Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.512
Filtrar
1.
Biomaterials ; 312: 122712, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39098305

RESUMO

Immunosuppressive tumor microenvironment (ITM) severely limited the efficacy of immunotherapy against triple-negative breast cancer (TNBC). Herein, Apt-LPR, a light-activatable photodynamic therapy (PDT)/RNAi immune synergy-enhancer was constructed by co-loading miR-34a and photosensitizers in cationic liposomes (in phase III clinical trial). Interestingly, the introduction of tumor-specific aptamers creates a special "Liposome-Aptamer-Target" interface, where the aptamers are initially in a "lying down" state but transform to "standing up" after target binding. The interfacing mechanism was elaborately revealed by computational and practical experiments. This unique interface endowed Apt-LPR with neutralized surface potential of cationic liposomes to reduce non-specific cytotoxicity, enhanced DNase resistance to protect aptamers, and preserved target-binding ability for selective drug delivery. Upon near-infrared irradiation, the generated reactive oxygen species would oxidize unsaturated phospholipids to destabilize both liposomes and lysosomes, realizing stepwise lysosomal escape of miR-34a for tumor cell apoptosis and downregulation of PD-L1 to suppress immune escape. Together, tumor-associated antigens released from PDT-damaged mitochondria and endoplasmic reticulum could activate the suppressive immune cells to establish an "immune hot" milieu. The collaborative immune-enhancing strategy effectively aroused systemic antitumor immunity and inhibited primary and distal tumor progression as well as lung metastasis in 4T1 xenografted mouse models. The photo-controlled drug release and specific tumor-targeting capabilities of Apt-LPR were also visualized in MDA-MB-231 xenografted zebrafish models. Therefore, this photoswitchable PDT/RNAi immune stimulator offered a powerful approach to reprogramming ITM and reinforcing cancer immunotherapy efficacy.


Assuntos
Lipossomos , MicroRNAs , Fotoquimioterapia , Fármacos Fotossensibilizantes , Neoplasias de Mama Triplo Negativas , Microambiente Tumoral , Animais , Humanos , Lipossomos/química , MicroRNAs/genética , MicroRNAs/metabolismo , Fotoquimioterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Feminino , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/patologia , Camundongos , Aptâmeros de Nucleotídeos/química , Preparações de Ação Retardada/química , Interferência de RNA , Peixe-Zebra
2.
Brain Behav Immun ; 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39378971

RESUMO

Autism spectrum disorder (ASD) is a highly heterogeneous disorder characterized by impairments in social, communicative, and restrictive behaviors. Over the past 20 years, research has highlighted the role of the immune system in regulating neurodevelopment and behavior. In ASD, immune abnormalities are frequently observed, such as elevations in pro-inflammatory cytokines, alterations in immune cell frequencies, and dysregulated mechanisms of immune suppression. The adaptive immune system - the branch of the immune system conferring cellular immunity - may be involved in the etiology of ASD. Specifically, dysregulated T cell activity, characterized by altered cellular function and increased cytokine release, presence of inflammatory phenotypes and altered cellular signaling, has been consistently observed in several studies across multiple laboratories and geographic regions. Similarly, mechanisms regulating their activation are also disrupted. T cells at homeostasis coordinate the healthy development of the central nervous system (CNS) during early prenatal and postnatal development, and aid in CNS maintenance into adulthood. Thus, T cell dysregulation may play a role in neurodevelopment and the behavioral and cognitive manifestations observed in ASD. Outside of the CNS, aberrant T cell activity may also be responsible for the increased frequency of immune based conditions in the ASD population, such as allergies, gut inflammation and autoimmunity. In this review, we will discuss the current understanding of T cell biology in ASD and speculate on mechanisms behind their dysregulation. This review also evaluates how aberrant T cell biology affects gastrointestinal issues and behavior in the context of ASD.

3.
J Control Release ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39384152

RESUMO

Mild autophagy accompanied with immunogenic cell death (ICD) effect destructs immune-associated antigens, weakening the immune response against tumor growth. To address this dilemma, we develop a peptide-based bicomponent nanocarrier with encapsulation of a cellular hyperautophagy activator (STF-62247) for near-infrared (NIR) photo/immunotherapy to eliminate primary and metastatic breast tumors. The electrostatic-driven nanodrug (PPNPs@STF) with active-targeting and efficient endosomal escape can induce specific ICD effect upon NIR laser irradiation, and trigger autophagy to a mild activation state. Notably, the simultaneously released STF-62247 precisely promotes autophagy to an overactivated state, resulting in autophagic death of tumor cells and further boosting ICD-related antigen presentation. More importantly, the combined photo/immunotherapy of PPNPs@STF not only inhibits tumor cell proliferation, but also promotes dendritic cells (DCs)-associated immune response. In 4 T1 tumor-bearing mice, PPNPs@STF effectively inhibits growth of primary and distant tumors, and suppresses lung metastasis with a minimized side effect. This study provides a hyperautophagy activator-assisted strategy that can enhance ICD-based antitumor immune response for the treatment of metastatic breast cancer.

4.
Int J Genomics ; 2024: 8922878, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39371450

RESUMO

Cell division cycle 25B (CDC25B), a member of the CDC25 phosphatase family, plays a key role in cell cycle regulation. Studies have suggested its carcinogenic potential in various cancers, but the role of CDC25B in the development of hepatocellular carcinoma (HCC) remains poorly understood. The aim of this study was to clarify the role of CDC25B in HCC using bioinformatics and experiments. CDC25B expression data of HCC cancer tissues and paracancerous normal samples were obtained from The Cancer Gene Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and the relationship between CDC25B expression and the prognosis and degree of tumor differentiation of HCC patients was analyzed. CDC25B expression was verified in clinical HCC tissue samples using fluorescence quantitative polymerase chain reaction (q-PCR) and protein immunoblotting (Western blot). Gene set enrichment analysis (GSEA) was used to identify signaling pathways enriched in CDC25B expression, and differential genes (DEGs) were used to screen out coexpressed hub genes and construct protein-protein interaction (PPI) networks. 5-Ethynyl-2'-deoxyuridine (EDU) staining was used to compare the proliferation and differentiation ability of the HCC cell line (HCC-LM3) after knockdown of CDC25B. Finally, we investigated the mutation of CDC25B in HCC and the relationship between CDC25B expression and tumor cell infiltration of lymphocytes and some immune checkpoints as well as drug sensitivity. CDC25B was overexpressed in HCC tissues and correlated with poor prognosis and the degree of tumor differentiation in patients with HCC. The GSEA and PPI networks together revealed significantly upregulated signaling pathways, as well as functions, associated with the development of HCC when CDC25B was overexpressed. The EDU assay demonstrated that the ability of cells to differentiate value addedly was markedly reduced following the downregulation of CDC25B expression in HCC-LM3s. CDC25B was also involved in the formation of the tumor microenvironment (TME) and immune processes in HCC, and the high expression of CDC25B made patients less sensitive to some drugs. CDC25B can be used as a biomarker and immunotherapeutic target for poor prognosis and partial drug sensitivity in HCC, providing new ideas for HCC treatment.

5.
ACS Nano ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352021

RESUMO

Self-amplifying mRNA (saRNA) is witnessing increased interest as a platform technology for protein replacement therapy, gene editing, immunotherapy, and vaccination. saRNA can replicate itself inside cells, leading to a higher and more sustained production of the desired protein at a lower dose. Controlling innate immune activation, however, is crucial to suppress unwanted inflammation upon delivery and self-replication of RNA in vivo. In this study, we report on a class of ß-aminoester lipids (ßAELs) synthesized through the Michael addition of an acrylate to diethanolamine, followed by esterification with fatty acids. These lipids possessed one or two ionizable amines, depending on the use of nonionic or amine-containing acrylates. We utilized ßAELs for encapsulating saRNA in lipid nanoparticles (LNPs) and evaluated their transfection efficiency in vitro and in vivo in mice, while comparing them to LNPs containing ALC-0315 as an ionizable lipid reference. Among the tested lipids, OC7, which comprises two unsaturated oleoyl alkyl chains and an ionizable azepanyl motif, emerged as a ßAEL with low cytotoxicity and immunogenicity relative to ALC-0315. Interestingly, saRNA delivered via the OC7 LNP exhibited a distinct in vivo transfection profile. Initially, intramuscular injection of OC7 LNP resulted in low protein expression shortly after administration, followed by a gradual increase over a period of up to 7 days. This pattern is indicative of successful self-amplification of saRNA. In contrast, saRNA delivered via ALC-0315 LNP demonstrated high protein translation initially, which gradually declined over time and lacked the amplification seen with OC7 LNP. We observed that, in contrast to saRNA OC7 LNP, saRNA ALC-0315 LNP induced potent innate immune activation by triggering cytoplasmic RIG-I-like receptors (RLRs), likely due to the highly efficient endosomal membrane rupturing properties of ALC-0315 LNP. Consequently, the massive production of type I interferons quickly hindered the amplification of the saRNA. Our findings highlight the critical role of the choice of ionizable lipid for saRNA formulation in LNPs, particularly in shaping the qualitative profile of protein expression. For applications where minimizing inflammation is desired, the use of ionizable lipids, such as the ßAEL reported in this study, that elicit a low type I interferon response in saRNA LNP is crucial.

6.
Psychiatry Res ; 342: 116219, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39388806

RESUMO

Prenatal infection is considered a relevant factor for neurodevelopmental alterations and psychiatric diseases. Administration of bacterial and viral components during pregnancy in rodents results in maternal immune activation (MIA), leading to schizophrenia-like neurochemical and behavioral changes. Despite some evidence for abnormal fear conditioning in schizophrenia, only a few animal studies have focused on this issue. Therefore, we addressed the impact of the administration of the viral mimetic polyI:C to pregnant Long-Evans rats on the adult offspring response to inescapable shocks (IS) and contextual fear conditioning. In males, polyI:C induced a greater endocrine (plasma ACTH) response to IS and both polyI:C and IS enhanced fear conditioning and generalization to a completely different novel environment (hole-board), with no additive effects, probably due to a ceiling effect. In contrast, a modest impact of polyI:C and a lower impact of IS on contextual fear conditioning and generalization was observed in females. Thus, the present results demonstrate that polyI:C dramatically affected fear response to IS in adult males and support the hypothesis that males are more sensitive than females to this treatment. This model might allow to explore neurobiological mechanisms underlying abnormal responsiveness to fear conditioning and stressors in schizophrenia.

7.
J Biol Chem ; 300(10): 107749, 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39251136

RESUMO

The embryonic cerebrospinal fluid (eCSF) plays an essential role in the development of the central nervous system (CNS), influencing processes from neurogenesis to lifelong cognitive functions. An important process affecting eCSF composition is inflammation. Inflammation during development can be studied using the maternal immune activation (MIA) mouse model, which displays altered cytokine eCSF composition and mimics neurodevelopmental disorders including autism spectrum disorder (ASD). The limited nature of eCSF as a biosample restricts its research and has hindered our understanding of the eCSF's role in brain pathologies. Specifically, investigation of the small molecule composition of the eCSF is lacking, leaving this aspect of eCSF composition under-studied. We report here the eCSF metabolome as a resource for investigating developmental neuropathologies from a metabolic perspective. Our reference metabolome includes comprehensive MS1 and MS2 datasets and evaluates two mouse strains (CD-1 and C57Bl/6) and two developmental time points (E12.5 and E14.5). We illustrate the reference metabolome's utility by using untargeted metabolomics to identify eCSF-specific compositional changes following MIA. We uncover MIA-relevant metabolic pathways as differentially abundant in eCSF and validate changes in glucocorticoid and kynurenine pathways through targeted metabolomics. Our resource can guide future studies into the causes of MIA neuropathology and the impact of eCSF composition on brain development.

8.
J Infect Dis ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39331511

RESUMO

This study examined the changes in the lipidome and associations with immune activation and cardiovascular disease markers in youth living with perinatally acquired HIV (YPHIV). The serum lipidome was measured in ART-treated YPHIV (n=100) and HIV- Ugandan children (n=98) Plasma markers of systemic inflammation, monocyte activation, gut integrity, T cell activation, as well as and common carotid artery intima-media thickness (IMT) and pulse wave velocity (PWV) were evaluated at baseline and 96 weeks. Overall, median age was 12 years,52% were females. Total cholesterol, LDL, and HDL were similar between the groups, however, the concentrations of ceramides, diacylglycerols, free fatty acids, lysophysophatidylcholines and phosphatidylcholines, were higher in YPHIV (P≤0.03). Increases in phosphatidylethanolamine (16:0 and 18:0) correlated with increases in sCD163, OxLDL, CRP, IFAB and PWV in PHIV (r≥0.3). YPHIV, successfully suppressed on ART, have elevated lipid species that are associated with CVD, specificallypalmitic acid (C16:0) and stearic acid (C18:0).

9.
Brain Behav Immun ; 123: 211-228, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39293693

RESUMO

Infection during pregnancy represents a risk factor for neuropsychiatric disorders associated with neurodevelopmental alterations. A growing body of evidence from rodents and non-human primates shows that maternal inflammation induced by viral or bacterial infections results in several neurobiological alterations in the offspring. These changes may play an important role in the pathophysiology of psychiatric disorders like schizophrenia and autism spectrum disorders, whose clinical features include impairments in cognitive processing and social performance. Such alterations are causally associated with the maternal inflammatory response to infection rather than with the infection itself. Previously, we reported that CA1 pyramidal neurons of mice exposed to MIA exhibit increased excitability accompanied by a reduction in dendritic complexity. However, potential alterations in cellular and synaptic rules that shape the neuronal computational properties of the offspring remain to be determined. In this study, using mice as subjects, we identified a series of cellular and synaptic alterations endured by CA1 pyramidal neurons of the dorsal hippocampus in a lipopolysaccharide-induced maternal immune activation (MIA) model. Our data indicate that MIA reshapes the excitation-inhibition balance by decreasing the perisomatic GABAergic inhibition predominantly mediated by cholecystokinin-expressing Interneurons but not parvalbumin-expressing interneurons impinging on CA1 pyramidal neurons. These alterations yield a dysregulated amplification of the temporal and spatial synaptic integration. In addition, MIA-exposed offspring displayed social and anxiety-like abnormalities. These findings collectively contribute to understanding the cellular and synaptic alterations underlying the behavioral symptoms present in neurodevelopmental disorders associated with MIA.

10.
Eur Neuropsychopharmacol ; 89: 28-40, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39332147

RESUMO

Maternal infection and stress exposure, especially during childhood and adolescence, have been implicated as risk factors for schizophrenia. Both insults induce an exacerbated inflammatory response, which could mediate disturbance of neurodevelopmental processes and, ultimately, malfunctioning of neural systems observed in this disorder. Thus, anti-inflammatory drugs, such as PPARγ agonists, may potentially be used to prevent the development of schizophrenia. Microglia culture was prepared from the offspring of saline or poly(I:C)-injected mice. The cells were pretreated with pioglitazone and then, stimulated by LPS. Proinflammatory mediators and phagocytic activity were measured. Also, pregnant rats were injected with saline or poly(I:C) on GD17. The offspring were subjected to footshock during adolescence and subsequently injected with pioglitazone or vehicle. At adulthood, behavior and dopaminergic activity were evaluated. Pioglitazone reduced proinflammatory mediators induced by poly(I:C) microglia stimulated by LPS without affecting their decreased phagocytic activity. The PPARγ agonist also prevented the emergence of social and cognitive impairments, as well as attenuated the increased number of spontaneously active dopamine neurons in the VTA, observed in both males and females from poly(I:C) and stress group. Therefore, pioglitazone could potentially prevent the emergence of the schizophrenia-like alterations induced by the two-hit model via reduction of microglial activation.

11.
J Neuroinflammation ; 21(1): 239, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334475

RESUMO

Autophagy is crucial for synaptic plasticity and the architecture of dendritic spines. However, the role of autophagy in schizophrenia (SCZ) and the mechanisms through which it affects synaptic function remain unclear. In this study, we identified 995 single nucleotide polymorphisms (SNPs) across 19 autophagy-related genes that are associated with SCZ. Gene Set Enrichment Analysis (GSEA) of data from the Gene Expression Omnibus public database revealed defective autophagy in patients with SCZ. Using a maternal immune activation (MIA) rat model, we observed that autophagy was downregulated during the weaning period, and early-life activation of autophagy with rapamycin restored abnormal behaviors and electrophysiological deficits in adult rats. Additionally, inhibition of autophagy with 3-Methyladenine (3-MA) during the weaning period resulted in aberrant behaviors, abnormal electrophysiology, increased spine density, and reduced microglia-mediated synaptic pruning. Furthermore, 3-MA treatment significantly decreased the expression and synaptosomal content of complement, impaired the recognition of C3b and CR3, indicating that autophagy deficiency disrupts complement-mediated synaptic pruning. Our findings provide evidence for a significant association between SCZ and defective autophagy, highlighting a previously underappreciated role of autophagy in regulating the synaptic and behavioral deficits induced by MIA.


Assuntos
Autofagia , Plasticidade Neuronal , Ratos Sprague-Dawley , Desmame , Animais , Autofagia/fisiologia , Autofagia/efeitos dos fármacos , Ratos , Plasticidade Neuronal/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Feminino , Masculino , Adenina/análogos & derivados , Adenina/farmacologia , Humanos , Esquizofrenia/patologia , Esquizofrenia/metabolismo , Esquizofrenia/genética , Proteínas do Sistema Complemento/metabolismo , Proteínas do Sistema Complemento/genética , Polimorfismo de Nucleotídeo Único , Modelos Animais de Doenças , Sinapses/patologia , Sinapses/metabolismo , Sinapses/efeitos dos fármacos , Gravidez
12.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39337372

RESUMO

Maternal immune activation (MIA) during pregnancy has been increasingly recognized as a critical factor in the development of neurodevelopmental disorders, with potential sex-specific impacts that are not yet fully understood. In this study, we utilized a murine model to explore the behavioral and molecular consequences of MIA induced by lipopolysaccharide (LPS) administration on embryonic day 12.5. Our findings indicate that male offspring exposed to LPS exhibited significant increases in anxiety-like and depression-like behaviors, while female offspring did not show comparable changes. Molecular analyses revealed alterations in pro-inflammatory cytokine levels and synaptic gene expression in male offspring, suggesting that these molecular disruptions may underlie the observed behavioral differences. These results emphasize the importance of considering sex as a biological variable in studies of neurodevelopmental disorders and highlight the need for further molecular investigations to understand the mechanisms driving these sex-specific outcomes. Our study contributes to the growing evidence that prenatal immune challenges play a pivotal role in the etiology of neurodevelopmental disorders and underscores the potential for sex-specific preventative approaches of MIA.


Assuntos
Comportamento Animal , Modelos Animais de Doenças , Lipopolissacarídeos , Transtornos do Neurodesenvolvimento , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Gravidez , Camundongos , Masculino , Transtornos do Neurodesenvolvimento/imunologia , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/imunologia , Comportamento Animal/efeitos dos fármacos , Citocinas/metabolismo , Ansiedade/imunologia , Fatores Sexuais , Depressão/imunologia , Caracteres Sexuais , Camundongos Endogâmicos C57BL
13.
Cells ; 13(18)2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39329733

RESUMO

Neonatal hypoxic-ischemic encephalopathy (HIE) occurs in 1.5 per 1000 live births, leaving affected children with long-term motor and cognitive deficits. Few animal models of HIE incorporate maternal immune activation (MIA) despite the significant risk MIA poses to HIE incidence and diagnosis. Our non-invasive model of HIE pairs late gestation MIA with postnatal hypoxia. HIE pups exhibited a trend toward smaller overall brain size and delays in the ontogeny of several developmental milestones. In adulthood, HIE animals had reduced strength and gait deficits, but no difference in speed. Surprisingly, HIE animals performed better on the rotarod, an assessment of motor coordination. There was significant upregulation of inflammatory genes in microglia 24 h after hypoxia. Single-cell RNA sequencing (scRNAseq) revealed two microglia subclusters of interest following HIE. Pseudobulk analysis revealed increased microglia motility gene expression and upregulation of epigenetic machinery and neurodevelopmental genes in macrophages following HIE. No sex differences were found in any measures. These results support a two-hit noninvasive model pairing MIA and hypoxia as a model for HIE in humans. This model results in a milder phenotype compared to established HIE models; however, HIE is a clinically heterogeneous injury resulting in a variety of outcomes in humans. The pathways identified in our model of HIE may reveal novel targets for therapy for neonates with HIE.


Assuntos
Animais Recém-Nascidos , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica , Inflamação , Microglia , Monócitos , Animais , Hipóxia-Isquemia Encefálica/patologia , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/metabolismo , Camundongos , Inflamação/patologia , Inflamação/genética , Monócitos/metabolismo , Feminino , Microglia/metabolismo , Microglia/patologia , Masculino , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Camundongos Endogâmicos C57BL , Transtornos Motores/genética , Transtornos Motores/patologia
14.
Zhonghua Xue Ye Xue Za Zhi ; 45(8): 748-754, 2024 Aug 14.
Artigo em Chinês | MEDLINE | ID: mdl-39307721

RESUMO

Objective: To determine the expression and diagnostic value of peripheral blood lymphocytes and functional activation status in non-Hodgkin lymphoma with hemophagocytic lymphohistiocytosis (NHL-HLH) . Methods: We retrospectively analyzed clinical data from 30 newly diagnosed NHL-HLH patients admitted to Jiangsu Province Hospital from September 2022 to September 2023. We assessed peripheral blood lymphocytes and activation status by flow cytometry. Forty newly diagnosed patients with NHL who received treatment at our hospital during the same period and had lymphocyte and functional activation indexes were selected as the control group. The differences in relative and absolute lymphocyte counts and functional activation indexes between the two groups were compared. The optimal cutoff values for continuous variables were calculated from the receiver operating characteristic curve and logistic regression analysis was used to evaluate the risk factors in NHL patients with HLH. Results: A total of 30 NHL-HLH patients were evaluated, including 12 T-cell lymphoma and 18 B-cell lymphoma patients. Forty individuals were in the control group, which included 19 T-cell lymphoma and 21 B-cell lymphoma patients. The absolute counts of CD3(+) T, CD4(+) T, CD8(+) T, and NK cells, along with the relative count of NK cells, were significantly lower in the HLH group compared with that in the control group (all P values<0.01) . The expression of CD38 and HLA-DR on CD8(+) T-cell activated subgroups was significantly higher in the NHL-HLH group compared with that in the control group (CD8(+)CD38(+)/CD8(+) T expression median: 57.4% vs 21.5%, P<0.001; CD8(+)CD38(+)/CD8(+) T expression median: 49.7% vs 33.5%, P=0.028, respectively) . In addition, CD28 expression on CD4(+) and CD8(+) T cells was significantly higher in NHL-HLH patients (P<0.01) . ROC curve and multivariate logistic regression analyses revealed that absolute NK cell count ≤72.0 cells/µl, CD4(+)CD28(+)/CD4(+) T >94.2%, and CD8(+)CD28(+)/CD8(+) T >38.4% were risk factors for predicting the occurrence of NHL-HLH patients. The sensitivity and specificity of the regression model were 86.7% and 86.1%, respectively, with an area under the curve of 0.94 (P<0.001) . Conclusions: In NHL patients with HLH, there was a significant reduction in the absolute number of peripheral blood lymphocyte subpopulations, whereas T-cell function was notably activated. Specifically, absolute counts of NK cells ≤72.0 cells/µl, CD4(+)CD28(+)/CD4(+) T >94.2%, and CD8(+)CD28(+)/CD8(+) T >38.4% were identified as risk factors for predicting the development of NHL-HLH patients. This will assist in early clinical diagnosis and treatment.


Assuntos
Linfo-Histiocitose Hemofagocítica , Linfoma não Hodgkin , Humanos , Linfoma não Hodgkin/diagnóstico , Linfoma não Hodgkin/metabolismo , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/metabolismo , Estudos Retrospectivos , Subpopulações de Linfócitos/metabolismo , Ativação Linfocitária , Fatores de Risco , Citometria de Fluxo , Contagem de Linfócitos , Masculino , Feminino , Pessoa de Meia-Idade , Células Matadoras Naturais/metabolismo
15.
Basic Res Cardiol ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39311911

RESUMO

Inflammation, fibrosis and metabolic stress critically promote heart failure with preserved ejection fraction (HFpEF). Exposure to high-fat diet and nitric oxide synthase inhibitor N[w]-nitro-l-arginine methyl ester (L-NAME) recapitulate features of HFpEF in mice. To identify disease-specific traits during adverse remodeling, we profiled interstitial cells in early murine HFpEF using single-cell RNAseq (scRNAseq). Diastolic dysfunction and perivascular fibrosis were accompanied by an activation of cardiac fibroblast and macrophage subsets. Integration of fibroblasts from HFpEF with two murine models for heart failure with reduced ejection fraction (HFrEF) identified a catalog of conserved fibroblast phenotypes across mouse models. Moreover, HFpEF-specific characteristics included induced metabolic, hypoxic and inflammatory transcription factors and pathways, including enhanced expression of Angiopoietin-like 4 (Angptl4) next to basement membrane compounds, such as collagen IV (Col4a1). Fibroblast activation was further dissected into transcriptional and compositional shifts and thereby highly responsive cell states for each HF model were identified. In contrast to HFrEF, where myofibroblast and matrifibrocyte activation were crucial features, we found that these cell states played a subsidiary role in early HFpEF. These disease-specific fibroblast signatures were corroborated in human myocardial bulk transcriptomes. Furthermore, we identified a potential cross-talk between macrophages and fibroblasts via SPP1 and TNFɑ with estimated fibroblast target genes including Col4a1 and Angptl4. Treatment with recombinant ANGPTL4 ameliorated the murine HFpEF phenotype and diastolic dysfunction by reducing collagen IV deposition from fibroblasts in vivo and in vitro. In line, ANGPTL4, was elevated in plasma samples of HFpEF patients and particularly high levels associated with a preserved global-longitudinal strain. Taken together, our study provides a comprehensive characterization of molecular fibroblast activation patterns in murine HFpEF, as well as the identification of Angiopoietin-like 4 as central mechanistic regulator with protective effects.

16.
Theranostics ; 14(14): 5682-5697, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39310110

RESUMO

Maternal immune activation (MIA) is reported to increase the risk of psychiatric disorders in the offspring. However, the underlying mechanism remains unclear. Methods: We constructed a MIA mouse model by intraperitoneal injection of LPS into pregnant mice and evaluated the behaviors and gene expression profiles in the brains of the female and male offspring, respectively. Results: We found that the MIA female offspring exhibited increased anxiety and a large number of differentially expressed genes (DEGs) in the brain, which were enriched with candidate gene sets of psychiatric disorders and immune functions. In contrast, the MIA male offspring exhibited no significant abnormal behaviors and only a small number of DEGs that were not enriched with disease genes and immune functions. Therefore, we further pursued the downstream study on the molecular mechanism underlying the increased anxiety in the female offspring. We identified the lncRNA AU020206-IRFs-STAT1-cytokine axis by integrating lncRNA-protein interaction data and TF-promoter interaction data, and verified the axis in vitro and in vivo. Conclusion: This study illustrates that MIA upregulates the AU020206-IRFs-STAT1 axis in controlling the brain immunity linked to abnormal behaviors, providing a basis for understanding the role of MIA in psychiatric disorders.


Assuntos
Encéfalo , Citocinas , Modelos Animais de Doenças , Fator de Transcrição STAT1 , Animais , Feminino , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT1/genética , Camundongos , Encéfalo/metabolismo , Encéfalo/imunologia , Gravidez , Citocinas/metabolismo , Masculino , Regulação para Cima , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Lipopolissacarídeos , Efeitos Tardios da Exposição Pré-Natal/imunologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ansiedade/imunologia , Ansiedade/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais
17.
Cell Rep ; 43(10): 114787, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39321022

RESUMO

Maternal immune activation (MIA) is critical for imparting neuropathology and altered behaviors in offspring; however, maternal-fetal immune cell populations have not been thoroughly investigated in MIA-induced autism spectrum disorders (ASDs). Here, we report the single-cell transcriptional landscape of placental cells in both PBS- and poly(I:C)-induced MIA dams. We observed a decrease in regulatory T (Treg) cells but an increase in the M1 macrophage population at the maternal-fetal interface in MIA dams. Based on the Treg-targeting approach, we investigate an immunoregulatory protein, the helminth-derived heat shock protein 90α (Sjp90α), that induces maternal Treg cells and subsequently rescues the autism-like behaviors in adult offspring. Furthermore, in vivo depletion of maternal macrophages attenuates placental inflammatory reaction and reverses behavioral abnormalities in adult offspring. Notably, Sjp90α induces CD4+ T cell differentiation via scavenger receptor A (SR-A) on the macrophage in vitro. Our findings suggest a maternal Treg-targeted approach to alleviate MIA-induced autism-like behavior in adult offspring.

18.
EBioMedicine ; 108: 105338, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39265504

RESUMO

BACKGROUND: Among people living with HIV-1 (PHIV), immunological non-responders (INR) experience incomplete immune recovery despite suppressive antiretroviral treatment (ART), facing more severe non-AIDS events than immunological responders (IR) due to higher chronic immune activation and inflammation (cIA/I). We analyzed the HIV-1 reservoir and immunometabolism in monocytes as a source of cIA/I. METHODS: Cross-sectional study in which 110 participants were enrolled: 25 treatment-naïve; 35 INR; 40 IR; and 10 healthy controls. Cell-associated HIV-1-DNA (HIV-DNA) and -RNA (HIV-RNA) were measured in FACS-isolated monocytes using digital droplet PCR. Intact, 5' deleted, and 3' deleted proviruses were quantified by the intact proviral DNA assay. Systemic inflammation, monocyte immunophenotype, and immunometabolism were characterized by immunoassays, flow cytometry, and real-time cellular bioenergetics measurements, respectively. FINDINGS: Monocytes from INR harbor higher HIV-RNA and HIV-DNA levels than IR. HIV-RNA was found in 14/21 treatment-naïve [2512 copies/106 TBP (331-4666)], 17/33 INR [240 (148-589)], and 15/28 IR [144 (15-309)], correlating directly with sCD163, IP-10, GLUT1high cells and glucose uptake, and inversely with the CD4+/CD8+ ratio. HIV-DNA was identified in all participants with detectable HIV-RNA, with intact provirus in 9/12 treatment-naïve [13 copies/106 monocytes (7-44)], 8/14 INR [46 (18-67)], and 9/13 IR [9 (7-24)]. INR presented glucose metabolism alterations and mitochondrial impairment; decreased coupling efficiency and BHI, and increased mitochondrial dysfunction inversely correlating with the CD4+/CD8+ ratio. INTERPRETATION: HIV-RNA, more than HIV-DNA, in monocytes and their altered metabolism are factors associated with the higher cIA/I that characterize INR. FUNDING: This work was supported by the European Regional Development Fund, ISCIII, grant PI20/01646. Other funding sources: Instituto de Salud Carlos III through the Subprogram Miguel Servet (CP19/00159) to AGV, PFIS contracts (FI19/00304) to EMM, (FI21/00165) to ASA, and (FI19/00083) to CGC, and a mobility grant (MV21/00103) to EMM, from the Ministerio de Ciencia e Innovación, Spain. AJM was granted by a CSL Centenary Award.

19.
Front Immunol ; 15: 1432348, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301017

RESUMO

Background: This study examines the humoral and cellular response in multiple sclerosis (MS) patients on anti-CD20 therapy before and after the 1st to 4th BNT162b2 mRNA SARS-CoV-2 vaccination and the relationship with breakthrough infection. Methods: Participants with McDonald 2017 MS that were treated with ocrelizumab were included. The study duration was throughout the COVID-19 pandemic until four months after fourth mRNA SARS-CoV-2 vaccination (BNT162b2). Longitudinal blood samples were analysed for: IgG antibodies of SARS-CoV-2 spike anti-receptor binding domain (anti-RBD), nucleocapsid IgG antibodies (anti-N) and activation induced marker expressing CD4+, CD8+ T-cells and concentration of ocrelizumab and anti-drug antibodies. Incidences of breakthrough infection were confirmed with SARS-CoV-2 PCR tests. Results: The rate of anti-RBD positive participants increased substantially between the third and fourth vaccination from 22.2% to 55.9% (median 54.7 BAU/mL; IQR: 14.5 - 221.2 BAU/mL and 607.7 BAU/mL; IQR: 29.4 - 784.6 BAU/mL, respectively). Within the same period 75% of participants experienced breakthrough infection. The fourth vaccination resulted in an additional increase in seropositive individuals (64.3%) (median 541.8 BAU/mL (IQR: 19.1-1007 BAU/mL). Breakthrough infection did not influence the cellular response without a significant change after the fourth vaccination. During the study period two participants had detectable anti-N, both after the fourth vaccination. No correlation was found between serum concentration of ocrelizumab and the humoral and cellular response. Discussion: Low levels or absence of specific anti-RBD following vaccination, with a significant increase after breakthrough infections and boosted by the fourth vaccination. T-cell reactivity remained sustained and unaffected by breakthrough infections.


Assuntos
Anticorpos Antivirais , Vacina BNT162 , COVID-19 , Imunidade Celular , Imunidade Humoral , Esclerose Múltipla , SARS-CoV-2 , Humanos , Masculino , COVID-19/imunologia , COVID-19/prevenção & controle , Feminino , SARS-CoV-2/imunologia , Vacina BNT162/imunologia , Adulto , Pessoa de Meia-Idade , Estudos Longitudinais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/tratamento farmacológico , Vacinas contra COVID-19/imunologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Glicoproteína da Espícula de Coronavírus/imunologia , Antígenos CD20/imunologia , Vacinação , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Infecções Irruptivas
20.
Brain Behav Immun ; 123: 99-107, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39260764

RESUMO

Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder typically detected in childhood. Although ADHD has been demonstrated to have a strong genetic component, environmental risk factors, such as maternal infections during pregnancy, may also play a role. We therefore measured the immunological response to 5 abundant microorganisms (Toxoplasmosis Gondii, cytomegalovirus (CMV), Herpes Simplex Virus 1, Epstein Barr Virus and mycoplasma pneumoniae) in newborn heel prick samples of 1679 ADHD cases and 2948 matching controls as part of the iPSYCH Danish case-cohort study. We found an association between high anti-CMV (OR 1.30, 95 % CI [1.09,1.55], p = 0.015) and anti-mycoplasma (OR 1.30, 95 % CI [1.07,1.59], p = 0.037) signal and those newborns later being diagnosed with ADHD. The risk estimate remained increased when controlling for ADHD polygenic risk score as well as penicillin prescriptions. We saw a dose-response association with the amount of positive anti-microorganism titers increasing the risk of being diagnosed with ADHD later in life (p = 0.01 for the trend), suggesting that the more activated the immune system is prior to or at birth, the higher the risk is for a later diagnosis with ADHD. If the associations are causal, they emphasize the importance of a healthy life style during pregnancy to reduce the risk of infections when pregnant and the associated risks for the child.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA