Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 675
Filtrar
1.
Sensors (Basel) ; 24(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000898

RESUMO

The motivation behind this research is the lack of an underground mining shaft data set in the literature in the form of open access. For this reason, our data set can be used for many research purposes such as shaft inspection, 3D measurements, simultaneous localization and mapping, artificial intelligence, etc. The data collection method incorporates rotated Velodyne VLP-16, Velodyne Ultra Puck VLP-32c, Livox Tele-15, IMU Xsens MTi-30 and Faro Focus 3D. The ground truth data were acquired with a geodetic survey including 15 ground control points and 6 Faro Focus 3D terrestrial laser scanner stations of a total 273,784,932 of 3D measurement points. This data set provides an end-user case study of realistic applications in mobile mapping technology. The goal of this research was to fill the gap in the underground mining data set domain. The result is the first open-access data set for an underground mining shaft (shaft depth -300 m).

2.
Sensors (Basel) ; 24(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-39000912

RESUMO

The present work focuses on the tapping test, which is a method that is commonly used in the literature to assess dexterity, speed, and motor coordination by repeatedly moving fingers, performing a tapping action on a flat surface. During the test, the activation of specific brain regions enhances fine motor abilities, improving motor control. The research also explores neuromuscular and biomechanical factors related to finger dexterity, revealing neuroplastic adaptation to repetitive movements. To give an objective evaluation of all cited physiological aspects, this work proposes a measurement architecture consisting of the following: (i) a novel measurement protocol to assess the coordinative and conditional capabilities of a population of participants; (ii) a suitable measurement platform, consisting of synchronized and non-invasive inertial sensors to be worn at finger level; (iii) a data analysis processing stage, able to provide the final user (medical doctor or training coach) with a plethora of useful information about the carried-out tests, going far beyond state-of-the-art results from classical tapping test examinations. Particularly, the proposed study underscores the importance interdigital autonomy for complex finger motions, despite the challenges posed by anatomical connections; this deepens our understanding of upper limb coordination and the impact of neuroplasticity, holding significance for motor abilities assessment, improvement, and therapeutic strategies to enhance finger precision. The proof-of-concept test is performed by considering a population of college students. The obtained results allow us to consider the proposed architecture to be valuable for many application scenarios, such as the ones related to neurodegenerative disease evolution monitoring.


Assuntos
Dedos , Mãos , Humanos , Dedos/fisiologia , Mãos/fisiologia , Destreza Motora/fisiologia , Fenômenos Biomecânicos/fisiologia , Movimento/fisiologia , Masculino , Adulto , Feminino , Desempenho Psicomotor/fisiologia
3.
Sensors (Basel) ; 24(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000951

RESUMO

Hand-intensive work is strongly associated with work-related musculoskeletal disorders (WMSDs) of the hand/wrist and other upper body regions across diverse occupations, including office work, manufacturing, services, and healthcare. Addressing the prevalence of WMSDs requires reliable and practical exposure measurements. Traditional methods like electrogoniometry and optical motion capture, while reliable, are expensive and impractical for field use. In contrast, small inertial measurement units (IMUs) may provide a cost-effective, time-efficient, and user-friendly alternative for measuring hand/wrist posture during real work. This study compared six orientation algorithms for estimating wrist angles with an electrogoniometer, the current gold standard in field settings. Six participants performed five simulated hand-intensive work tasks (involving considerable wrist velocity and/or hand force) and one standardised hand movement. Three multiplicative Kalman filter algorithms with different smoothers and constraints showed the highest agreement with the goniometer. These algorithms exhibited median correlation coefficients of 0.75-0.78 for flexion/extension and 0.64 for radial/ulnar deviation across the six subjects and five tasks. They also ranked in the top three for the lowest mean absolute differences from the goniometer at the 10th, 50th, and 90th percentiles of wrist flexion/extension (9.3°, 2.9°, and 7.4°, respectively). Although the results of this study are not fully acceptable for practical field use, especially for some work tasks, they indicate that IMU-based wrist angle estimation may be useful in occupational risk assessments after further improvements.


Assuntos
Algoritmos , Punho , Humanos , Punho/fisiologia , Masculino , Adulto , Feminino , Amplitude de Movimento Articular/fisiologia , Fenômenos Biomecânicos , Movimento/fisiologia , Mãos/fisiologia , Articulação do Punho/fisiologia
4.
Sensors (Basel) ; 24(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39001085

RESUMO

Recently, posture recognition technology has advanced rapidly. Herein, we present a novel posture angle calculation system utilizing a single inertial measurement unit and a spatial geometric equation to accurately identify the three-dimensional (3D) motion angles and postures of both the upper and lower limbs of the human body. This wearable system facilitates continuous monitoring of body movements without the spatial limitations or occlusion issues associated with camera-based methods. This posture-recognition system has many benefits. Providing precise posture change information helps users assess the accuracy of their movements, prevent sports injuries, and enhance sports performance. This system employs a single inertial sensor, coupled with a filtering mechanism, to calculate the sensor's trajectory and coordinates in 3D space. Subsequently, the spatial geometry equation devised herein accurately computed the joint angles for changing body postures. To validate its effectiveness, the joint angles estimated from the proposed system were compared with those from dual inertial sensors and image recognition technology. The joint angle discrepancies for this system were within 10° and 5° when compared with dual inertial sensors and image recognition technology, respectively. Such reliability and accuracy of the proposed angle estimation system make it a valuable reference for assessing joint angles.


Assuntos
Postura , Humanos , Postura/fisiologia , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos/fisiologia , Movimento/fisiologia , Masculino , Algoritmos , Extremidades/fisiologia
5.
Sensors (Basel) ; 24(13)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39001122

RESUMO

Human Activity Recognition (HAR), alongside Ambient Assisted Living (AAL), are integral components of smart homes, sports, surveillance, and investigation activities. To recognize daily activities, researchers are focusing on lightweight, cost-effective, wearable sensor-based technologies as traditional vision-based technologies lack elderly privacy, a fundamental right of every human. However, it is challenging to extract potential features from 1D multi-sensor data. Thus, this research focuses on extracting distinguishable patterns and deep features from spectral images by time-frequency-domain analysis of 1D multi-sensor data. Wearable sensor data, particularly accelerator and gyroscope data, act as input signals of different daily activities, and provide potential information using time-frequency analysis. This potential time series information is mapped into spectral images through a process called use of 'scalograms', derived from the continuous wavelet transform. The deep activity features are extracted from the activity image using deep learning models such as CNN, MobileNetV3, ResNet, and GoogleNet and subsequently classified using a conventional classifier. To validate the proposed model, SisFall and PAMAP2 benchmark datasets are used. Based on the experimental results, this proposed model shows the optimal performance for activity recognition obtaining an accuracy of 98.4% for SisFall and 98.1% for PAMAP2, using Morlet as the mother wavelet with ResNet-101 and a softmax classifier, and outperforms state-of-the-art algorithms.


Assuntos
Atividades Humanas , Análise de Ondaletas , Humanos , Atividades Humanas/classificação , Algoritmos , Aprendizado Profundo , Dispositivos Eletrônicos Vestíveis , Atividades Cotidianas , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
6.
Sensors (Basel) ; 24(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39001198

RESUMO

In GNSS/IMU integrated navigation systems, factors like satellite occlusion and non-line-of-sight can degrade satellite positioning accuracy, thereby impacting overall navigation system results. To tackle this challenge and leverage historical pseudorange information effectively, this paper proposes a graph optimization-based GNSS/IMU model with virtual constraints. These virtual constraints in the graph model are derived from the satellite's position from the previous time step, the rate of change of pseudoranges, and ephemeris data. This virtual constraint serves as an alternative solution for individual satellites in cases of signal anomalies, thereby ensuring the integrity and continuity of the graph optimization model. Additionally, this paper conducts an analysis of the graph optimization model based on these virtual constraints, comparing it with traditional graph models of GNSS/IMU and SLAM. The marginalization of the graph model involving virtual constraints is analyzed next. The experiment was conducted on a set of real-world data, and the results of the proposed method were compared with tightly coupled Kalman filtering and the original graph optimization method. In instantaneous performance testing, the method maintains an RMSE error within 5% compared with real pseudorange measurement, while in a continuous performance testing scenario with no available GNSS signal, the method shows approximately a 30% improvement in horizontal RMSE accuracy over the traditional graph optimization method during a 10-second period. This demonstrates the method's potential for practical applications.

7.
Biomed Mater Eng ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39031336

RESUMO

BACKGROUND: Inertial measurement unit (IMU)-based motion sensors are affordable, and their use is appropriate for rehabilitation. However, regarding the accuracy of estimated angle information obtained from this sensor, it is reported that it is likely affected by velocity. OBJECTIVE: The present study investigated the reliability and validity of the angle information obtained using IMU-based sensors compared with a three-dimensional (3D) motion analyzer. METHODS: The Euler angle obtained using the 3D motion analyzer and the angle obtained using the IMU-based sensor (IMU angle) were compared. Reliability was assessed by comparing the Bland-Altman analysis, intra-class correlation coefficient (ICC) (1,1), and cross-correlation function. The root mean square (RMS) error, ICC (2,1), and cross-correlation function were used to compare data on the Euler and IMU angles to evaluate the validity. RESULTS: Regarding reliability, the Bland-Atman analysis indicated no fixed or proportional bias in the angle measurements. The measurement errors ranged from 0.2° to 3.2°. In the validity, the RMS error ranged from 0.3° to 2.2°. The ICCs (2,1) were 0.9. The cross-correlation functions were >0.9, which indicated a high degree of agreement. CONCLUSION: The IMU-based sensor had a high reliability and validity. The IMU angle may be used in rehabilitation.

8.
J Neuroeng Rehabil ; 21(1): 96, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38845000

RESUMO

BACKGROUND: Telerehabilitation is a promising avenue for improving patient outcomes and expanding accessibility. However, there is currently no spine-related assessment for telerehabilitation that covers multiple exercises. METHODS: We propose a wearable system with two inertial measurement units (IMUs) to identify IMU locations and estimate spine angles for ten commonly prescribed spinal degeneration rehabilitation exercises (supine chin tuck head lift rotation, dead bug unilateral isometric hold, pilates saw, catcow full spine, wall angel, quadruped neck flexion/extension, adductor open book, side plank hip dip, bird dog hip spinal flexion, and windmill single leg). Twelve healthy subjects performed these spine-related exercises, and wearable IMU data were collected for spine angle estimation and IMU location identification. RESULTS: Results demonstrated average mean absolute spinal angle estimation errors of 2.59 ∘ and average classification accuracy of 92.97%. The proposed system effectively identified IMU locations and assessed spine-related rehabilitation exercises while demonstrating robustness to individual differences and exercise variations. CONCLUSION: This inexpensive, convenient, and user-friendly approach to spine degeneration rehabilitation could potentially be implemented at home or provide remote assessment, offering a promising avenue to enhance patient outcomes and improve accessibility for spine-related rehabilitation. TRIAL REGISTRATION:  No. E2021013P in Shanghai Jiao Tong University.


Assuntos
Terapia por Exercício , Coluna Vertebral , Telerreabilitação , Humanos , Masculino , Telerreabilitação/instrumentação , Adulto , Feminino , Coluna Vertebral/fisiologia , Terapia por Exercício/métodos , Terapia por Exercício/instrumentação , Dispositivos Eletrônicos Vestíveis , Adulto Jovem , Acelerometria/instrumentação , Acelerometria/métodos , Fenômenos Biomecânicos
9.
Sensors (Basel) ; 24(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38894115

RESUMO

Recently, inertial measurement units have been gaining popularity as a potential alternative to optical motion capture systems in the analysis of joint kinematics. In a previous study, the accuracy of knee joint angles calculated from inertial data and an extended Kalman filter and smoother algorithm was tested using ground truth data originating from a joint simulator guided by fluoroscopy-based signals. Although high levels of accuracy were achieved, the experimental setup leveraged multiple iterations of the same movement pattern and an absence of soft tissue artefacts. Here, the algorithm is tested against an optical marker-based system in a more challenging setting, with single iterations of a loaded squat cycle simulated on seven cadaveric specimens on a force-controlled knee rig. Prior to the optimisation of local coordinate systems using the REference FRame Alignment MEthod (REFRAME) to account for the effect of differences in local reference frame orientation, root-mean-square errors between the kinematic signals of the inertial and optical systems were as high as 3.8° ± 3.5° for flexion/extension, 20.4° ± 10.0° for abduction/adduction and 8.6° ± 5.7° for external/internal rotation. After REFRAME implementation, however, average root-mean-square errors decreased to 0.9° ± 0.4° and to 1.5° ± 0.7° for abduction/adduction and for external/internal rotation, respectively, with a slight increase to 4.2° ± 3.6° for flexion/extension. While these results demonstrate promising potential in the approach's ability to estimate knee joint angles during a single loaded squat cycle, they highlight the limiting effects that a reduced number of iterations and the lack of a reliable consistent reference pose inflicts on the sensor fusion algorithm's performance. They similarly stress the importance of adapting underlying assumptions and correctly tuning filter parameters to ensure satisfactory performance. More importantly, our findings emphasise the notable impact that properly aligning reference-frame orientations before comparing joint kinematics can have on results and the conclusions derived from them.


Assuntos
Algoritmos , Articulação do Joelho , Amplitude de Movimento Articular , Humanos , Fenômenos Biomecânicos/fisiologia , Articulação do Joelho/fisiologia , Amplitude de Movimento Articular/fisiologia , Cadáver , Movimento/fisiologia , Masculino , Joelho/fisiologia
10.
Sensors (Basel) ; 24(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38894234

RESUMO

Medieval combat sport is a form of mixed martial art in which combatants engage in fighting using offensive and defensive equipment while dressed in full armor. The sport is considered extremely taxing, making it nearly impossible to maintain the same level of performance. However, this form of sport has not been thoroughly analyzed, and its impact on human physical response is largely unknown. To address this gap, the study reported here aimed to introduce and test a procedure for analyzing human physical responses within the framework of the sport. To accomplish this, two experienced combatants were asked to engage in a series of strikes, performed in the form of a set duel simulating a professional fight competition. The kinematic aspect of the procedure was examined using motion analysis with the help of an IMU suit, while the physiological aspect was evaluated based on blood lactate levels and heart rate measurements. Furthermore, an ergometer test conducted in a laboratory setting aimed to determine the lactate threshold. The duel results showed noticeable decreases in the kinematic aspects of the strikes, such as the velocity of impact, and a dramatic rise in physiological aspects, such as heart rate and blood lactate levels. During the duel sets, the blood lactate surpassed the threshold level, and at the end, the heart rate exceeded the maximum age-related level. Practicing medieval combat sport has been shown to impose an extreme physical load on the bodies of combatants, noticeably affecting their performance levels.


Assuntos
Frequência Cardíaca , Ácido Láctico , Artes Marciais , Humanos , Artes Marciais/fisiologia , Frequência Cardíaca/fisiologia , Fenômenos Biomecânicos/fisiologia , Ácido Láctico/sangue , Masculino , Adulto , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação
11.
Sensors (Basel) ; 24(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38894258

RESUMO

In the construction industry, falls, slips, and trips (FST) account for 42.3% of all accidents. The primary cause of FST incidents is directly related to the deterioration of workers' body stability. To prevent FST-related accidents, it is crucial to understand the interaction between physical fatigue and body stability in construction workers. Therefore, this study investigates the impact of fatigue on body stability in various construction site environments using Dynamic Time Warping (DTW) analysis. We conducted experiments reflecting six different fatigue levels and four environmental conditions. The analysis process involves comparing changes in DTW values derived from acceleration data obtained through wearable sensors across varying fatigue levels and construction environments. The results reveal the following changes in DTW values across different environments and fatigue levels: for non-obstacle, obstacle, water, and oil conditions, DTW values tend to increase as fatigue levels rise. In our experiments, we observed a significant decrease in body stability against external environments starting from fatigue Levels 3 or 4 (30% and 40% of the maximum failure point). In the non-obstacle condition, the DTW values were 9.4 at Level 0, 12.8 at Level 3, and 23.1 at Level 5. In contrast, for the oil condition, which exhibited the highest DTW values, the values were 10.5 at Level 0, 19.1 at Level 3, and 34.5 at Level 5. These experimental results confirm that the body stability of construction workers is influenced by both fatigue levels and external environmental conditions. Further analysis of recovery time, defined as the time it takes for body stability to return to its original level, revealed an increasing trend in recovery time as fatigue levels increased. This study quantitatively demonstrates through wearable sensor data that, as fatigue levels increase, workers experience decreased body stability and longer recovery times. The findings of this study can inform individual worker fatigue management in the future.


Assuntos
Indústria da Construção , Fadiga , Humanos , Fadiga/fisiopatologia , Adulto , Masculino , Equilíbrio Postural/fisiologia , Dispositivos Eletrônicos Vestíveis , Acidentes por Quedas/prevenção & controle
12.
Sensors (Basel) ; 24(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38894442

RESUMO

Laboratory studies have limitations in screening for anterior cruciate ligament (ACL) injury risk due to their lack of ecological validity. Machine learning (ML) methods coupled with wearable sensors are state-of-art approaches for joint load estimation outside the laboratory in athletic tasks. The aim of this study was to investigate ML approaches in predicting knee joint loading during sport-specific agility tasks. We explored the possibility of predicting high and low knee abduction moments (KAMs) from kinematic data collected in a laboratory setting through wearable sensors and of predicting the actual KAM from kinematics. Xsens MVN Analyze and Vicon motion analysis, together with Bertec force plates, were used. Talented female football (soccer) players (n = 32, age 14.8 ± 1.0 y, height 167.9 ± 5.1 cm, mass 57.5 ± 8.0 kg) performed unanticipated sidestep cutting movements (number of trials analyzed = 1105). According to the findings of this technical note, classification models that aim to identify the players exhibiting high or low KAM are preferable to the ones that aim to predict the actual peak KAM magnitude. The possibility of classifying high versus low KAMs during agility with good approximation (AUC 0.81-0.85) represents a step towards testing in an ecologically valid environment.


Assuntos
Aprendizado de Máquina , Futebol , Humanos , Feminino , Fenômenos Biomecânicos/fisiologia , Futebol/fisiologia , Adolescente , Articulação do Joelho/fisiologia , Lesões do Ligamento Cruzado Anterior/fisiopatologia , Movimento/fisiologia , Suporte de Carga/fisiologia , Dispositivos Eletrônicos Vestíveis
13.
Sensors (Basel) ; 24(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38894472

RESUMO

Human trajectories can be tracked by the internal processing of a camera as an edge device. This work aims to match peoples' trajectories obtained from cameras to sensor data such as acceleration and angular velocity, obtained from wearable devices. Since human trajectory and sensor data differ in modality, the matching method is not straightforward. Furthermore, complete trajectory information is unavailable; it is difficult to determine which fragments belong to whom. To solve this problem, we newly proposed the SyncScore model to find the similarity between a unit period trajectory and the corresponding sensor data. We also propose a Likelihood Fusion algorithm that systematically updates the similarity data and integrates it over time while keeping other trajectories in mind. We confirmed that the proposed method can match human trajectories and sensor data with an accuracy, a sensitivity, and an F1 of 0.725. Our models achieved decent results on the UEA dataset.


Assuntos
Algoritmos , Dispositivos Eletrônicos Vestíveis , Humanos , Análise de Dados
14.
Front Bioeng Biotechnol ; 12: 1385750, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835976

RESUMO

Introduction: Inertial Measurement Units (IMU) require a sensor-to-segment calibration procedure in order to compute anatomically accurate joint angles and, thereby, be employed in healthcare and rehabilitation. Research literature proposes several algorithms to address this issue. However, determining an optimal calibration procedure is challenging due to the large number of variables that affect elbow joint angle accuracy, including 3D joint axis, movement performed, complex anatomy, and notable skin artefacts. Therefore, this paper aims to compare three types of calibration techniques against an optical motion capture reference system during several movement tasks to provide recommendations on the most suitable calibration for the elbow joint. Methods: Thirteen healthy subjects were instrumented with IMU sensors and optical marker clusters. Each participant performed a series of static poses and movements to calibrate the instruments and, subsequently, performed single-plane and multi-joint tasks. The metrics used to evaluate joint angle accuracy are Range of Motion (ROM) error, Root Mean Squared Error (RMSE), and offset. We performed a three-way RM ANOVA to evaluate the effect of joint axis and movement task on three calibration techniques: N-Pose (NP), Functional Calibration (FC) and Manual Alignment (MA). Results: Despite small effect sizes in ROM Error, NP displayed the least precision among calibrations due to interquartile ranges as large as 24.6°. RMSE showed significant differences among calibrations and a large effect size where MA performed best (RMSE = 6.3°) and was comparable with FC (RMSE = 7.2°). Offset showed a large effect size in the calibration*axes interaction where FC and MA performed similarly. Conclusion: Therefore, we recommend MA as the preferred calibration method for the elbow joint due to its simplicity and ease of use. Alternatively, FC can be a valid option when the wearer is unable to hold a predetermined posture.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38940627

RESUMO

The inertial motion unit (IMU) is an effective tool for monitoring and assessing gait impairment in patients with lumbar disc herniation(LDH). However, the current clinical assessment methods for LDH gait focus on patients' subjective scoring indicators and lack the assessment of kinematic ability; at the same time, individual differences in the motor function degradation of the healthy and affected lower limbs of LDH patients are also ignored. To solve this problem, we propose an LDH gait feature model based on multi-source adaptive Kalman data fusion of acceleration and angular velocity. The gait phase is segmented by using an adaptive Kalman data fusion algorithm to estimate the attitude angle, and obtaining gait events through a zero-velocity update technique and a peak detection algorithm. Two IMUs were used to analyze the gait characteristics of lumbar disc patients and healthy gait people, including 12 gait characteristics such as gait spatiotemporal parameters, kinematic parameters, gait variability and stability. Statistical methods were used to analyze the characteristic model and verify the biological differences between the healthy affected side of LDH and healthy subjects. Finally, feature engineering and machine learning technology were used to identify the gait pattern of inertial movement units in patients with lumbar intervertebral disc disease, and achieved a classification accuracy of 95.50%, providing an effective gait feature set and method for clinical evaluation of LDH.

16.
Med Biol Eng Comput ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926332

RESUMO

Camptocormia, a severe flexion deformity of the spine, presents challenges in monitoring its progression outside laboratory settings. This study introduces a customized method utilizing four inertial measurement unit (IMU) sensors for continuous recording of the camptocormia angle (CA), incorporating both the consensual malleolus and perpendicular assessment methods. The setup is wearable and mobile and allows measurements outside the laboratory environment. The practicality for measuring CA across various activities is evaluated for both the malleolus and perpendicular method in a mimicked Parkinson disease posture. Multiple activities are performed by a healthy volunteer. Measurements are compared against a camera-based reference system. Results show an overall root mean squared error (RMSE) of 4.13° for the malleolus method and 2.71° for the perpendicular method. Furthermore, patient-specific calibration during the standing still with forward lean activity significantly reduced the RMSE to 2.45° and 1.68° respectively. This study presents a novel approach to continuous CA monitoring outside the laboratory setting. The proposed system is suitable as a tool for monitoring the progression of camptocormia and for the first time implements the malleolus method with IMU. It holds promise for effectively monitoring camptocormia at home.

17.
Micromachines (Basel) ; 15(6)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38930697

RESUMO

Sensors based on MEMS technology, in particular Inertial Measurement Units (IMUs), when installed on vehicles, provide a real-time full estimation of vehicles' state vector (e.g., position, velocity, yaw angle, angular rate, acceleration), which is required for the planning and control of cars' trajectories, as well as managing the in-car local navigation and positioning tasks. Moreover, data provided by the IMUs, integrated with the data of multiple inputs from other sensing systems (such as Lidar, cameras, and GPS) within the vehicle, and with the surrounding information exchanged in real time (vehicle to vehicle, vehicle to infrastructure, or vehicle to other entities), can be exploited to actualize the full implementation of "smart mobility" on a large scale. On the other hand, "smart mobility" (which is expected to improve road safety, reduce traffic congestion and environmental burden, and enhance the sustainability of mobility as a whole), to be safe and functional on a large scale, should be supported by highly accurate and trustworthy technologies based on precise and reliable sensors and systems. It is known that the accuracy and precision of data supplied by appropriately in-lab-calibrated IMUs (with respect to the primary or secondary standard in order to provide traceability to the International System of Units) allow guaranteeing high quality, reliable information managed by processing systems, since they are reproducible, repeatable, and traceable. In this work, the effective responsiveness and the related precision of digital IMUs, under sinusoidal linear and curvilinear motion conditions at 5 Hz, 10 Hz, and 20 Hz, are investigated on the basis of metrological approaches in laboratory standard conditions only. As a first step, in-lab calibrations allow one to reduce the variables of uncontrolled boundary conditions (e.g., occurring in vehicles in on-site tests) in order to identify the IMUs' sensitivity in a stable and reproducible environment. For this purpose, a new calibration system, based on an oscillating rotating table was developed to reproduce the dynamic conditions of use in the field, and the results are compared with calibration data obtained on linear calibration benches.

18.
Front Neurorobot ; 18: 1343644, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741933

RESUMO

High precision navigation and positioning technology, as a fundamental function, is gradually occupying an indispensable position in the various fields. However, a single sensor cannot meet the navigation requirements in different scenarios. This paper proposes a "plug and play" Vision/IMU/UWB multi-sensor tightly-coupled system based on factor graph. The difference from traditional UWB-based tightly-coupled models is that the Vision/IMU/UWB tightly-coupled model in this study uses UWB base station coordinates as parameters for real-time estimation without pre-calibrating UWB base stations. Aiming at the dynamic change of sensor availability in multi-sensor integrated navigation system and the serious problem of traditional factor graph in the weight distribution of observation information, this study proposes an adaptive robust factor graph model. Based on redundant measurement information, we propose a novel adaptive estimation model for UWB ranging covariance, which does not rely on prior information of the system and can adaptively estimate real-time covariance changes of UWB ranging. The algorithm proposed in this study was extensively tested in real-world scenarios, and the results show that the proposed system is superior to the most advanced combination method in all cases. Compared with the visual-inertial odometer based on the factor graph (FG-VIO), the RMSE is improved by 62.83 and 64.26% in scene 1 and 82.15, 70.32, and 75.29% in scene 2 (non-line-of-sight environment).

19.
Sensors (Basel) ; 24(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794026

RESUMO

Participant movement is a major source of artifacts in functional near-infrared spectroscopy (fNIRS) experiments. Mitigating the impact of motion artifacts (MAs) is crucial to estimate brain activity robustly. Here, we suggest and evaluate a novel application of the nonlinear Hammerstein-Wiener model to estimate and mitigate MAs in fNIRS signals from direct-movement recordings through IMU sensors mounted on the participant's head (head-IMU) and the fNIRS probe (probe-IMU). To this end, we analyzed the hemodynamic responses of single-channel oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) signals from 17 participants who performed a hand tapping task with different levels of concurrent head movement. Additionally, the tapping task was performed without head movements to estimate the ground-truth brain activation. We compared the performance of our novel approach with the probe-IMU and head-IMU to eight established methods (PCA, tPCA, spline, spline Savitzky-Golay, wavelet, CBSI, RLOESS, and WCBSI) on four quality metrics: SNR, △AUC, RMSE, and R. Our proposed nonlinear Hammerstein-Wiener method achieved the best SNR increase (p < 0.001) among all methods. Visual inspection revealed that our approach mitigated MA contaminations that other techniques could not remove effectively. MA correction quality was comparable with head- and probe-IMUs.


Assuntos
Artefatos , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Masculino , Adulto , Feminino , Movimento/fisiologia , Movimento (Física) , Oxiemoglobinas/análise , Encéfalo/fisiologia , Adulto Jovem , Hemoglobinas/análise , Algoritmos , Processamento de Sinais Assistido por Computador , Hemodinâmica/fisiologia
20.
Biomed Eng Online ; 23(1): 48, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760808

RESUMO

Monitoring of ingestive activities is critically important for managing the health and wellness of individuals with various health conditions, including the elderly, diabetics, and individuals seeking better weight control. Monitoring swallowing events can be an ideal surrogate for developing streamlined methods for effective monitoring and quantification of eating or drinking events. Swallowing is an essential process for maintaining life. This seemingly simple process is the result of coordinated actions of several muscles and nerves in a complex fashion. In this study, we introduce automated methods for the detection and quantification of various eating and drinking activities. Wireless surface electromyography (sEMG) was used to detect chewing and swallowing from sEMG signals obtained from the sternocleidomastoid muscle, in addition to signals obtained from a wrist-mounted IMU sensor. A total of 4675 swallows were collected from 55 participants in the study. Multiple methods were employed to estimate bolus volumes in the case of fluid intake, including regression and classification models. Among the tested models, neural networks-based regression achieved an R2 of 0.88 and a root mean squared error of 0.2 (minimum bolus volume was 10 ml). Convolutional neural networks-based classification (when considering each bolus volume as a separate class) achieved an accuracy of over 99% using random cross-validation and around 66% using cross-subject validation. Multiple classification methods were also used for solid bolus type detection, including SVM and decision trees (DT), which achieved an accuracy above 99% with random validation and above 94% in cross-subject validation. Finally, regression models with both random and cross-subject validation were used for estimating the solid bolus volume with an R2 value that approached 1 and root mean squared error values as low as 0.00037 (minimum solid bolus weight was 3 gm). These reported results lay the foundation for a cost-effective and non-invasive method for monitoring swallowing activities which can be extremely beneficial in managing various chronic health conditions, such as diabetes and obesity.


Assuntos
Deglutição , Eletromiografia , Humanos , Deglutição/fisiologia , Masculino , Feminino , Automação , Processamento de Sinais Assistido por Computador , Adulto , Redes Neurais de Computação , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA