Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Astron Astrophys ; 6252019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31186576

RESUMO

CONTEXT: A significant fraction of the molecular gas in star-forming regions is irradiated by stellar UV photons. In these environments, the electron density (n e) plays a critical role in the gas dynamics, chemistry, and collisional excitation of certain molecules. AIMS: We determine n e in the prototypical strongly irradiated photodissociation region (PDR), the Orion Bar, from the detection of new millimeter-wave carbon recombination lines (mmCRLs) and existing far-IR [13Cii] hyperfine line observations. METHODS: We detect 12 mmCRLs (including α, ß, and γ transitions) observed with the IRAM 30m telescope, at ~ 25″ angular resolution, toward the H/H2 dissociation front (DF) of the Bar. We also present a mmCRL emission cut across the PDR. RESULTS: These lines trace the C+/C/CO gas transition layer. As the much lower frequency carbon radio recombination lines, mmCRLs arise from neutral PDR gas and not from ionized gas in the adjacent Hii region. This is readily seen from their narrow line profiles (Δv = 2.6 ± 0.4 km s-1) and line peak velocities (ν LSR = +10.7 ± 0.2 km s-1). Optically thin [13Cii] hyperfine lines and molecular lines - emitted close to the DF by trace species such as reactive ions CO+ and HOC+ - show the same line profiles. We use non-LTE excitation models of [13Cii] and mmCRLs and derive n e = 60 - 100 cm-3 and T e = 500 - 600 K toward the DF. CONCLUSIONS: The inferred electron densities are high, up to an order of magnitude higher than previously thought. They provide a lower limit to the gas thermal pressure at the PDR edge without using molecular tracers. We obtain P th ≥ (2 - 4)·108 cm-3 K assuming that the electron abundance is equal to or lower than the gas-phase elemental abundance of carbon. Such elevated thermal pressures leave little room for magnetic pressure support and agree with a scenario in which the PDR photoevaporates.

2.
Astron Astrophys ; 6152018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30185990

RESUMO

CONTEXT: In bright photodissociation regions (PDRs) associated to massive star formation, the presence of dense "clumps" that are immersed in a less dense interclump medium is often proposed to explain the difficulty of models to account for the observed gas emission in high-excitation lines. AIMS: We aim at presenting a comprehensive view of the modeling of the CO rotational ladder in PDRs, including the high-J lines that trace warm molecular gas at PDR interfaces. METHODS: We observed the 12CO and 13CO ladders in two prototypical PDRs, the Orion Bar and NGC 7023 NW using the instruments onboard Herschel. We also considered line emission from key species in the gas cooling of PDRs (C+, O, H2) and other tracers of PDR edges such as OH and CH+. All the intensities are collected from Herschel observations, the literature and the Spitzer archive and are analyzed using the Meudon PDR code. RESULTS: A grid of models was run to explore the parameter space of only two parameters: thermal gas pressure and a global scaling factor that corrects for approximations in the assumed geometry. We conclude that the emission in the high-J CO lines, which were observed up to J up =23 in the Orion Bar (J up =19 in NGC 7023), can only originate from small structures of typical thickness of a few 10-3 pc and at high thermal pressures (Pth ~ 108 K cm-3). CONCLUSIONS: Compiling data from the literature, we found that the gas thermal pressure increases with the intensity of the UV radiation field given by G0, following a trend in line with recent simulations of the photoevaporation of illuminated edges of molecular clouds. This relation can help rationalising the analysis of high-J CO emission in massive star formation and provides an observational constraint for models that study stellar feedback on molecular clouds.

3.
Astron Astrophys ; 6032017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29142326

RESUMO

We investigate the presence of complex organic molecules (COMs) in strongly UV-irradiated interstellar molecular gas. We have carried out a complete millimetre (mm) line survey using the IRAM 30 m telescope towards the edge of the Orion Bar photodissociation region (PDR), close to the H2 dissociation front, a position irradiated by a very intense far-UV (FUV) radiation field. These observations have been complemented with 8.5″ resolution maps of the H2CO JKa,Kc = 51,5 → 41,4 and C18O J = 3 → 2 emission at 0.9 mm. Despite being a harsh environment, we detect more than 250 lines from COMs and related precursors: H2CO, CH3OH, HCO, H2CCO, CH3CHO, H2CS, HCOOH, CH3CN, CH2NH, HNCO, [Formula: see text] and HC3N (in decreasing order of abundance). For each species, the large number of detected lines allowed us to accurately constrain their rotational temperatures (Trot) and column densities (N). Owing to subthermal excitation and intricate spectroscopy of some COMs (symmetric- and asymmetric-top molecules such as CH3CN and H2CO, respectively), a correct determination of N and Trot requires building rotational population diagrams of their rotational ladders separately. The inferred column densities are in the 1011 - 1013cm-2 range. We also provide accurate upper limit abundances for chemically related molecules that might have been expected, but are not conclusively detected at the edge of the PDR (HDCO, CH3O, CH3NC, CH3CCH, CH3OCH3, HCOOCH3, CH3CH2OH, CH3CH2CN, and CH2CHCN). A non-thermodynamic equilibrium excitation analysis for molecules with known collisional rate coefficients suggests that some COMs arise from different PDR layers but we cannot resolve them spatially. In particular, H2CO and CH3CN survive in the extended gas directly exposed to the strong FUV flux (Tk = 150 - 250 K and Td ≳ 60 K), whereas CH3OH only arises from denser and cooler gas clumps in the more shielded PDR interior (Tk = 40 - 50 K). The non-detection of HDCO towards the PDR edge is consistent with the minor role of pure gas-phase deuteration at very high temperatures. We find a HCO/H2CO/CH3OH ≃ 1/5/3 abundance ratio. These ratios are different from those inferred in hot cores and shocks. Taking into account the elevated gas and dust temperatures at the edge of the Bar (mostly mantle-free grains), we suggest the following scenarios for the formation of COMs: (i) hot gas-phase reactions not included in current models; (ii) warm grain-surface chemistry; or (iii) the PDR dynamics is such that COMs or precursors formed in cold icy grains deeper inside the molecular cloud desorb and advect into the PDR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA