Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 197: 107874, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574813

RESUMO

Infections of insects with insect-specific RNA viruses are common and can affect host fitness and health. Previously, persistent RNA virus infections were detected in tephritid fruit flies, including the Queensland fruit fly (Bactrocera tryoni), Australia's most significant horticultural pest. Their transmission modes and efficiency are unclear yet may influence virus epidemiology in field and laboratory populations. Using standard RT-PCR and RT-qPCR we detected iflavirus, cripavirus and sigmavirus in five laboratory populations recently established with field-collected B.tryoni. Virus absence in some individuals suggested that virus transmission is incomplete. Random virus segregation in an isofemale experiment resulted in the establishment of isofemale lines with and without iflavirus and cripavirus. In infected lines, viral loads normalised against host gene transcripts were variable, but did not differ between pupae and adults. Iflavirus and cripavirus were transmitted horizontally, with viruses detected (including at low viral loads) in many previously uninfected individuals after four days, and in most after 12 days cohabitation with infected flies. Iflavirus, but not cripavirus, was transmitted vertically, and surface-sterilised embryos contained high loads. Furthermore, high iflavirus loads in individual females resulted in high loads in their offspring. We demonstrated that viruses are highly prevalent in laboratory populations and that it is possible to establish and maintain uninfected fly lines for the assessment of virus transmission and host effects. This is important for pest management strategies such as the sterile insect technique which requires the mass-rearing of flies, as their fitness and performance may be affected by covert virus infections.


Assuntos
Dicistroviridae , Vírus de RNA , Tephritidae , Feminino , Animais
2.
Int J Parasitol Parasites Wildl ; 18: 157-171, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35592272

RESUMO

The western honey bee (Apis mellifera) is of major economic and ecological importance, with elevated rates of colony losses in temperate regions over the last two decades thought to be largely caused by the exotic ectoparasitic mite Varroa destructor and deformed wing virus (DWV), which the mite transmits. DWV currently exists as two main genotypes: the formerly widespread DWV-A and the more recently described and rapidly expanding DWV-B. It is an excellent system to understand viral evolution and the replacement of one viral variant by another. Here we synthesise published results on the distribution and prevalence of DWV-A and -B over the period 2008-2021 and present novel data for Germany, Italy and the UK to suggest that (i) DWV-B has rapidly expanded worldwide since its first description in 2004 and (ii) that it is potentially replacing DWV-A. Both genotypes are also found in wild bee species. Based on a simple mathematical model, we suggest that interference between viral genotypes when co-infecting the same host is key to understanding their epidemiology. We finally discuss the consequences of genotype replacement for beekeeping and for wild pollinator species.

3.
Viruses ; 14(5)2022 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-35632735

RESUMO

Arthropods are integral to ecosystem equilibrium, serving as both a food source for insectivores and supporting plant reproduction. Members of the Iflaviridae family in the order Picornavirales are frequently found in RNA sequenced from arthropods, who serve as their hosts. Here we implement a metagenomic deep sequencing approach followed by rapid amplification of cDNA ends (RACE) on viral RNA isolated from wild and captured bat guano in Washington State at two separate time points. From these samples we report the complete genomes of two novel viruses in the family Iflaviridae. The first virus, which we call King virus, is 46% identical by nucleotide to the lethal honeybee virus, deformed wing virus, while the second virus which we call Rolda virus, shares 39% nucleotide identity to deformed wing virus. King and Rolda virus genomes are 10,183 and 8934 nucleotides in length, respectively. Given these iflaviruses were detected in guano from captive bats whose sole food source was the Tenebrio spp. mealworm, we anticipate this invertebrate may be a likely host. Using the NCBI Sequence Read Archive, we found that these two viruses are located in six continents and have been isolated from a variety of arthropod and mammalian specimens.


Assuntos
Quirópteros , Vírus , Animais , Ecossistema , Nucleotídeos , Filogenia , Vírus de RNA , Vírus/genética , Washington
4.
Viruses ; 13(12)2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34960644

RESUMO

Members of the Lipopteninae subfamily are blood-sucking ectoparasites of mammals. The sheep ked (Melophagus ovinus) is a widely distributed ectoparasite of sheep. It can be found in most sheep-rearing areas and can cause skin irritation, restlessness, anemia, weight loss and skin injuries. Various bacteria and some viruses have been detected in M. ovinus; however, the virome of this ked has never been studied using modern approaches. Here, we study the virome of M. ovinus collected in the Republic of Tuva, Russia. In our research, we were able to assemble full genomes for five novel viruses, related to the Rhabdoviridae (Sigmavirus), Iflaviridae, Reoviridae and Solemoviridae families. Four viruses were found in all five of the studied pools, while one virus was found in two pools. Phylogenetically, all of the novel viruses clustered together with various recently described arthropod viruses. All the discovered viruses were tested on their ability to replicate in the mammalian porcine embryo kidney (PEK) cell line. Aksy-Durug Melophagus sigmavirus RNA was detected in the PEK cell line cultural supernate after the first, second and third passages. Such data imply that this virus might be able to replicate in mammalian cells, and thus, can be considered as a possible arbovirus.


Assuntos
Arbovírus/genética , Dípteros/virologia , Ectoparasitoses/virologia , Doenças dos Ovinos/parasitologia , Viroma , Animais , Arbovírus/isolamento & purificação , Linhagem Celular , Filogenia , Reoviridae , Rhabdoviridae , Federação Russa , Ovinos
5.
Viruses ; 13(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34960741

RESUMO

Tsetse flies cause major health and economic problems as they transmit trypanosomes causing sleeping sickness in humans (Human African Trypanosomosis, HAT) and nagana in animals (African Animal Trypanosomosis, AAT). A solution to control the spread of these flies and their associated diseases is the implementation of the Sterile Insect Technique (SIT). For successful application of SIT, it is important to establish and maintain healthy insect colonies and produce flies with competitive fitness. However, mass production of tsetse is threatened by covert virus infections, such as the Glossina pallidipes salivary gland hypertrophy virus (GpSGHV). This virus infection can switch from a covert asymptomatic to an overt symptomatic state and cause the collapse of an entire fly colony. Although the effects of GpSGHV infections can be mitigated, the presence of other covert viruses threaten tsetse mass production. Here we demonstrated the presence of two single-stranded RNA viruses isolated from Glossina morsitans morsitans originating from a colony at the Seibersdorf rearing facility. The genome organization and the phylogenetic analysis based on the RNA-dependent RNA polymerase (RdRp) revealed that the two viruses belong to the genera Iflavirus and Negevirus, respectively. The names proposed for the two viruses are Glossina morsitans morsitans iflavirus (GmmIV) and Glossina morsitans morsitans negevirus (GmmNegeV). The GmmIV genome is 9685 nucleotides long with a poly(A) tail and encodes a single polyprotein processed into structural and non-structural viral proteins. The GmmNegeV genome consists of 8140 nucleotides and contains two major overlapping open reading frames (ORF1 and ORF2). ORF1 encodes the largest protein which includes a methyltransferase domain, a ribosomal RNA methyltransferase domain, a helicase domain and a RdRp domain. In this study, a selective RT-qPCR assay to detect the presence of the negative RNA strand for both GmmIV and GmmNegeV viruses proved that both viruses replicate in G. m. morsitans. We analyzed the tissue tropism of these viruses in G. m. morsitans by RNA-FISH to decipher their mode of transmission. Our results demonstrate that both viruses can be found not only in the host's brain and fat bodies but also in their reproductive organs, and in milk and salivary glands. These findings suggest a potential horizontal viral transmission during feeding and/or a vertically viral transmission from parent to offspring. Although the impact of GmmIV and GmmNegeV in tsetse rearing facilities is still unknown, none of the currently infected tsetse species show any signs of disease from these viruses.


Assuntos
Vírus de Insetos/fisiologia , Vírus de RNA de Cadeia Positiva/fisiologia , Moscas Tsé-Tsé/virologia , Tropismo Viral , Animais , Encéfalo/virologia , Sistema Digestório/virologia , Corpo Adiposo/virologia , Feminino , Genitália/virologia , Genoma Viral , Vírus de Insetos/classificação , Vírus de Insetos/genética , Vírus de Insetos/isolamento & purificação , Masculino , Filogenia , Vírus de RNA de Cadeia Positiva/classificação , Vírus de RNA de Cadeia Positiva/genética , Vírus de RNA de Cadeia Positiva/isolamento & purificação , Glândulas Salivares/virologia , Replicação Viral
6.
J Invertebr Pathol ; 186: 107569, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33727045

RESUMO

Tephritid fruit flies are amongst the most devastating pests of horticulture, and Sterile Insect Technique (SIT) programs have been developed for their control. Their interactions with viruses are still mostly unexplored, yet, viruses may negatively affect tephritid health and performance in SIT programs, and, conversely, constitute potential biological control agents. Here we analysed ten transcriptome libraries obtained from laboratory populations of nine tephritid species from Australia (six species of Bactrocera, and Zeugodacus cucumis), Asia (Bactrocera dorsalis) and Europe (Ceratitis capitata). We detected new viral diversity, including near-complete (>99%) and partially complete (>80%) genomes of 34 putative viruses belonging to eight RNA virus families. On average, transcriptome libraries included 3.7 viruses, ranging from 0 (Z. cucumis) to 9 (B. dorsalis). Most viruses belonged to the Picornavirales, represented by fourteen Dicistroviridae (DV), nine Iflaviridae (IV) and two picorna-like viruses. Others were a virus from Rhabdoviridae (RV), one from Xinmoviridae (both Mononegavirales), several unclassified Negev- and toti-like viruses, and one from Metaviridae (Ortervirales). Using diagnostic PCR primers for four viruses found in the transcriptome of the Bactrocera tryoni strain bent wings (BtDV1, BtDV2, BtIV1, and BtRV1), we tested nine Australian laboratory populations of five species (B. tryoni, Bactrocera neohumeralis, Bactrocera jarvisi, Bactrocera cacuminata, C. capitata), and one field population each of B. tryoni, B. cacuminata and Dirioxa pornia. Viruses were present in most laboratory and field populations yet their incidence differed for each virus. Prevalence and co-occurrence of viruses in B. tryoni and B. cacuminata were higher in laboratory than field populations. This raises concerns about the potential accumulation of viruses and their potential health effects in laboratory and mass-rearing environments which might affect flies used in research and control programs such as SIT.


Assuntos
Vírus de RNA/isolamento & purificação , Tephritidae/virologia , Animais , Embrião não Mamífero/virologia , Feminino , Genoma Viral , Larva/crescimento & desenvolvimento , Larva/virologia , Masculino , Pupa/crescimento & desenvolvimento , Pupa/virologia , Vírus de RNA/genética , Tephritidae/crescimento & desenvolvimento , Transcriptoma
7.
Virus Res ; 297: 198371, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33684420

RESUMO

The virus infection, which visually looks like typical monoinfection, in fact may hide a great complex of different species. Without detailed analysis, we may miss the important interaction between pathogens, including new species. In the current study, we found the new species inside the mix of cubic and polyhedral occlusion bodies (OBs) isolated from the gypsy moth, Lymantria dispar L. (Ld). Transmission electron microscopy (TEM) revealed that into the one cadaver were OBs which belonged to baculovirus and cypoviruses. The baculovirus produced polyhedral OBs, while cypoviruses produced polyhedral and cubic OBs. Genomic analysis detected the multiple Ld nucleopolyhedroviruses, and cypoviruses were Hubei lepidoptera virus 3 and Dendrolimus punctatus cypovirus 1. This represents the first isolation of the Hubei lepidoptera virus 3 from the gypsy moth, proposed as "Lymantria dispar cypovirus 3". The RNAseq analysis also revealed the presence of Lymantria dispar iflavirus 1. The insecticidal activity of the mixed infection was comparable to that of typical baculovirus monoinfection. Thus, we demonstrate that i) the shape of OBs identified by light microscopy cannot be a robust indicator of viral species infecting the host; ii) only specific analysis may reveal the true composition of viral infection.


Assuntos
Mariposas , Nucleopoliedrovírus , Vírus de RNA , Animais , Larva , Nucleopoliedrovírus/genética , Vírus de RNA/genética
8.
Virus Res ; 293: 198263, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33359173

RESUMO

Deformed wing virus (DWV) is a single-stranded positive sense RNA virus that mainly infects honey bees (Apis mellifera) and can have devastating impacts on the colony. Recent studies have shown the presence of this virus in several species of Apis spp. and some other Hymenoptera, but our knowledge of their host range is very limited. We screened previously sequenced RNAseq libraries from different tissues of Vietnamese Walking Stick, Medauroidea extradentata (Phasmatodea) for DWV. We only found this virus in six libraries from anterior and posterior midgut tissue. From the midgut libraries we were able to construct a complete DWV genome sequence, which consisted of 10,140 nucleotides and included one open reading frame. Pairwise genome comparison confirmed strong similarity (98.89 %) of these assembled sequences with only 113 SNPs to the original DWV genome. We hypothesize the M. extradentata acquired this virus via a foodborne transmission by consuming DWV-infected material such as pollen or leaves contaminated with virus infected bee faeces.


Assuntos
Vírus de RNA , Animais , Ásia , Insetos
9.
Front Microbiol ; 11: 621141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488564

RESUMO

The green rice leafhopper, Nephotettix cincticeps (Hemiptera: Cicadellidae), is a key insect vector transmitting rice dwarf virus (RDV) that causes rice dwarf disease. We discovered a novel iflavirus from the transcriptomes of N. cincticeps and named it as Nephotettix cincticeps positive-stranded RNA virus-1 (NcPSRV-1). The viral genome consists of 10,524 nucleotides excluding the poly(A) tail and contains one predicted open reading frame encoding a polyprotein of 3,192 amino acids, flanked by 5' and 3' untranslated regions. NcPSRV-1 has a typical iflavirus genome arrangement and is clustered with the members of the family Iflaviridae in the phylogenetic analysis. NcPSRV-1 was detected in all tested tissues and life stages of N. cincticeps and could be transmitted horizontally and vertically. Moreover, NcPSRV-1 had high prevalence in the laboratory populations and was widely spread in field populations of N. cincticeps. NcPSRV-1 could also infect the two-striped leafhopper, Nephotettix apicalis, at a 3.33% infection rate, but was absent in the zigzag leafhopper, Recilia dorsalis, and rice Oryza sativa variety TN1. The infection of RDV altered the viral load and infection rate of NcPSRV-1 in N. cincticeps, for which it seems that RDV has an antagonistic effect on NcPSRV-1 infection in the host.

10.
Virus Res ; 272: 197651, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31408663

RESUMO

A novel iflavirus, tentatively named laodelphax striatellus iflavirus 1 (LsIV1), was identified in Laodelphax striatellus by total RNA-sequencing, and its genome sequence was confirmed by Sanger sequencing. The complete genome consisted of 10,831 nucleotides with a polyA tail and included one open reading frame, encoding a 361.7-kD polyprotein. Conserved motifs for structural proteins, helicase, protease, and RNA-dependent RNA polymerase were identified by aligning the deduced amino acid sequence of LsIV1 with several other iflaviruses. The genome has the highest identity with another planthopper iflavirus, nilaparvata lugens honeydew virus-3 (39.7%), under the species demarcation threshold (90%). Results of the identities and phylogenetic analysis based on the deduced amino acid sequences of the complete polyprotein and helicase of LsIV1 and other iflaviruses, indicated it is a new species belonging to the family Iflaviridae. Furthermore, we did not observe any differences of biological characterizations like development and reproduction between viruliferous and virus-free SBPH. Meanwhile, we found that female could transmit LsIV1 with higher transmission efficiency.


Assuntos
Genoma Viral , Genômica , Hemípteros/virologia , Picornaviridae/genética , Sequenciamento Completo do Genoma , Sequência de Aminoácidos , Animais , China , Fases de Leitura Aberta , Filogenia , Filogeografia , Picornaviridae/classificação
11.
Virology ; 534: 72-79, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31207441

RESUMO

An analysis of transcriptomes from the antennae of the three South American stink bugs (Euschistus heros, Chinavia ubica, and Dichelops melacanthus) revealed the presence of picorna-like virus genome-length RNAs with high sequence identity to the genome of Halyomorpha halys virus (HhV), originally discovered in the transcriptome of the brown marmorated stink bug, Halyomorpha halys. Features of the genome, phylogenetic relationships to other viruses, and the appearances of virus-like particles isolated from host stink bugs all confirm that these viruses are iflaviruses and isolates of an undescribed species. Iflavirus RNAs were present at high levels (40%-90% of transcriptome reads) in the stink bug antennal transcriptomes. In whole-insect transcriptomes of H. halys, HhV reads were >500-fold more abundant in adults than in nymphs. We identified from field population a subject of species E. heros infected by this iflavirus. The results of the analysis suggest that these iflaviruses are able to produce large quantities of their RNAs without causing any obvious pathology to their hosts.


Assuntos
Heterópteros/virologia , Vírus de Insetos/isolamento & purificação , Animais , Genoma Viral , Heterópteros/classificação , Heterópteros/genética , Vírus de Insetos/classificação , Vírus de Insetos/genética , Filogenia , RNA Viral/genética
12.
Insect Biochem Mol Biol ; 70: 127-37, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26711439

RESUMO

Recent studies suggest a potent role of the small interfering RNA (siRNA) pathway in the control of bee viruses and its usefulness to tackle these viral diseases. However, the involvement of the siRNA pathway in the defense against different bee viruses is still poorly understood. Therefore, in this report, we comprehensively analyzed the response of the siRNA pathway in bumblebees of Bombus terrestris to systemic infections of the virulent Israeli acute paralysis virus (IAPV) and the avirulent slow bee paralysis virus (SBPV). Our results showed that IAPV and SBPV infections induced the expression of Dicer-2. IAPV infections also triggered the production of predominantly 22 nt-long virus-derived siRNAs (vsiRNAs). Intriguingly, these 22 nt-long vsiRNAs showed a high proportion of antigenomic IAPV sequences. Conversely, these predominantly 22 nt-long vsiRNAs of SBPV were not detected in SBPV infected bees. Furthermore, an "RNAi-of-RNAi" experiment on Dicer-2 did not result in altered genome copy numbers of IAPV (n = 17-18) and also not of SBPV (n = 11-12). Based on these results, we can speculate about the importance of the siRNA pathway in bumblebees for the antiviral response. During infection of IAPV, this pathway is probably recruited but it might be insufficient to control viral infection in our experimental setup. The host can control SBPV infection, but aside from the induction of Dicer-2 expression, no further evidence of the antiviral activity of the siRNA pathway was observed. This report may also enhance the current understanding of the siRNA pathway in the innate immunity of non-model insects upon different viral infections.


Assuntos
Abelhas/virologia , Vírus de Insetos/patogenicidade , RNA Helicases/metabolismo , RNA Interferente Pequeno/genética , Animais , Abelhas/imunologia , Inativação Gênica , RNA Helicases/genética , Virulência
13.
Virus Res ; 176(1-2): 179-87, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23777870

RESUMO

A previously unknown iflavirus has been identified in a laboratory colony of the brown planthopper, Nilaparvata lugens. The iflavirus-like sequence was first identified in contig sequences obtained from transcriptome sequencing (RNA-seq) of the brown planthopper. The complete viral genome was resequenced using the Sanger method. The positive-strand RNA genome was 10,937 nucleotides excluding the 3' poly(A) tail, and contained a single large open reading frame encoding coat proteins in the 5' region and replicases in the 3' region. Conserved motifs for coat proteins, helicase, cysteine protease, and RNA-dependent RNA polymerase were identified in the deduced amino sequence, and the estimated molecular mass of the large polyprotein was 358.6kDa. RT-PCR detection of the viral genome indicated that viral shedding occurred through the honeydews of insects in the infected colony. To test transmission, the collected honeydews were used to feed insects in a non-viruliferous colony. After 7 days, the expected RT-PCR fragment was detected in the insects, indicating that the virus can be transmitted horizontally. This is the first iflavirus identified in planthoppers; thus, we propose the name of the virus as Nilaparvata lugens honeydew virus-1.


Assuntos
Genoma Viral , Hemípteros/virologia , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , RNA Viral/genética , Análise de Sequência de DNA , Animais , Dados de Sequência Molecular , Fases de Leitura Aberta , Vírus de RNA/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA