently enhances the antiviral effects of IFN-α against HBV replication. Our results collectively provide evidence that CK1α positively regulates the anti-HBV activity of IFN-α in hepatoma carcinoma cells, which would be a promising therapeutic target to improve the effectiveness of IFN-α therapy to cure CHB.


Assuntos
Carcinoma Hepatocelular , Caseína Quinase Ialfa , Interferon Tipo I , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/fisiologia , Linhagem Celular , Interferon Tipo I/metabolismo , Interferon-alfa/farmacologia , Receptor de Interferon alfa e beta
19.
Front Immunol ; 13: 878959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833131

RESUMO

Tumor-draining lymph nodes (TDLNs) are the first organs where the metastatic spread of different types of cancer, including head and neck cancer (HNC), occurs and have therefore high prognostic relevance. Moreover, first anti-cancer immune responses have been shown to be initiated in such LNs via tumor-educated myeloid cells. Among myeloid cells present in TDLNs, neutrophils represent a valuable population and considerably participate in the activation of effector lymphocytes there. Tumor-supportive or tumor-inhibiting activity of neutrophils strongly depends on the surrounding microenvironment. Thus, type I interferon (IFN) availability has been shown to prime anti-tumor activity of these cells. In accordance, mice deficient in type I IFNs show elevated tumor growth and metastatic spread, accompanied by the pro-tumoral neutrophil bias. To reveal the mechanism responsible for this phenomenon, we have studied here the influence of defective type I IFN signaling on the immunoregulatory activity of neutrophils in TDLNs. Live imaging of such LNs was performed using two-photon microscopy in a transplantable murine HNC model. CatchupIVM-red and Ifnar1-/- (type I IFN receptor- deficient) CatchupIVM-red mice were used to visualize neutrophils and to assess their interaction with T-cells in vivo. We have evaluated spatiotemporal patterns of neutrophil/T-cell interactions in LNs in the context of type I interferon receptor (IFNAR1) availability in tumor-free and tumor-bearing animals. Moreover, phenotypic and functional analyses were performed to further characterize the mechanisms regulating neutrophil immunoregulatory capacity. We demonstrated that inactive IFNAR1 leads to elevated accumulation of neutrophils in TDLNs. However, these neutrophils show significantly impaired capacity to interact with and to stimulate T-cells. As a result, a significant reduction of contacts between neutrophils and T lymphocytes is observed, with further impairment of T-cell proliferation and activation. This possibly contributes to the enhanced tumor growth in Ifnar1-/- mice. In agreement with this, IFNAR1-independent activation of downstream IFN signaling using IFN-λ improved the immunostimulatory capacity of neutrophils in TDLNs and contributed to the suppression of tumor growth. Our results suggest that functional type I IFN signaling is essential for neutrophil immunostimulatory capacity and that stimulation of this signaling may provide a therapeutic opportunity in head and neck cancer patients.


Assuntos
Interferon Tipo I , Neoplasias , Receptor de Interferon alfa e beta , Animais , Interferon Tipo I/imunologia , Linfonodos , Camundongos , Neoplasias/imunologia , Neutrófilos/imunologia , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais , Microambiente Tumoral
20.
J Interferon Cytokine Res ; 42(6): 251-266, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35527626

RESUMO

Interferon beta (IFNß) is a well-known cytokine, belonging to the type I family, that exerts antiviral, immunomodulatory, and antiproliferative activity. It has been reported that the artificially deamidated form of recombinant IFNß-1a at Asn25 position shows an increased biological activity. As a deepening of the previous study, the molecular mechanism underlying this biological effect was investigated in this work by combining experimental and computational techniques. Specifically, the binding to IFNAR1 and IFNAR2 receptors and the canonical pathway of artificially deamidated IFNß-1a molecule were analyzed in comparison to the native form. As a result, a change in receptor affinity of deamidated IFNß-1a with respect to the native form was observed, and to better explore this molecular interaction, molecular dynamics simulations were carried out. Results confirmed, as previously hypothesized, that the N25D mutation can locally change the interaction network of the mutated residue but also that this effect can be propagated throughout the molecule. In fact, many residues not involved in the interaction with IFNAR1 in the native form participate to the recognition in the deamidated molecule, enhancing the binding to IFNAR1 receptor and consequently an increase of signaling cascade activation. In particular, a higher STAT1 phosphorylation and interferon-stimulated gene expression was observed under deamidated IFNß-1a cell treatment. In conclusion, this study increases the scientific knowledge of deamidated IFNß-1a, deciphering its molecular mechanism, and opens new perspectives to novel therapeutic strategies.


Assuntos
Antivirais , Interferon beta , Antivirais/metabolismo , Fatores Imunológicos , Interferon beta-1a , Interferon beta/metabolismo , Interferons , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA