Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
1.
Front Immunol ; 15: 1397722, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957471

RESUMO

Rationale: Sepsis is a life-threatening organ dysfunction and lack of effective measures in the current. Exosomes from mesenchymal stem cells (MSCs) reported to alleviate inflammation during sepsis, and the preconditioning of MSCs could enhance their paracrine potential. Therefore, this study investigated whether exosomes secreted by lipopolysaccharide (LPS)-pretreated MSCs exert superior antiseptic effects, and explored the underlying molecular mechanisms. Methods: Exosomes were isolated and characterized from the supernatants of MSCs. The therapeutic efficacy of normal exosomes (Exo) and LPS-pretreated exosomes (LPS-Exo) were evaluated in terms of survival rates, inflammatory response, and organ damage in an LPS-induced sepsis model. Macrophages were stimulated with LPS and treated with Exo or LPS-Exo to confirm the results of the in vivo studies, and to explain the potential mechanisms. Results: LPS-Exo were shown to inhibit aberrant pro-inflammatory cytokines, prevent organ damages, and improve survival rates of the septic mice to a greater extent than Exo. In vitro, LPS-Exo significantly promoted the M2 polarization of macrophages exposed to inflammation. miRNA sequencing and qRT-PCR analysis identified the remarkable expression of miR-150-5p in LPS-Exo compared to that in Exo, and exosomal miR-150-5p was transferred into recipient macrophages and mediated macrophage polarization. Further investigation demonstrated that miR-150-5p targets Irs1 in recipient macrophages and subsequently modulates macrophage plasticity by down-regulating the PI3K/Akt/mTOR pathway. Conclusion: The current findings highly suggest that exosomes derived from LPS pre-conditioned MSCs represent a promising cell-free therapeutic method and highlight miR-150-5p as a novel molecular target for regulating immune hyperactivation during sepsis.


Assuntos
Exossomos , Proteínas Substratos do Receptor de Insulina , Lipopolissacarídeos , Macrófagos , Células-Tronco Mesenquimais , MicroRNAs , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Sepse , Transdução de Sinais , Serina-Treonina Quinases TOR , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Sepse/metabolismo , Sepse/imunologia , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ativação de Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças
2.
Front Biosci (Landmark Ed) ; 29(7): 257, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39082352

RESUMO

BACKGROUND: The importance of N6-methyladenosine (m6A) modification in tumorigenesis and progression have been highlighted. This study aimed to investigate the modification of insulin receptor substrate 1 (IRS1) by m6A and its role in oral squamous cell carcinoma (OSCC). METHODS: Bioinformatics was employed to predict differential genes related to epithelial-mesenchymal transition (EMT) in OSCC. Seventeen pairs of OSCC and paracancerous tissue samples were collected. The impact of IRS1 on OSCC cell growth and EMT was evaluated. The fluctuations in IRS1 enrichment and the involvement of p53/Line-1 were investigated. RESULTS: IRS1 was highly expressed in OSCC. IRS1 silencing decreased OSCC cell proliferation and increased apoptosis. IRS1 silencing hindered EMT by regulating related markers. IRS1 silencing upregulated p53 and downregulated Line-1 ORF1p. The p53 inhibition reversed the effects of IRS1 silencing and induced EMT in OSCC cells. Furthermore, the m6A modification of IRS1 was increased in OSCC cells. IRS1 were positively regulated by the m6A regulators methyltransferase-like 14 (METTL14) and YTH domain-containing protein 1 (YTHDC1). IRS1 bound to YTHDC1, and YTHDC1 knockdown inhibited the IRS1 nuclear export. The obesity-associated protein (FTO) negatively regulated IRS1, and FTO overexpression reversed the IRS1-induced OSCC tumor growth. CONCLUSIONS: m6A methylation-mediated IRS1 regulated EMT in OSCC through p53/Line-1. These findings provide potential therapeutic strategies for managing OSCC.


Assuntos
Adenosina , Carcinoma de Células Escamosas , Proliferação de Células , Transição Epitelial-Mesenquimal , Proteínas Substratos do Receptor de Insulina , Neoplasias Bucais , Transdução de Sinais , Proteína Supressora de Tumor p53 , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Adenosina/análogos & derivados , Adenosina/metabolismo , Linhagem Celular Tumoral , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Animais , Camundongos , Camundongos Nus
3.
Biology (Basel) ; 13(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38927258

RESUMO

The cell-free aqueous extract from the coelomic fluid of Holothuria tubulosa was prepared and examined for its glucose-lowering effect on HepG2 cells in vitro. In particular, employing a combination of cytochemical, flow cytometric, PCR, and protein blot techniques, we evaluated its role on glucose internalization and storage and on the upregulation and surface translocation of the two glucose transporters GLUT-2 and -4. The changes in expression, synthesis, and/or activation of the GLUT2-related transcription factor hepatocyte nuclear factor-1 alpha (HNF1α) and the GLUT-4-translocation regulatory factors insulin receptor substrate-1 (IRS-1) and AKT were also studied. Our results showed the improved glucose response by HepG2 cells, leading to an evident increase in glucose consumption/uptake and glycogen storage upon exposure. Moreover, the extract induced molecular reprogramming involving the upregulation of (i) IRS1 gene expression, (ii) the transcription and translation levels of HNF1α, AKT, and GLUT-4, (iii) the phosphorylation level of AKT, (iv) the synthesis of GLUT-2 protein, and (v) the translocation of GLUT-2 and -4 transporters onto the plasma membrane. Cumulatively, our results suggest that the coelomic fluid extract from H. tubulosa can be taken into consideration for the development of novel treatment agents against diabetes mellitus.

4.
Proc Natl Acad Sci U S A ; 121(17): e2401716121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38625937

RESUMO

Serine phosphorylations on insulin receptor substrate 1 (IRS-1) by diverse kinases aoccur widely during obesity-, stress-, and inflammation-induced conditions in models of insulin resistance and type 2 diabetes. In this study, we define a region within the human IRS-1, which is directly C-terminal to the PTB domain encompassing numerous serine phosphorylation sites including Ser307 (mouse Ser302) and Ser312 (mouse 307) creating a phosphorylation insulin resistance (PIR) domain. We demonstrate that the IRS-1 PTB-PIR with its unphosphorylated serine residues interacts with the insulin receptor (IR) but loses the IR-binding when they are phosphorylated. Surface plasmon resonance studies further confirm that the PTB-PIR binds stronger to IR than just the PTB domain, and that phosphorylations at Ser307, Ser312, Ser315, and Ser323 within the PIR domain result in abrogating the binding. Insulin-responsive cells containing the mutant IRS-1 with all these four serines changed into glutamates to mimic phosphorylations show decreased levels of phosphorylations in IR, IRS-1, and AKT compared to the wild-type IRS-1. Hydrogen-deuterium exchange mass spectrometry experiments indicating the PIR domain interacting with the N-terminal lobe and the hinge regions of the IR kinase domain further suggest the possibility that the IRS-1 PIR domain protects the IR from the PTP1B-mediated dephosphorylation.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Camundongos , Humanos , Animais , Fosforilação , Serina/metabolismo , Receptor de Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Linhagem Celular , Fosfoproteínas/metabolismo , Insulina/metabolismo
5.
Diabetol Metab Syndr ; 16(1): 62, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448958

RESUMO

OBJECTIVES: we performed this meta- analysis to investigate the impact of insulin receptor substrate 1 (IRS1) gene rs1801278 on susceptibility to gestational diabetes mellitus (GDM). METHODS: The pooled odds ratio (OR) and 95% confidence interval (95% CI) were calculated, and p value is used to determine statistical significance. Sensitivity analysis was performed under three models (dominant, recessive and allele model), and the pooled ORs and 95%CI were calculated. Funnel plots and Begger's regression test were employed to test the publication bias. RESULTS: The meta-analysis included 4777 participants (2116 cases and 2661 controls). The IRS1 rs1801278 (C/T) were not significant associated with GDM risk under the dominant and allele models, OR (95%CI) = 1.22 (0.88-1.70) and 1.24 (0.91-1.68), respectively (both p values were more than 0.05). But we also found the IRS1 rs1801278 (C/T) were significant associated with GDM risk under the recessive model, OR (95%CI) = 0.37 (0.16-0.86), p = 0.030. Our results showed that none of the studies affected the quality of the pooled OR. We also found no significant publication bias existed in this meta study for three genetic models, PTT + CT vs. CC = 0.445; PCC+CT vs. TT= 0.095; PC vs. T = 0.697. CONCLUSION: this meta-analysis indicated that IRS1 rs1801278 (C/T) was associated with the GDM risk under the recessive model but was not associated with the GDM risk under dominant and allele models.

6.
Endokrynol Pol ; 75(1): 61-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38497391

RESUMO

INTRODUCTION: Gestational diabetes mellitus (GDM) is the most common metabolic disease in pregnancy. However, studies of activating molecule of Beclin1-regulated autophagy (Ambra1) affecting the insulin substrate receptor 1/phosphatidylinositol 3 kinase/protein kinase B (IRS-1/PI3K/Akt) signalling pathway in GDM have not been reported. The aim of the study was to detect the difference of Ambra1 expression in the placenta of normal pregnant women and GDM patients. MATERIAL AND METHODS: An in vitro model of gestational diabetes mellitus was established by inducing HTR8/Svneo cells from human chorionic trophoblast layer with high glucose. The changes of cell morphology were observed by inverted microscope, and the expression levels of Ambra1 gene and protein in model cells were detected. After this, Ambra1 gene was silenced by shRNA transfection, and PI3K inhibitor was added to detect changes in Ambra1, autophagy, and insulin (INS) signalling pathways. RESULTS: The protein expression levels of Ambra1, Bcl-2 interacting protein (Beclin-1), and microtubule-associated proteins 1A/1B light chain 3B (LC3-II) in the placentas of GDM pregnant women were higher than those of normal pregnant women. High glucose induces morphological changes in HTR8/Svneo cells and increases Ambra1 transcription and translation levels. sh-Ambra1 increased survival of HTR8/SvNEO-HG cells and inhibited Ambra1, Beclin1, and LC3-II transcription and translation levels. Also, sh-Ambra1 increased IRS-1/PI3K/Akt protein phosphorylation levels and inhibited the IRS-1/PI3K/Akt signalling pathway and its resulting autophagy. CONCLUSIONS: sh-Ambra1 increased IRS-1/PI3K/Akt protein phosphorylation levels to reduce autophagy in gestational diabetes.


Assuntos
Diabetes Gestacional , Feminino , Humanos , Gravidez , Autofagia , Proteína Beclina-1 , Diabetes Gestacional/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
7.
3 Biotech ; 14(4): 108, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38476643

RESUMO

IRS1 is a cytoplasmic adaptor protein that helps in cellular growth, glucose metabolism, proliferation, and differentiation. Highly disordered (insulin receptor substrate 1) IRS1 protein sequence (mol.wt- 131,590.97 da) has been used to develop model using ab initio modeling technique by I-Tassar tool and Discovery Studio/ DogSite Server to decipher a novel active site. The constructed protein model has been submitted with PMDB Id- PM0082210. GRAVY index of IRS1 model ( - 0.675) indicated surface protein-water interaction. Protparam tool instability index (75.22) demonstrated disorderedness combined with loops owing to prolines/glycines. After refinement, the Ramachandran plot showed that 88 percent of AAs were present in the allowed region and only 0.5% in the disallowed region. Novel IRS1 model protein has 10 α-helices, 22 ß-sheets, 20 ß-hairpins, 5 ß-bulges, 47 strands, 105 ß-turns, and 8 γ-turns. Docking of IRS1 with drug MH demonstrated interaction of Ser-70, Thr-18, and Pro-69 with C-H bonds; Gln-71, and Glu-113 with hydrogen bonds; while both Glu-114 and Glu-113 with salt-bridge connection. Permissible 1.0-1.5 Å range of RMSD fluctuation between 20 and 45 ns was obtained in simulation of IRS1 and IRS1-met complex confirmed that both complexes were stable during whole simulation process. RMSF result showed that except positions 57AA and 114AA, the binding of drug had no severe effects on the flexibility of the IRS1 and IRS1-met complex. The RoG value of compactness and rigidity showed little change in IRS1 protein. SASA value of IRS1 indicated non-significant fluctuation between IRS1 and drug MH means ligand (drug) and IRS1 receptor form stable structure. Hydrogen bond strength of IRS1 and IRS1-met was 81.2 and 76.4, respectively, which suggested stable interaction.

8.
Foods ; 13(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397596

RESUMO

Goat milk has been consumed by humans since ancient times and is highly nutritious. Its quality is mainly determined by its casein content. Milk protein synthesis is controlled by a complex network with many signal pathways. Therefore, the aim of our study is to clearly depict the signal pathways involved in milk protein synthesis in goat mammary epithelial cells (GMECs) using state-of-the-art microproteomic techniques and to identify the key genes involved in the signal pathway. The microproteomic analysis identified more than 2253 proteins, with 323 pathways annotated from the identified proteins. Knockdown of IRS1 expression significantly influenced goat casein composition (α, ß, and κ); therefore, this study also examined the insulin receptor substrate 1 (IRS1) gene more closely. A total of 12 differential expression proteins (DEPs) were characterized as upregulated or downregulated in the IRS1-silenced sample compared to the negative control. The enrichment and signal pathways of these DEPs in GMECs were identified using GO annotation and KEGG, as well as KOG analysis. Our findings expand our understanding of the functional genes involved in milk protein synthesis in goats, paving the way for new approaches for modifying casein content for the dairy goat industry and milk product development.

9.
Clin Endocrinol (Oxf) ; 100(3): 284-293, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172081

RESUMO

OBJECTIVE: Insulin receptor substract 1 (IRS1) protein is an important signal transduction adapter for extracellular signal transduction from insulin-like growth factor-1 receptor and its family members to IRS1 downstream proteins. IRS1 has been reported to be involved in tumourigenesis and metastasis in some of solid tumors. Investigating the role of IRS1 in thyroid cancer can help to screen high risk patients at the initial diagnosis. DESIGN, PATIENTS AND MEASUREMENTS: Immunohistochemical assay was used to detect the expression levels of IRS1 in 131 metastatic thyroid cancer tissues. Wound healing, cell invasion and colony formation assays were used to study the functions of IRS1 in vitro. RNA sequencing (RNA-seq) and Western blot analysis analyses were performed to examine the underlying regulation mechanisms of IRS1 in thyroid cancer cells. RESULTS: IRS1 was highly expressed in thyroid cancers and its expression was positively associated with distant metastasis and advanced clinical stages. In vitro studies demonstrated that IRS1 is an important mediator of migration, invasion and colony formation of thyroid cancer cells. RNA-seq showed that IRS1 promoted the metastasis of thyroid cancer by regulating epithelial-mesenchymal transition and phosphoinositide 3-kinase (PI3K)/AKT pathway. CONCLUSIONS: IRS1 overexpression contributes to the aggressiveness of thyroid cancer and is expected to be a stratified marker and a potential therapeutic target for thyroid cancer.


Assuntos
Fosfatidilinositol 3-Quinase , Neoplasias da Glândula Tireoide , Humanos , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias da Glândula Tireoide/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo
10.
Curr Issues Mol Biol ; 46(1): 634-649, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38248343

RESUMO

Insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) are signaling adaptor proteins that participate in canonical pathways, where insulin cascade activation occurs, as well as in non-canonical pathways, in which phosphorylation of substrates is carried out by a diverse array of receptors including integrins, cytokines, steroid hormones, and others. IRS proteins are subject to a spectrum of post-translational modifications essential for their activation, encompassing phosphorylation events in distinct tyrosine, serine, and threonine residues. Tyrosine residue phosphorylation is intricately linked to the activation of the insulin receptor cascade and its interaction with SH2 domains within a spectrum of proteins, including PI3K. Conversely, serine residue phosphorylation assumes a different function, serving to attenuate the effects of insulin. In this review, we have identified over 50 serine residues within IRS-1 that have been reported to undergo phosphorylation orchestrated by a spectrum of kinases, thereby engendering the activation or inhibition of different signaling pathways. Furthermore, we delineate the phosphorylation of over 10 distinct tyrosine residues at IRS-1 or IRS-2 in response to insulin, a process essential for signal transduction and the subsequent activation of PI3K.

11.
Arch Pharm Res ; 47(2): 127-145, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38267702

RESUMO

Insulin resistance (IR) is a key factor in the pathogenesis of disrupted glucose metabolism. Although the extract of Glycyrrhiza glabra has shown significant hypoglycemic activity, its bioactive components remain to be identified, and their mechanisms of action, especially on hepatocyte glucose metabolism, are yet to be explored. In the present study, the primary compounds from Glycyrrhiza glabra [named prenylated flavonoid fractions (PFFs)] have been identified and their chemical structures have been elucidated. The therapeutic effects of PFFs extracted from G. glabra on glucose metabolism disorders and IR in high insulin-induced insulin-resistant HepG2 (IR-HepG2) cells have been determined. Glabridin (GLD) was used as a control. The results indicated that, similar to GLD, PFFs increased glucose consumption, glucose uptake, and translocation of glucose transporter 4 to the plasma membrane in IR-HepG2 cells. In addition, they enhanced the activities of glycogen synthase, glucokinase, and pyruvate kinase, while reducing the activities of phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Furthermore, they activated the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway and suppressed the extracellular signal-regulated kinase/insulin receptor substrate-1 (ERK/IRS-1) pathway. These findings suggest that, similar to GLD, PFFs can alleviate impaired glucose metabolism and alleviate IR in IR-HepG2 cells.Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary.The authors and their affiliations have been confirmed as correct.


Assuntos
Glycyrrhiza , Resistência à Insulina , Insulinas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Flavonoides/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Células Hep G2 , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Transdução de Sinais , Glucose/metabolismo , Glycyrrhiza/metabolismo , Insulinas/metabolismo , Insulinas/farmacologia , Insulina/metabolismo
12.
Mol Oncol ; 18(3): 762-777, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37983945

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide. Lung adenocarcinomas (LUADs) are a major subtype of non-small-cell lung cancers (NSCLCs). About 25% of LUADs harbor GTPase KRAS mutations associated with poor prognosis and limited treatment options. While encouraging tumor response to novel covalent inhibitors specifically targeting KRASG12C has been shown in the clinic, either intrinsic resistance exists or acquired therapeutic resistance arises upon treatment. There is an unmet need to identify new therapeutic targets for treating LUADs with activating KRAS mutations, particularly those with resistance to KRASG12C inhibitor(s). In this study, we have revealed that F-box/LRR-repeat protein 16 (FBXL16) is selectively upregulated in LUAD with KRAS mutations. It promotes LUAD cell growth and transforms lung epithelial cells. Importantly, FBXL16 depletion greatly enhances sensitivity to the KRASG12C inhibitor (sotorasib) in resistant cells by downregulating phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB; also known as AKT) signaling. Mechanistically, FBXL16 upregulates insulin receptor substrate 1 (IRS1) protein stability, leading to an increase of IGF1/AKT signaling, thereby promoting cell growth and migration. Taken together, our study highlights the potential of FBXL16 as a therapeutic target for treating LUAD with KRAS activating mutations.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Resistência a Medicamentos , Mutação/genética
13.
Cell Signal ; 113: 110944, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37890688

RESUMO

The complement system constitutes an integral component of the innate immune system and plays a critical role in adaptive immunity. Activation of this system engenders the production of complement peptide fragments, including C5a, which engage G-protein coupled receptors predominantly expressed in immune-associated cells, such as neutrophils, initiating pro-inflammatory responses. Intriguingly, our investigation has unveiled the presence of C5a receptor 1 (C5aR1) expression within skeletal muscle, a key metabolic tissue and primary target of insulin. Herein, we demonstrate that C5aR1 activation by C5a in differentiated human skeletal muscle cells elicits acute suppression of insulin signalling. This suppression manifests as impaired insulin-dependent association between IRS1 and the p85 subunit of PI3-kinase, a 50% reduction in Akt phosphorylation, and a 60% decline in insulin-stimulated glucose uptake. This impairment in insulin signalling is associated with a three-fold elevation in intramyocellular diacylglycerol (DAG) levels and a two-fold increase in cytosolic calcium content, which promote PKC-mediated IRS1 inhibition via enhanced phosphorylation at IRS1 Ser1101. Significantly, our findings demonstrate that structurally diverse C5aR1 antagonists, along with genetic deletion or stable silencing of C5aR1 by 80% using short-hairpin RNA, effectively attenuate repression of insulin signalling by C5a in LHCN-M2 human skeletal myotubes. These results underscore the potential of heightened C5aR1 activation, characteristic of obesity and chronic inflammatory conditions, to detrimentally impact insulin function within skeletal muscle cells. Additionally, the study suggests that agents targeting the C5a-C5aR axis, originally devised for mitigating complement-dependent inflammatory conditions, may offer therapeutic avenues to ameliorate immune-driven insulin resistance in key peripheral metabolic tissues, including skeletal muscle.


Assuntos
Fatores Imunológicos , Insulina , Receptor da Anafilatoxina C5a , Humanos , Fatores Imunológicos/metabolismo , Insulina/fisiologia , Músculo Esquelético/metabolismo , Receptor da Anafilatoxina C5a/metabolismo , Transdução de Sinais
14.
Cell Biol Int ; 48(1): 46-59, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37750505

RESUMO

Pachymic acid (PA) is a lanostane-type triterpenoid with various pharmacological effects. However, little is known about the effect of PA on myocardial infarction (MI) induced by ischemia/reperfusion (I/R). In this study, we aimed to investigate the protective effect of PA and its underlying mechanism. A cellular MI model was established by oxygen-glucose deprivation and reperfusion (OGD/R) treatment in HL-1 cardiomyocytes, and we found that OGD/R treatment decreased cell viability and glutathione peroxide (GSH-Px) activity, increased Fe2+ concentration and lactate dehydrogenase (LDH) activity, promoted malondialdehyde (MDA) and reactive oxygen species (ROS) production, and inhibited the expression of ferroptosis marker proteins SLC7A11 and GPX4 in a time-dependent manner. OGD/R-induced HL-1 cells were pretreated with different concentrations of PA (0, 20, 40, 60 µg/mL) for 24 h, and toxicological experiments showed that 150 µg/mL PA decreased cell viability, while low concentrations of PA had no toxic effect on cells. 20 µg/mL PA reversed the inhibitory effect of OGD/R on cell viability, reduced MDA and ROS production, and Fe2+ accumulation, increased GSH-Px activity and the expression of SLC7A11 and GPX4, and decreased LDH activity, especially at 60 µg/mL PA. Meanwhile, PA promoted the phosphorylation of IRS-1, AKT, and AMPK proteins in a dose-dependent manner. AICAR, an AMPK activator, inhibited ferroptosis, while STO-609, an AMPK inhibitor, largely abolished the effect of PA on OGD/R-induced ferroptosis of HL-1 cells. In addition, PA inhibited ferroptosis and myocardial I/R injury in wild-type mice and AMPK knockout (AMPK-/- ) mice. Collectively, PA inhibited ferroptosis of cardiomyocytes through activating of the AMPK pathway, thereby alleviating myocardial I/R injury in mice.


Assuntos
Ferroptose , Infarto do Miocárdio , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Triterpenos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Triterpenos/farmacologia , Triterpenos/metabolismo , Triterpenos/uso terapêutico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Reperfusão
15.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1014558

RESUMO

AIM: To study the effect and mechanism of Di'ao Xinxuekang (DXXK) on insulin resistance in nonalcoholic steatohepatitis (NASH) mice. METHODS: C57BL/6J mice were randomly divided into normal group and model group. After 16 weeks of high-fat diet, the model group was randomly divided into model group and Pioglitazone group (6.0 mg · kg

16.
Acta Med Indones ; 55(3): 255-260, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37915155

RESUMO

BACKGROUND: Cardiovascular disease is driven by traditional risk factors, sex, and genetic differences. The Asian population, specifically Indonesians, has been known at high risk of insulin resistance and endothelial dysfunction. A possible genetic risk factor related to cardiovascular diseases is Gly972Arg polymorphism of insulin receptor substrate 1 (IRS-1) gene, as this impairs endothelial function. To date, whether there is a gender difference in Gly972Arg polymorphism of the IRS-1 gene in Indonesians is unknown. This study aimed to to define whether there is a gender difference in Gly972Arg polymorphism of the IRS-1 gene in Indonesians. METHODS: We studied adults living in two areas (rural and urban) in Indonesia. We collected demographic and clinical data from the study subjects. Gly972Arg polymorphism of the IRS-1 gene (rs1801278) was detected using TaqMan real-time polymerase chain reaction. RESULTS: A total of 378 subjects were recruited. The wild-type allele (CC) was found in 86 (22.8%) subjects, heterozygous mutant allele (CT) in 245 (64.8%), and homozygous mutant allele in 47 (12.4%). The proportion of subjects with T alleles was significantly higher among women than men (54.6% vs. 45.4%, odds ratio: 1.89; p = 0.01). Subjects with T allele more often have hypertension (odds ratio: 1.69, p = 0.058). CONCLUSION: There were a higher proportion of women than men carrying the T allele of Gly972Arg polymorphism among Indonesians. Individuals with the T allele appeared to show a greater prevalence of hypertension. These results may explain a possible mechanism of the high prevalence of metabolic syndrome in Indonesia, especially in women.


Assuntos
Doenças Cardiovasculares , Hipertensão , Resistência à Insulina , Adulto , Feminino , Humanos , Masculino , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Hipertensão/epidemiologia , Hipertensão/genética , Indonésia/epidemiologia , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/genética , Fatores de Risco , Fatores Sexuais
17.
Exp Ther Med ; 26(6): 584, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38023368

RESUMO

Atherosclerosis is a chronic inflammatory disease characterized by endothelial dysfunction and plaque formation. The present study aimed to elucidate the pathological role of the long non-coding RNA (lncRNA) paternally expressed 13 (PEG13) in the onset and progression of atherosclerosis. Specifically, its effects on human umbilical vein endothelial cell (HUVEC) proliferation, angiogenesis, senescence and senescence-associated secretory phenotype (SASP)-related factors were investigated using cell proliferation, cellular angiogenesis, ß-galactosidase staining, reverse transcription-quantitative PCR and enzyme-linked immunosorbent assays. The results showed that oxidized low-density lipoprotein (ox-LDL) inhibited lncRNA PEG13 expression and HUVEC viability in a dose-dependent manner and PEG13 overexpression partially reversed these effects. Additionally, PEG13 overexpression ameliorated the ox-LDL-induced impairment of angiogenesis, cellular senescence and SASP. Furthermore, lncRNA PEG13 directly targeted microRNA (miR/miRNA)-195-5p, suppressing the ox-LDL-induced upregulation of the miRNA. The gene coding for insulin receptor substrate 1 (IRS1), an activator of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, was confirmed as a direct target of miR-195. PEG13 overexpression attenuated the ox-LDL-induced inhibition of IRS1 expression and PI3K/AKT signaling and its protective effects on HUVEC viability, angiogenesis and senescence were partially reversed by small interfering RNAs targeting IRS1. The present study demonstrated that lncRNA PEG13 attenuates ox-LDL-induced senescence in HUVECs by modulating the miR-195/IRS1/PI3K/AKT signaling pathway, suggesting a potential therapeutic target for the treatment of atherosclerosis.

18.
Arch Physiol Biochem ; : 1-11, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37878369

RESUMO

Hyperglycaemia is one condition related to inflammation leading to insulin signalling impairment. This study was conducted to investigate the insulin sensitivity improvement of Sambiloto (Andrographis paniculata (Burm. f.)) Nees extract in insulin resistance-induced HepG2 (IR-HepG2) cells by stimulating insulin sensitivities and inhibiting inflammatory response. Sambiloto extract at 2 µg/mL revealed glucose uptake stimulation and up-regulating GLUT-2 and IRS-1 gene expression, and inhibited pro-inflammatory cytokine IL-6 gene expression in IR-HepG2 cells. Phytochemical analysis showed that the total phenolic level and andrografolide content of Sambiloto extract were 2.91 ± 0.04% and 1.95%, respectively. This result indicated that Sambiloto extract ameliorated insulin resistance in high glucose-induced IR-HepG2 cells via modulating the IRS-1/GLUT-2 pathway due to IL-6 inhibition. These findings suggested that Sambiloto extract had potency as an anti-inflammatory and insulin-resistance improvement in IR-HepG2 cells.

19.
Biomol Ther (Seoul) ; 31(6): 619-628, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37818618

RESUMO

In the modern era, chronic kidney failure due to diabetes has spread across the globe. Prunetin (PRU), a component of herbal medicines, has a broad variety of pharmacological activities; these may help to slow the onset of diabetic kidney disease. The anti-nephropathic effects of PRU have not yet been reported. The present study explored the potential nephroprotective actions of PRU in diabetic rats. For 28 days, nephropathic rats were given oral doses of PRU (20, 40, and 80 mg/kg). Body weight, blood urea, creatinine, total protein, lipid profile, liver marker enzymes, carbohydrate metabolic enzymes, C-reactive protein, antioxidants, lipid peroxidative indicators, and the expression of insulin receptor substrate 1 (IRS-1) and glucose transporter 2 (GLUT-2) mRNA genes were all examined. Histological examinations of the kidneys, liver, and pancreas were also performed. The oral treatment of PRU drastically lowered the blood glucose, HbA1c, blood urea, creatinine, serum glutamic-oxaloacetic transaminase, serum glutamic pyruvic transaminase, alkaline phosphatase, lipid profile, and hexokinase. Meanwhile, the levels of fructose 1,6-bisphosphatase, glucose-6-phosphatase, and phosphoenol pyruvate carboxykinase were all elevated, but glucose-6-phosphate dehydrogenase dropped significantly. Inflammatory marker antioxidants and lipid peroxidative markers were also less persistent due to this administration. PRU upregulated the IRS-1 and GLUT-2 gene expression in the nephropathic group. The possible renoprotective properties of PRU were validated by histopathology of the liver, kidney, and pancreatic tissues. It is therefore proposed that PRU (80 mg/kg) has considerable renoprotective benefits in diabetic nephropathy in rats.

20.
Nutrients ; 15(18)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37764863

RESUMO

This research aimed to probe the potential alleviative effects of ethanol extracts of Chinese sumac (Rhus chinesis Mill.) fruits against type 2 diabetes mellitus (T2DM) in C57BL/6 mice induced by high-fat/high-fructose diet (HFFD) and streptozotocin. The results showed that the ethanol extracts could significantly regulate blood glucose levels, glycosylated hemoglobin, blood lipids, insulin, and insulin resistance, while also restoring endogenous oxidative stress. Pathological and immunohistochemical analyses revealed that the extracts partially restored the physiological function of islet cells. Furthermore, Western blotting results suggested that the extracts could regulate the protein expression in IRS-1/PI3K/AKT signaling pathway, and immunofluorescence findings demonstrated their potential to promote the translocation of Nrf2 into the nucleus. This study elucidated a novel finding that ethanol extracts derived from Chinese sumac fruits have the potential to alleviate symptoms of T2DM in mice. Moreover, these findings could offer valuable scientific insights into the potential utilization of R. chinensis fruits as nutritional supplement and/or functional food to prevent or ameliorate diabetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA