Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 704
Filtrar
1.
Front Immunol ; 15: 1437046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39156888

RESUMO

Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases that span simple steatosis, metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis and may progress to cirrhosis and cancer. The pathogenesis of MASLD is multifactorial and is driven by environmental, genetic, metabolic and immune factors. This review will focus on the role of the type 3 cytokines IL-17 and IL-22 in MASLD pathogenesis and progression. IL-17 and IL-22 are produced by similar adaptive and innate immune cells such as Th17 and innate lymphoid cells, respectively. IL-17-related signaling is upregulated during MASLD resulting in increased chemokines and proinflammatory cytokines in the liver microenvironment, enhanced recruitment of myeloid cells and T cells leading to exacerbation of inflammation and liver disease progression. IL-17 may also act directly by activating hepatic stellate cells resulting in increased fibrosis. In contrast, IL-22 is a pleiotropic cytokine with a dominantly protective signature in MASLD and is currently being tested as a therapeutic strategy. IL-22 also exhibits beneficial metabolic effects and abrogates MASH-related inflammation and fibrosis development via inducing the production of anti-oxidants and anti-apoptotic factors. A sex-dependent effect has been attributed to both cytokines, most importantly to IL-22 in MASLD or related conditions. Altogether, IL-17 and IL-22 are key effectors in MASLD pathogenesis and progression. We will review the role of these two cytokines and cells that produce them in the development of MASLD, their interaction with host factors driving MASLD including sexual dimorphism, and their potential therapeutic benefits.


Assuntos
Interleucina-17 , Interleucina 22 , Interleucinas , Humanos , Interleucina-17/metabolismo , Interleucina-17/imunologia , Interleucinas/metabolismo , Interleucinas/imunologia , Animais , Fígado Gorduroso/imunologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/imunologia , Fígado/patologia , Fígado/metabolismo , Fígado/imunologia
2.
Arch Dermatol Res ; 316(8): 561, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177716

RESUMO

Circular RNAs (circRNAs) are demonstrated to be involved in psoriasis progression. CircRNAs can act as RNA-binding protein (RBP) sponges. Here, we investigated the action of circAKR1B10 in psoriasis, and explored the potential proteins interacted with circAKR1B10. Levels of genes and proteins were assayed by qRT-PCR and western blotting analyses. Keratinocytes in functional groups were treated with interleukin (IL)-22. Functional analysis were conducted using MTT, 5-ethynyl-2'-deoxyuridine (EdU), and transwell assays, respectively. Interaction analysis among circAKR1B10, Eukaryotic initiation factor 4 A-III (EIF4A3) and Aurora Kinase A (AURKA) was conducted using bioinformatics analysis, RNA pull-down assay, and RNA immunoprecipitation (RIP) assay. CircAKR1B10 was highly expressed in psoriasis patients and IL-22-induced keratinocytes. Functionally, knockdown of circAKR1B10 abolished IL-22-induced proliferation, migration and invasion in keratinocytes. AURKA expression was also higher in psoriasis patients and IL-22-induced keratinocytes, and was negatively correlated with circAKR1B10 expression. Moreover, AURKA silencing reduced the proliferative, migratory and invasive abilities of IL-22-induced keratinocytes. Mechanistically, circAKR1B10 interacted with EIF4A3 protein to stabilize and regulate AURKA expression. CircAKR1B10 contributes to IL-22-induced proliferation, migration and invasion in keratinocytes via up-regulating AURKA expression through interacting with EIF4A3 protein.


Assuntos
Aurora Quinase A , Movimento Celular , Proliferação de Células , Fator de Iniciação 4A em Eucariotos , Interleucina 22 , Interleucinas , Queratinócitos , Psoríase , RNA Circular , Humanos , Aurora Quinase A/metabolismo , Aurora Quinase A/genética , RNA Circular/genética , RNA Circular/metabolismo , Queratinócitos/metabolismo , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Psoríase/patologia , Psoríase/metabolismo , Psoríase/genética , Fator de Iniciação 4A em Eucariotos/metabolismo , Fator de Iniciação 4A em Eucariotos/genética , Interleucinas/metabolismo , Interleucinas/genética , RNA Helicases DEAD-box
3.
Artigo em Inglês | MEDLINE | ID: mdl-39046932

RESUMO

Purpose: Although it is now understood that most antiglaucoma surgeries fail because of scarring of the filtering tract, the underlying mechanism remains to be elucidated. The present study investigated the mechanism by which the interleukin (IL)-22/IL-22 receptor alpha 1 (IL-22RA1) signaling pathway regulates scar formation in glaucoma patients. Method: A total of 31 glaucoma patients who underwent trabeculectomy surgery with uncontrollable intraocular pressure because of scarring and 19 strabismus patients as the control patient group were included in the present study. ELISA was performed to measure the content of IL-22 in peripheral blood. Serum from patients was used to incubate human Tenon's capsule fibroblasts (HTFs) cells and IL-22 antibody rescued the effect of IL-22 on the biological functions. qPCR and Western blot were performed to determine IL-22RA1 mRNA and protein expression levels. Flow cytometry was performed to assess the cell cycle distribution and the Cell Counting Kit-8 assay was used to analyze cell proliferation. Results: The ELISA assay revealed that the serum IL-22 level of glaucoma patients was significantly higher than the healthy group (29.80 ± 5.1 ng/µL vs. 5.21 ± 0.9 ng/µL). After incubation with patient serum, the proliferation and activation of human Tenon fibroblasts (HTFs) were promoted. IL-22 mediated the biological function of HTFs via directly binding IL-22RA1. Moreover, transfection of the siR-IL-22RA1 or IL-22RA1 gene resulted in significant antifibrosis or profibrosis in HTFs. When a signal transducer and activator of transcription (STAT) 3 inhibitor (BAY) was introduced to the IL-22RA1 overexpression group, IL-22-induced proliferation was reduced in HTFs. Additionally, glaucoma patients had increased levels of IL-22 expression following surgery. Conclusions: The IL-22/IL-22RA1/STAT3 signaling pathway promoted fibroblast cell proliferation and alpha-smooth muscle actin, potentially regulating fibrosis in glaucoma filtration tracts. Our results provide hitherto undocumented insights into the pathophysiology of postoperative scarring.

4.
Cell Metab ; 36(8): 1726-1744.e10, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-38986617

RESUMO

The intestinal tract generates significant reactive oxygen species (ROS), but the role of T cell antioxidant mechanisms in maintaining intestinal homeostasis is poorly understood. We used T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), which impaired glutathione (GSH) production, crucially reducing IL-22 production by Th17 cells in the lamina propria, which is critical for gut protection. Under steady-state conditions, Gclc deficiency did not alter cytokine secretion; however, C. rodentium infection induced increased ROS and disrupted mitochondrial function and TFAM-driven mitochondrial gene expression, resulting in decreased cellular ATP. These changes impaired the PI3K/AKT/mTOR pathway, reducing phosphorylation of 4E-BP1 and consequently limiting IL-22 translation. The resultant low IL-22 levels led to poor bacterial clearance, severe intestinal damage, and high mortality. Our findings highlight a previously unrecognized, essential role of Th17 cell-intrinsic GSH in promoting mitochondrial function and cellular signaling for IL-22 protein synthesis, which is critical for intestinal integrity and defense against gastrointestinal infections.


Assuntos
Glutationa , Interleucina 22 , Interleucinas , Mitocôndrias , Células Th17 , Animais , Interleucinas/metabolismo , Mitocôndrias/metabolismo , Glutationa/metabolismo , Células Th17/metabolismo , Células Th17/imunologia , Camundongos , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Camundongos Endogâmicos C57BL , Citrobacter rodentium , Intestinos/patologia , Intestinos/imunologia , Inflamação/metabolismo , Inflamação/patologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/metabolismo , Infecções por Enterobacteriaceae/patologia , Camundongos Knockout , Serina-Treonina Quinases TOR/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-39033934

RESUMO

BACKGROUND: Cilia loss and impaired motile ciliary functions are among the typical pathological features of chronic rhinosinusitis with nasal polyps (CRSwNP). IL17A and IL22 are the canonical cytokines of type 3 inflammation, exhibiting similar functional effects on epithelial cells. In this study, we sought to examine the effects of IL17A and IL22 on ciliated cells and investigate the potential involvement of Hippo-YAP signaling in their influence on ciliogenesis. METHODS: We assessed both the mRNA and protein expression levels of IL17A and IL22 in nasal tissues obtained from patients with CRSwNP and compared them to those from healthy controls. To further explore the impact of IL17A and IL22, we established a primary human nasal epithelial cell model using different concentrations (2 ng/mL, 10 ng/mL, 50 ng/mL) for a duration of 28 days in an air-liquid interface culture. Additionally, we employed the inhibitor verteporfin to investigate whether IL17A and IL22 exert their effects on ciliated cells via the Hippo-YAP pathway. RESULTS: The mRNA and protein levels of IL17A and IL22 in CRSwNP were significantly higher than those in healthy controls, revealing a robust correlation between IL17A and IL22. YAP was highly expressed in the nucleus of ciliated cells in CRSwNP and displayed a positive correlation with clinical symptoms. Both IL17A and IL22 were found to reduce the number of ciliated cells. IL17A, but not IL22, suppressed ciliogenesis by disrupting the proper development and docking of the basal body of ciliated cells, resulting in motile ciliary dysfunctions. Furthermore, the expression of YAP within the nucleus of ciliated cells gradually declined as these cells reached the final stage of differentiation. However, this process was obstructed by IL17A only. YAP inhibitors, such as verteporfin, markedly reversed the effects of IL17A by increasing the proportion of ciliated cells, suppressing nuclear YAP expression in these cells, and enhancing ciliary beating frequency. CONCLUSIONS: Both IL17A and IL22 are overexpressed in nasal epithelium of CRSwNP, which is associated with the impairment of epithelial cell differentiation. Furthermore, IL17A has been shown to exert a disruptive effect on morphogenesis of motile cilia via activation of YAP.

6.
Int J Mol Sci ; 25(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39063102

RESUMO

This study aimed to determine whether oral fumonisin exposure contributes to the development of psoriasis. Oral administration of fumonisin B1 (FB1, 0.1 mg/kg) or fumonisin B2 (FB2, 0.1 mg/kg) was conducted for 10 days, in addition to the induction of psoriatic symptoms through topical application of 5% imiquimod cream from day 6 to day 10 (5 days) in female BALB/c mice. The results demonstrated that oral administration of FB2 significantly exacerbated psoriatic symptoms, including skin thickness, itching behavior, transepidermal water loss, immune cell infiltration in the dermis, and proinflammatory cytokine production. However, no changes were observed following exposure to FB1. Our results confirm that oral exposure to FB2 adversely affects the pathogenesis of psoriasis by increasing skin thickness and impairing barrier function.


Assuntos
Fumonisinas , Imiquimode , Camundongos Endogâmicos BALB C , Psoríase , Animais , Psoríase/induzido quimicamente , Psoríase/patologia , Psoríase/metabolismo , Imiquimode/efeitos adversos , Fumonisinas/toxicidade , Camundongos , Feminino , Administração Oral , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Citocinas/metabolismo , Modelos Animais de Doenças
7.
Front Neurol ; 15: 1411143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39040539

RESUMO

Despite significant advancements in the field, the pathophysiology of multiple sclerosis (MS) remains partially understood, with limited therapeutic options available for this debilitating condition. The precise impact of Interleukin-22 (IL-22) in the context of MS is still incompletely elucidated with some evidence suggesting its protective role. To provide a more comprehensive understanding of the role of IL-22, we investigated its effect on remyelination in a mouse model of demyelination induced by Cuprizone. Mice underwent a 6 week regimen of Cuprizone or vehicle, followed or not by intraperitoneal administration of IL-22. Behavioral assessments including tail suspension and inverted screen tests were conducted, alongside histological, histochemical, and quantitative PCR analyses. In Cuprizone-treated mice, IL-22 significantly improved motor and behavioral performance and robustly promoted remyelination in the corpus callosum. Additionally, IL-22 administration led to a significant elevation in MBP transcription in brain biopsies of treated mice. These findings collectively suggest a crucial role for IL-22 in the pathophysiology of MS, particularly in supporting the process of remyelination. These results offer potential avenues for expanding therapeutic strategies for MS treatment. Ongoing experiments aim to further unravel the underlying mechanisms of IL-22 action.

8.
Respir Res ; 25(1): 275, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003443

RESUMO

Pleurisy can be categorized as primary or secondary, arising from immunological, tumorous, or microbial conditions. It often results in lung structure damage and the development of various respiratory issues. Among the different types, tuberculous pleurisy has emerged as a prominent focus for both clinical and scientific investigations. The IL-10 family, known for its anti-inflammatory properties in the human immune system, is increasingly being studied for its involvement in the pathogenesis of pleurisy. This review aims to present a detailed overview of the intricate role of IL-10 family members (specifically IL-10, IL-22, and IL-26) in human and animal pleuritic diseases or relevant animal models. These insights could serve as valuable guidance and references for further studies on pleurisy and potential therapeutic strategies.


Assuntos
Interleucina-10 , Interleucina 22 , Interleucinas , Tuberculose Pleural , Animais , Humanos , Interleucina-10/metabolismo , Interleucinas/metabolismo , Interleucinas/imunologia , Pleurisia/imunologia , Pleurisia/diagnóstico , Pleurisia/metabolismo , Tuberculose Pleural/diagnóstico , Tuberculose Pleural/imunologia , Tuberculose Pleural/metabolismo , Tuberculose Pleural/tratamento farmacológico
9.
Front Immunol ; 15: 1401949, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076972

RESUMO

Introduction: Ubiquitin-specific proteases (USPs), a large subset of more than 50 deubiquitinase proteins, have recently emerged as promising targets in cancer. However, their role in immune cell regulation, particularly in T cell activation, differentiation, and effector functions, remains largely unexplored. Methods: We utilized a USP28 knockout mouse line to study the effect of USP28 on T cell activation and function, and its role in intestinal inflammation using the dextran sulfate sodium (DSS)-induced colitis model and a series of in vitro assays. Results: Our results show that USP28 exerts protective effects in acute intestinal inflammation. Mechanistically, USP28 knockout mice (USP28-/-) exhibited an increase in total T cells mainly due to an increased CD8+ T cell content. Additionally, USP28 deficiency resulted in early defects in T cell activation and functional changes. Specifically, we observed a reduced expression of IL17 and an increase in inducible regulatory T (iTreg) suppressive functions. Importantly, activated T cells lacking USP28 showed increased STAT5 phosphorylation. Consistent with these findings, these mice exhibited increased susceptibility to acute DSS-induced intestinal inflammation, accompanied by elevated IL22 cytokine levels. Conclusions: Our findings demonstrate that USP28 is essential for T cell functionality and protects mice from acute DSS-induced colitis by regulating STAT5 signaling and IL22 production. As a T cell regulator, USP28 plays a crucial role in immune responses and intestinal health.


Assuntos
Colite , Interleucina 22 , Interleucinas , Fator de Transcrição STAT5 , Ubiquitina Tiolesterase , Animais , Camundongos , Colite/induzido quimicamente , Colite/imunologia , Colite/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Inflamação/imunologia , Inflamação/metabolismo , Interleucinas/metabolismo , Interleucinas/genética , Intestinos/imunologia , Intestinos/patologia , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Fator de Transcrição STAT5/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/deficiência
10.
Indian J Gastroenterol ; 43(4): 832-840, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874868

RESUMO

BACKGROUND: Dysregulation of cytokines and intestinal mycobiome has been surveyed in the progression of inflammatory bowel diseases (IBDs), including ulcerative colitis (UC) and Crohn's disease (CD). On the other hand, the intestinal fungal flora and its main receptor, Dectin-1, induce immune-derived cytokines. METHODS: Total 64 individuals comprising 32 patients with UC (case group) and 32 healthy subjects (HS group) were assessed. The type and prevalence of fecal yeast species were determined by deoxyribonucleic acid (DNA) sequencing through polymerase chain reaction (PCR) amplification using ITS4 and ITS5 primers. Furthermore, the ribonucleic acid (RNAs) of IL-4, IL-10, IL-17, IL-22 and IFN-γ were extracted. The expression of Dectin-1 gene was then measured in the excised tissue samples. RESULTS: A higher global fungal load in UC-affected patients (75%) was found in comparison with the HS group (25%), especially Candida albicans. Saccharomyces cerevisiae was significantly reduced in the fecal samples of UC-affected patients compared to HS (15.04% vs. 1.93% UC). The expression level of Dectin-1 was significantly elevated in patients with active UC (7.37 ± 0.81) than in patients with non-active UC (5.01 ± 77.25) and healthy controls (0.97 ± 0.24) (p < 0.05). The expression levels of IL-4, IL-10, especially both IL-17 and IL-22, were higher in the active UC group compared to the HS group (p = 0.0101, p = 0.0155, p < 0.0001, p < 0.0001, respectively). Similar expression level of IL-4, IL-10, IL-17, IL-22 (p > 0.999) and lower expression of interferongamma (IFN-γ) (p = 0.0021) were found in the non-active UC group compared to the HS group. A significant weak to moderate correlation was detected between Dectin-1 and IL-17 (r = 0.339, p = 0.019), as well as Dectin-1 and IL-22 (r = 0.373, p = 0.015). Furthermore, the expression levels of Dectin-1, IL-17 and IL-22 displayed significant associations with disease activity (p < 0.001, p = 0.029 and p = 0.003, respectively), regardless of the participant group. CONCLUSIONS: The current study revealed a possible role for intestinal fungi to promote colonic inflammation and increase UC activity through Dectin-1 stimulation. A positive correlation was detected between intestinal fungal richness with UC susceptibility and activity. IL-4 and IL-10 were associated with disease activity. Besides, the expression levels of Dectin-1, IL-17 and IL-22 were independently associated with disease activity.


Assuntos
Colite Ulcerativa , Citocinas , Disbiose , Lectinas Tipo C , Humanos , Lectinas Tipo C/metabolismo , Colite Ulcerativa/microbiologia , Colite Ulcerativa/imunologia , Citocinas/metabolismo , Masculino , Feminino , Adulto , Disbiose/microbiologia , Interleucinas/metabolismo , Interleucinas/genética , Pessoa de Meia-Idade , Saccharomyces cerevisiae/imunologia , Fezes/microbiologia , Interleucina 22 , Candida albicans/imunologia , Candida albicans/isolamento & purificação , Adulto Jovem , Interleucina-17/metabolismo , Microbioma Gastrointestinal , Expressão Gênica , Interleucina-10
11.
Chemosphere ; 362: 142571, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38876325

RESUMO

Nonylphenol (NP) is a ubiquitous endocrine disruptor that persists in the environment and can significantly contribute to serious health hazards, particularly intestinal barrier injury. Plant essential oils (EOs) have recently gained widespread interest due to their potential for improving intestinal health. However, the precise mechanism and protective effects of EOs ameliorating the intestinal damages induced by NP exposure remain unclear. To clarify the potential mechanism and protective impact of EOs against intestinal injury induced by NP, a total of 144 one-day-old male ducks were randomly allocated to four groups: CON (basal diet), EO (basal diet + 200 mg/kg EOs), NP (basal diet + 40 mg/kg NP), and NPEO (basal diet + 200 mg/kg EOs + 40 mg/kg NP). The data revealed that NP exposure significantly damaged intestinal barrier, as evidenced by a reduction in the levels of tight junction gene expression and an increase in intestinal permeability. Additionally, it disturbed gut microbiota, as well as interfered with tryptophan (Trp) metabolism. The NP-induced disorder of Trp metabolism restrained the activation of aryl hydrocarbon receptor (AhR) and resulted in decreased the expression levels of CYP1A1, IL-22, and STAT3 genes, which were alleviated after treatment with EOs. Taken together, NP exposure resulted in impairment of the intestinal barrier function, disruption of gut microbiota, and disturbances in Trp metabolism. Dietary EOs supplementation alleviated the intestinal barrier injury induced by NP through the Trp/AhR/IL-22 signaling pathway.


Assuntos
Microbioma Gastrointestinal , Óleos Voláteis , Fenóis , Receptores de Hidrocarboneto Arílico , Triptofano , Animais , Masculino , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Patos , Disruptores Endócrinos/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Interleucina 22 , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Óleos Voláteis/farmacologia , Fenóis/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo
12.
Front Immunol ; 15: 1388496, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873613

RESUMO

The intricate immune mechanisms governing mucosal healing following intestinal damage induced by cytotoxic drugs remain poorly understood. The goal of this study was to investigate the role of lymphotoxin beta receptor (LTßR) signaling in chemotherapy-induced intestinal damage. LTßR deficient mice exhibited heightened body weight loss, exacerbated intestinal pathology, increased proinflammatory cytokine expression, reduced IL-22 expression, and proliferation of intestinal epithelial cells following methotrexate (MTX) treatment. Furthermore, LTßR-/-IL-22-/- mice succumbed to MTX treatment, suggesting that LTßR- and IL-22- dependent pathways jointly promote mucosal repair. Although both LTßR ligands LIGHT and LTß were upregulated in the intestine early after MTX treatment, LIGHT-/- mice, but not LTß-/- mice, displayed exacerbated disease. Further, we revealed the critical role of T cells in mucosal repair as T cell-deficient mice failed to upregulate intestinal LIGHT expression and exhibited increased body weight loss and intestinal pathology. Analysis of mice with conditional inactivation of LTßR revealed that LTßR signaling in intestinal epithelial cells, but not in Lgr5+ intestinal stem cells, macrophages or dendritic cells was critical for mucosal repair. Furthermore, inactivation of the non-canonical NF-kB pathway member RelB in intestinal epithelial cells promoted MTX-induced disease. Based on these results, we propose a model wherein LIGHT produced by T cells activates LTßR-RelB signaling in intestinal epithelial cells to facilitate mucosal repair following chemotherapy treatment.


Assuntos
Mucosa Intestinal , Receptor beta de Linfotoxina , Metotrexato , Camundongos Knockout , Transdução de Sinais , Fator de Transcrição RelB , Animais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/efeitos dos fármacos , Receptor beta de Linfotoxina/metabolismo , Receptor beta de Linfotoxina/genética , Camundongos , Fator de Transcrição RelB/metabolismo , Fator de Transcrição RelB/genética , Metotrexato/efeitos adversos , Células Epiteliais/metabolismo , Camundongos Endogâmicos C57BL , Interleucina 22 , Interleucinas/metabolismo , Interleucinas/genética
13.
Iran J Immunol ; 21(3)2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920022

RESUMO

Background: The development of a cytokine storm in Coronavirus Disease 2019 (COVID-19) infection can make the disease fatal. We hypothesize that this excessive cytokine production impairs mucosal healing. IL-17 and IL-22 are cytokines that play a key role in protecting and regenerating mucosal tissues.IL-17 and IL-22 support each other and the imbalance between them plays a role in the pathogenesis of many rheumatologic diseases. Objective: To investigate whether COVID-19 severity is related to IL17, IL-22, and the IL-17/IL-22 ratio. Methods: The study was planned prospectively and included 69 patients with active COVID-19 infection.Three groups were created: patients with upper respiratory tract infection, pneumonia, and cytokine storm. Blood samples were taken from the patients upon their first admission and serum levels of IL-17 and IL-22 were measured using the enzyme-linked immunosorbent assay (ELISA). We assessed the relationship between IL17, IL22, IL17/IL22 ratio, clinical and lung involvement by comparing them with the healthy group. Results: The levels of IL-17 were significantly higher in COVID-19 patients with upper respiratory tract infection compared to the control group (p=0.027). IL17/IL-22 ratio significantly increased in patients with cytokine storm compared to the healthy controls (p=0.027). Serum levels of IL-22 were negatively correlated with the CO-RADS score (r=-0.31, p=0.004), while IL-17/IL-22 ratio was positively correlated with the CO-RADS score (r= 0.29, p=0.008). Conclusion: Levels of IL-17, IL-22 and IL-17/IL-22 may provide valuable insights into the progression of COVID-19.

14.
Cell Rep ; 43(6): 114292, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38823020

RESUMO

Interleukin (IL)-22 promotes host-microbiota homeostasis. We sought to identify microbiota metabolite(s) that drive intestinal IL-22 production. We observed that exposing Peyer's patch cells (PPCs), ex vivo, to fecal supernatants (FSs) recapitulates fermentable fiber- and microbiota-dependent IL-22 production, and cellular sources thereof, thus supporting the use of this model. An interrogation of FSs generated from mice fed the fermentable fiber inulin (FS-Inu) revealed that its IL-22-inducing activity is mediated by heat-labile protein. Fractionation of FS-Inu by ion-exchange chromatography, and subsequent proteomic analysis of IL-22-inducing fractions, indicates that outer membrane protein A (OmpA) might be a microbial driver of IL-22 expression. Concomitantly, recombinant OmpA from Parabacteroides goldsteinii, which is enriched by an inulin diet, induces IL-22 production and expression of the IL-22-dependent genes REG3γ and -ß, in PPCs and mice. Thus, OmpA is one bacterial inducer of IL-22 expression, potentially linking diet, mucosal immune homeostasis, and gut health.


Assuntos
Proteínas da Membrana Bacteriana Externa , Interleucina 22 , Animais , Camundongos , Proteínas da Membrana Bacteriana Externa/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal , Interleucina 22/metabolismo , Interleucinas/metabolismo , Inulina/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Associadas a Pancreatite/metabolismo
15.
Proc Natl Acad Sci U S A ; 121(22): e2310864121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781213

RESUMO

IL-22 plays a critical role in defending against mucosal infections, but how IL-22 production is regulated is incompletely understood. Here, we show that mice lacking IL-33 or its receptor ST2 (IL-1RL1) were more resistant to Streptococcus pneumoniae lung infection than wild-type animals and that single-nucleotide polymorphisms in IL33 and IL1RL1 were associated with pneumococcal pneumonia in humans. The effect of IL-33 on S. pneumoniae infection was mediated by negative regulation of IL-22 production in innate lymphoid cells (ILCs) but independent of ILC2s as well as IL-4 and IL-13 signaling. Moreover, IL-33's influence on IL-22-dependent antibacterial defense was dependent on housing conditions of the mice and mediated by IL-33's modulatory effect on the gut microbiota. Collectively, we provide insight into the bidirectional crosstalk between the innate immune system and the microbiota. We conclude that both genetic and environmental factors influence the gut microbiota, thereby impacting the efficacy of antibacterial immune defense and susceptibility to pneumonia.


Assuntos
Imunidade Inata , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina 22 , Interleucina-33 , Interleucinas , Streptococcus pneumoniae , Animais , Interleucina-33/imunologia , Interleucina-33/genética , Interleucina-33/metabolismo , Interleucinas/metabolismo , Interleucinas/imunologia , Interleucinas/genética , Camundongos , Streptococcus pneumoniae/imunologia , Proteína 1 Semelhante a Receptor de Interleucina-1/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1/genética , Proteína 1 Semelhante a Receptor de Interleucina-1/imunologia , Humanos , Camundongos Knockout , Microbiota/imunologia , Camundongos Endogâmicos C57BL , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/microbiologia , Microbioma Gastrointestinal/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Polimorfismo de Nucleotídeo Único
16.
Microbiol Spectr ; 12(6): e0328323, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38727214

RESUMO

The immune response induced by respiratory syncytial virus (RSV) infection is closely related to changes in the composition and function of gastrointestinal microorganisms. However, the specific mechanism remains unknown and the pulmonary-intestinal axis deserves further study. In this study, the mRNA levels of ROR-γt and Foxp3 in the lung and intestine increased first and then decreased. IL-17 and IL-22 reached the maximum on the third day after infection in the lung, and on the second day after infection in the small intestine and colon, respectively. RegⅢγ in intestinal tissue reached the maximum on the third day after RSV infection. Moreover, the genus enriched in the RSV group was Aggregatibacter, and Proteus was reduced. RSV infection not only causes Th17/Treg cell imbalance in the lungs of mice but also leads to the release of excessive IL-22 from the lungs through blood circulation which binds to IL-22 receptors on the intestinal surface, inducing RegⅢγ overexpression, impaired intestinal Th17/Treg development, and altered gut microbiota composition. Our research reveals a significant link between the pulmonary and intestinal axis after RSV infection. IMPORTANCE: RSV is the most common pathogen causing acute lower respiratory tract infections in infants and young children, but the complex interactions between the immune system and gut microbiota induced by RSV infection still requires further research. In this study, it was suggested that RSV infection in 7-day-old BALB/c suckling mice caused lung inflammation and disruption of Th17/Treg cells development, and altered the composition of gut microbiota through IL-22 induced overexpression of RegⅢγ, leading to intestinal immune injury and disruption of gut microbiota. This research reveals that IL-22 may be the link between the lung and gut. This study may provide a new insight into the intestinal symptoms caused by RSV and other respiratory viruses and the connection between the lung and gut axis, as well as new therapeutic ideas for the treatment of RSV-infected children.


Assuntos
Microbioma Gastrointestinal , Interleucina 22 , Interleucinas , Pulmão , Camundongos Endogâmicos BALB C , Infecções por Vírus Respiratório Sincicial , Vírus Sinciciais Respiratórios , Linfócitos T Reguladores , Células Th17 , Animais , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/microbiologia , Microbioma Gastrointestinal/imunologia , Linfócitos T Reguladores/imunologia , Camundongos , Células Th17/imunologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/virologia , Pulmão/patologia , Interleucinas/metabolismo , Interleucinas/genética , Interleucinas/imunologia , Vírus Sinciciais Respiratórios/imunologia , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/imunologia , Feminino , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/imunologia , Proteínas Associadas a Pancreatite/metabolismo , Intestinos/imunologia , Intestinos/microbiologia , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética
17.
Cell Rep ; 43(5): 114206, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38733584

RESUMO

The interleukin (IL)-22 cytokine can be protective or inflammatory in the intestine. It is unclear if IL-22 receptor (IL-22Ra1)-mediated protection involves a specific type of intestinal epithelial cell (IEC). By using a range of IEC type-specific Il22Ra1 conditional knockout mice and a dextran sulfate sodium (DSS) colitis model, we demonstrate that IL-22Ra1 signaling in MATH1+ cells (goblet and progenitor cells) is essential for maintaining the mucosal barrier and intestinal tissue regeneration. The IL-22Ra1 signaling in IECs promotes mucin core-2 O-glycan extension and induces beta-1,3-galactosyltransferase 5 (B3GALT5) expression in the colon. Adenovirus-mediated expression of B3galt5 is sufficient to rescue Il22Ra1IEC mice from DSS colitis. Additionally, we observe a reduction in the expression of B3GALT5 and the Tn antigen, which indicates defective mucin O-glycan, in the colon tissue of patients with ulcerative colitis. Lastly, IL-22Ra1 signaling in MATH1+ progenitor cells promotes organoid regeneration after DSS injury. Our findings suggest that IL-22-dependent protective responses involve O-glycan modification, proliferation, and differentiation in MATH1+ progenitor cells.


Assuntos
Colite , Sulfato de Dextrana , Interleucina 22 , Interleucinas , Receptores de Interleucina , Animais , Interleucinas/metabolismo , Camundongos , Glicosilação , Colite/metabolismo , Colite/patologia , Colite/induzido quimicamente , Receptores de Interleucina/metabolismo , Mucinas/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Humanos , Transdução de Sinais , Camundongos Endogâmicos C57BL , Inflamação/patologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos Knockout , Galactosiltransferases/metabolismo , Galactosiltransferases/genética , Células-Tronco/metabolismo
18.
Mol Med ; 30(1): 60, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750415

RESUMO

Severe acute pancreatitis (SAP) begins with premature activation of enzymes, promoted by the immune system, triggering a potential systemic inflammatory response that leads to organ failure with increased mortality and a bleak prognosis. Interleukin-22 (IL-22) is a cytokine that may have a significant role in SAP. IL-22, a member of the IL-10 cytokine family, has garnered growing interest owing to its potential tissue-protective properties. Recently, emerging research has revealed its specific effects on pancreatic diseases, particularly SAP. This paper provides a review of the latest knowledge on the role of IL-22 and its viability as a therapeutic target in SAP.


Assuntos
Interleucina 22 , Interleucinas , Pancreatite , Humanos , Interleucinas/metabolismo , Pancreatite/metabolismo , Pancreatite/imunologia , Animais , Doença Aguda
19.
Cell Mol Gastroenterol Hepatol ; 18(2): 101350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38704148

RESUMO

BACKGROUND & AIMS: Gut bacterial sphingolipids, primarily produced by Bacteroidetes, have dual roles as bacterial virulence factors and regulators of the host mucosal immune system, including regulatory T cells and invariant natural killer T cells. Patients with inflammatory bowel disease display altered sphingolipids profiles in fecal samples. However, how bacterial sphingolipids modulate mucosal homeostasis and regulate intestinal inflammation remains unclear. METHODS: We used dextran sodium sulfate (DSS)-induced colitis in mice monocolonized with Bacteroides fragilis strains expressing or lacking sphingolipids to assess the influence of bacterial sphingolipids on intestinal inflammation using transcriptional, protein, and cellular analyses. Colonic explant and organoid were used to study the function of bacterial sphingolipids. Host mucosal immune cells and cytokines were profiled and characterized using flow cytometry, enzyme-linked immunosorbent assay, and Western blot, and cytokine function in vivo was investigated by monoclonal antibody injection. RESULTS: B fragilis sphingolipids exacerbated intestinal inflammation. Mice monocolonized with B fragilis lacking sphingolipids exhibited less severe DSS-induced colitis. This amelioration of colitis was associated with increased production of interleukin (IL)-22 by ILC3. Mice colonized with B fragilis lacking sphingolipids following DSS treatment showed enhanced epithelial STAT3 activity, intestinal cell proliferation, and antimicrobial peptide production. Protection against DSS colitis associated with B fragilis lacking sphingolipids was reversed on IL22 blockade. Furthermore, bacterial sphingolipids restricted epithelial IL18 production following DSS treatment and interfered with IL22 production by a subset of ILC3 cells expressing both IL18R and major histocompatibility complex class II. CONCLUSIONS: B fragilis-derived sphingolipids exacerbate mucosal inflammation by impeding epithelial IL18 expression and concomitantly suppressing the production of IL22 by ILC3 cells.


Assuntos
Bacteroides fragilis , Colite , Sulfato de Dextrana , Interleucina 22 , Interleucinas , Esfingolipídeos , Animais , Esfingolipídeos/metabolismo , Interleucinas/metabolismo , Camundongos , Colite/imunologia , Colite/patologia , Colite/induzido quimicamente , Colite/microbiologia , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Bacteroides fragilis/imunologia , Modelos Animais de Doenças , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Fator de Transcrição STAT3/metabolismo , Camundongos Endogâmicos C57BL
20.
Fish Shellfish Immunol ; 150: 109598, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697375

RESUMO

In mammals, IL-22 is considered as a critical cytokine regulating of immunity and homeostasis at barrier surfaces. Although IL-22 have been functional characterization in different species of fish, the studies about distinct responses of IL-22 in different organs/tissues/cell types is rather limited. Here, we identified and cloned IL-22 gene (named as Ec-IL-22) from grouper (Epinephelus coioides). Ec-IL-22 gene was detected in all orangs/tissues examined, and was induced in intestine, gill, spleen, head kidney, and primary head kidney/intestine leukocytes following the stimulation of LPS and poly (I:C), as well as Vibrio harveyi and Singapore grouper iridovirus infection (SGIV). In addition, the stimulation of DSS could induce the expression of Ec-IL-22 in intestine and primary leukocytes from intestine. Importantly, the treatment of recombinant Ec-IL-22 induced the mRNA level of proinflammatory cytokines in primary intestine/head kidney leukocytes. The present results improve the understanding of expression patterns and functional characteristics of fish IL-22 in different organs/tissues/cell types.


Assuntos
Bass , Infecções por Vírus de DNA , Doenças dos Peixes , Proteínas de Peixes , Regulação da Expressão Gênica , Interleucina 22 , Interleucinas , Vibrioses , Vibrio , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Proteínas de Peixes/química , Doenças dos Peixes/imunologia , Interleucinas/genética , Interleucinas/imunologia , Bass/imunologia , Bass/genética , Vibrio/fisiologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/veterinária , Regulação da Expressão Gênica/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Vibrioses/imunologia , Vibrioses/veterinária , Sequência de Aminoácidos , Perfilação da Expressão Gênica/veterinária , Filogenia , Alinhamento de Sequência/veterinária , Imunidade Inata/genética , Poli I-C/farmacologia , Lipopolissacarídeos/farmacologia , Ranavirus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA