Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
1.
J Immunother Cancer ; 12(5)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702144

RESUMO

BACKGROUND: Natural killer (NK) cells are key effector cells of antitumor immunity. However, tumors can acquire resistance programs to escape NK cell-mediated immunosurveillance. Identifying mechanisms that mediate this resistance enables us to define approaches to improve immune-mediate antitumor activity. In previous studies from our group, a genome-wide CRISPR-Cas9 screen identified Charged Multivesicular Body Protein 2A (CHMP2A) as a novel mechanism that mediates tumor intrinsic resistance to NK cell activity. METHODS: Here, we use an immunocompetent mouse model to demonstrate that CHMP2A serves as a targetable regulator of not only NK cell-mediated immunity but also other immune cell populations. Using the recently characterized murine 4MOSC model system, a syngeneic, tobacco-signature murine head and neck squamous cell carcinoma model, we deleted mCHMP2A using CRISPR/Cas9-mediated knock-out (KO), following orthotopic transplantation into immunocompetent hosts. RESULTS: We found that mCHMP2A KO in 4MOSC1 cells leads to more potent NK-mediated tumor cell killing in vitro in these tumor cells. Moreover, following orthotopic transplantation, KO of mCHMP2A in 4MOSC1 cells, but not the more immune-resistant 4MOSC2 cells enables both T cells and NK cells to better mediate antitumor activity compared with wild type (WT) tumors. However, there was no difference in tumor development between WT and mCHMP2A KO 4MOSC1 or 4MOSC2 tumors when implanted in immunodeficient mice. Mechanistically, we find that mCHMP2A KO 4MOSC1 tumors transplanted into the immunocompetent mice had significantly increased CD4+T cells, CD8+T cells. NK cell, as well as fewer myeloid-derived suppressor cells (MDSC). CONCLUSIONS: Together, these studies demonstrate that CHMP2A is a targetable inhibitor of cellular antitumor immunity.


Assuntos
Modelos Animais de Doenças , Neoplasias de Cabeça e Pescoço , Células Matadoras Naturais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/genética , Imunocompetência , Células Matadoras Naturais/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
2.
J Immunother Cancer ; 12(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754915

RESUMO

BACKGROUND: Allogeneic hematopoietic stem cell transplantation (HSCT) remains the standard of care for chemotherapy-refractory leukemia patients, but cure rates are still dismal. To prevent leukemia relapse following HSCT, we aim to improve the early graft-versus-leukemia effect mediated by natural killer (NK) cells. Our approach is based on the adoptive transfer of Therapeutic Inducers of Natural Killer cell Killing (ThINKK). ThINKK are expanded and differentiated from HSC, and exhibit blood plasmacytoid dendritic cell (pDC) features. We previously demonstrated that ThINKK stimulate NK cells and control acute lymphoblastic leukemia (ALL) development in a preclinical mouse model of HSCT for ALL. Here, we assessed the cellular identity of ThINKK and investigated their potential to activate allogeneic T cells. We finally evaluated the effect of immunosuppressive drugs on ThINKK-NK cell interaction. METHODS: ThINKK cellular identity was explored using single-cell RNA sequencing and flow cytometry. Their T-cell activating potential was investigated by coculture of allogeneic T cells and antigen-presenting cells in the presence or the absence of ThINKK. A preclinical human-to-mouse xenograft model was used to evaluate the impact of ThINKK injections on graft-versus-host disease (GvHD). Finally, the effect of immunosuppressive drugs on ThINKK-induced NK cell cytotoxicity against ALL cells was tested. RESULTS: The large majority of ThINKK shared the key characteristics of canonical blood pDC, including potent type-I interferon (IFN) production following Toll-like receptor stimulation. A minor subset expressed some, although not all, markers of other dendritic cell populations. Importantly, while ThINKK were not killed by allogeneic T or NK cells, they did not increase T cell proliferation induced by antigen-presenting cells nor worsened GvHD in vivo. Finally, tacrolimus, sirolimus or mycophenolate did not decrease ThINKK-induced NK cell activation and cytotoxicity. CONCLUSION: Our results indicate that ThINKK are type I IFN producing cells with low T cell activation capacity. Therefore, ThINKK adoptive immunotherapy is not expected to increase the risk of GvHD after allogeneic HSCT. Furthermore, our data predict that the use of tacrolimus, sirolimus or mycophenolate as anti-GvHD prophylaxis regimen will not decrease ThINKK therapeutic efficacy. Collectively, these preclinical data support the testing of ThINKK immunotherapy in a phase I clinical trial.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Animais , Camundongos , Transplante Homólogo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Doença Enxerto-Hospedeiro/prevenção & controle
3.
J Immunother Cancer ; 12(4)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580332

RESUMO

BACKGROUND: Regulatory T (Treg) cells are a key component in maintaining the suppressive tumor microenvironment and immune suppression in different types of cancers. A precise understanding of the molecular mechanisms used by Treg cells for immune suppression is critical for the development of effective strategies for cancer immunotherapy. METHODS: Senescence development and tolerogenic functions of dendritic cells (DCs) induced by breast cancer tumor-derived γδ Treg cells were fully characterized using real-time PCR, flow cytometry, western blot, and functional assays. Loss-of-function strategies with pharmacological inhibitor and/or neutralizing antibody were used to identify the potential molecule(s) and pathway(s) involved in DC senescence and dysfunction induced by Treg cells. Impaired tumor antigen HER2-specific recognition and immune response of senescent DCs induced by γδ Treg cells were explored in vitro and in vivo in humanized mouse models. In addition, the DC-based HER2 tumor vaccine immunotherapy in breast cancer models was performed to explore the enhanced antitumor immunity via prevention of DC senescence through blockages of STAT3 and programmed death-ligand 1 (PD-L1) signaling. RESULTS: We showed that tumor-derived γδ Treg cells promote the development of senescence in DCs with tolerogenic functions in breast cancer. Senescent DCs induced by γδ Treg cells suppress Th1 and Th17 cell differentiation but promote the development of Treg cells. In addition, we demonstrated that PD-L1 and STAT3 signaling pathways are critical and involved in senescence induction in DCs mediated by tumor-derived γδ Treg cells. Importantly, our complementary in vivo studies further demonstrated that blockages of PD-L1 and/or STAT3 signaling can prevent γδ Treg-induced senescence and reverse tolerogenic functions in DCs, resulting in enhanced HER2 tumor-specific immune responses and immunotherapy efficacy in human breast cancer models. CONCLUSIONS: These studies not only dissect the suppressive mechanism mediated by tumor-derived γδ Treg cells on DCs in the tumor microenvironment but also provide novel strategies to prevent senescence and dysfunction in DCs and enhance antitumor efficacy mediated by tumor-specific T cells for cancer immunotherapy.


Assuntos
Neoplasias da Mama , Linfócitos T Reguladores , Camundongos , Animais , Humanos , Feminino , Antígeno B7-H1/metabolismo , Imunoterapia , Ativação Linfocitária , Células Dendríticas , Microambiente Tumoral
4.
J Immunother Cancer ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604809

RESUMO

BACKGROUND: Combining cytotoxic chemotherapy or novel anticancer drugs with T-cell modulators holds great promise in treating advanced cancers. However, the response varies depending on the tumor immune microenvironment (TIME). Therefore, there is a clear need for pharmacologically tractable models of the TIME to dissect its influence on mono- and combination treatment response at the individual level. METHODS: Here we establish a patient-derived explant culture (PDEC) model of breast cancer, which retains the immune contexture of the primary tumor, recapitulating cytokine profiles and CD8+T cell cytotoxic activity. RESULTS: We explored the immunomodulatory action of a synthetic lethal BCL2 inhibitor venetoclax+metformin drug combination ex vivo, discovering metformin cannot overcome the lymphocyte-depleting action of venetoclax. Instead, metformin promotes dendritic cell maturation through inhibition of mitochondrial complex I, increasing their capacity to co-stimulate CD4+T cells and thus facilitating antitumor immunity. CONCLUSIONS: Our results establish PDECs as a feasible model to identify immunomodulatory functions of anticancer drugs in the context of patient-specific TIME.


Assuntos
Antineoplásicos , Neoplasias da Mama , Compostos Bicíclicos Heterocíclicos com Pontes , Metformina , Sulfonamidas , Humanos , Feminino , Complexo I de Transporte de Elétrons/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células Dendríticas , Metformina/farmacologia , Metformina/uso terapêutico , Microambiente Tumoral
5.
J Immunother Cancer ; 12(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38458638

RESUMO

BACKGROUND: Epithelial to mesenchymal transition (EMT) endows cancer cells with pro-metastatic properties, which appear most effective when cells enter an intermediate hybrid (H) state, characterized by integrated mesenchymal (M) and epithelial (E) traits. The reasons for this advantage are poorly known and, especially, it is totally unexplored whether the interplay between H-cells and NK cells could have a role. Here we characterize the pro-metastatic mechanics of non-small cell lung cancer (NSCLC) H-cells and their subset of cancer-initiating cells (CICs), dissecting crucial interactions with NK cells. METHODS: Human lung cancer cell lines and sublines representative of E, M, or H states, assessed by proteomics, were analyzed in vivo for their tumor-forming and disseminating capabilities. Interactions with NK cells were investigated in vitro using migration assays, cytotoxic degranulation assays, and evaluation of CD133+ CICs modulation after coculture, and validated in vivo through NK cell neutralization assays. Correlation between EMT status, NK cell infiltration, and survival data, was evaluated in a cohort of surgically resected NSCLC cases (n=79). RESULTS: We demonstrated that H-cells, have limited dissemination capability but show the highest potential to initiate metastases in vivo. This property was related to their ability to escape NK cell surveillance. Mechanistically, H-cells expressed low levels of NK-attracting chemokines (CXCL1 and CXCL8), generating poorly infiltrated metastases. Accordingly, proteomics and GO enrichment analysis of E, H, M cell lines showed that the related secretory processes could change during EMT.Furthermore, H-CICs uniquely expressed high levels of the inhibitory ligand B7-H3, which protected H-CIC from NK cell-mediated clearance. In vivo neutralization assays confirmed that, indeed, the pro-metastatic properties of H-cells are poorly controlled by NK cells.Finally, the analysis of patients revealed that detection of hybrid phenotypes associated with low NK infiltration in NSCLC clinical specimens could identify a subset of patients with poor prognosis. CONCLUSIONS: Our study demonstrates that H-cells play a central role in the metastatic spread in NSCLC. Such pro-metastatic advantage of H-cells is supported by their altered interaction with NK cells and by the critical role of B7-H3 in preserving their H-CIC component, indicating B7-H3 as a potential target in combined NK-based therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Transição Epitelial-Mesenquimal , Células Matadoras Naturais , Fatores de Transcrição
7.
J Immunother Cancer ; 12(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38309722

RESUMO

BACKGROUND: The combination of monalizumab (anti-NKG2A/CD94) and durvalumab (anti-programmed death ligand-1) may promote antitumor immunity by targeting innate and adaptive immunity. This phase 1/2 study of monalizumab and durvalumab evaluated safety, antitumor activity, and pharmacodynamics in patients with advanced solid tumors. MAIN BODY: Immunotherapy-naïve patients aged ≥18 years with advanced disease, Eastern Cooperative Oncology Group performance status of 0-1, and 1-3 prior lines of systemic therapy in the recurrent/metastatic setting were enrolled. In part 1 (dose escalation), patients received durvalumab 1500 mg every 4 weeks (Q4W) with increasing doses of monalizumab Q2W/Q4W (n=15). Dose expansion in part 1 included patients with cervical cancer (n=15; durvalumab 1500 mg Q4W and monalizumab 750 mg Q2W) or metastatic microsatellite stable (MSS)-colorectal cancer (CRC) (n=15; durvalumab 1500 mg Q4W and monalizumab 750 mg Q4W). In part 2 (dose expansion), patients with MSS-CRC (n=40), non-small cell lung cancer (NSCLC; n=20), MSS-endometrial cancer (n=40), or ovarian cancer (n=40) received durvalumab 1500 mg Q4W and monalizumab 750 mg Q2W. The primary endpoint was safety. Secondary endpoints included antitumor activity per Response Evaluation Criteria In Solid Tumors version 1.1 (RECIST v1.1). Exploratory analyses included assessment of T-cell and natural killer (NK) cell activation and proliferation in peripheral blood and the tumor microenvironment (TME). The study enrolled 185 patients (part 1, 45; part 2, 140). No dose-limiting toxicities were observed and the maximum tolerated dose was not reached. In part 2, the most common treatment-related adverse events were fatigue (12.1%), asthenia (9.3%), diarrhea (9.3%), pruritus (7.9%), and pyrexia (7.1%). In the expansion cohorts, response rates were 0% (cervical), 7.7% (MSS-CRC), 10% (NSCLC), 5.4% (ovarian), and 0% (MSS-endometrial). Sustained NK cell activation, CD8+ T-cell proliferation, increased serum levels of CXCL10 (C-X-C motif chemokine ligand 10) and CXCL11, and increased tumor infiltration of CD8+ and granzyme B+ cells were observed. CONCLUSIONS: Although efficacy was modest, monalizumab plus durvalumab was well tolerated and encouraging immune activation was observed in the peripheral blood and TME. TRIAL REGISTRATION NUMBER: NCT02671435.


Assuntos
Anticorpos Monoclonais Humanizados , Anticorpos Monoclonais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Feminino , Humanos , Adolescente , Adulto , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ligantes , Neoplasias Pulmonares/tratamento farmacológico , Microambiente Tumoral
8.
Circulation ; 149(9): 707-716, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38408142

RESUMO

RNA therapeutics hold significant promise in the treatment of cardiovascular diseases. RNAs are biologically diverse and functionally specific and can be used for gain- or loss-of-function purposes. The effectiveness of mRNA-based vaccines in the recent COVID-19 pandemic has undoubtedly proven the benefits of an RNA-based approach. RNA-based therapies are becoming more common as a treatment modality for cardiovascular disease. This is most evident in hypertension where several small interfering RNA-based drugs have proven to be effective in managing high blood pressure in several clinical trials. As befits a rapidly burgeoning field, there is significant interest in other classes of RNA. Revascularization of the infarcted heart through an mRNA drug is under clinical investigation. mRNA technology may provide the platform for the expression of paracrine factors for myocardial protection and regeneration. Emergent technologies on the basis of microRNAs and gene editing are tackling complex diseases in a novel fashion. RNA-based gene editing offers hope of permanent cures for monogenic cardiovascular diseases, and long-term control of complex diseases such as essential hypertension, as well. Likewise, microRNAs are proving effective in regenerating cardiac muscle. The aim of this review is to provide an overview of the current landscape of RNA-based therapies for the treatment of cardiovascular disease. The review describes the large number of RNA molecules that exist with a discussion of the clinical development of each RNA type. In addition, the review also presents a number of avenues for future development.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , MicroRNAs , Humanos , Doenças Cardiovasculares/terapia , Doenças Cardiovasculares/tratamento farmacológico , Pandemias , MicroRNAs/genética , MicroRNAs/uso terapêutico , RNA Interferente Pequeno/genética , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico
9.
Arterioscler Thromb Vasc Biol ; 44(3): 545-557, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38235557

RESUMO

Trauma currently accounts for 10% of the total global burden of disease and over 5 million deaths per year, making it a leading cause of morbidity and mortality worldwide. Although recent advances in early resuscitation have improved early survival from critical injury, the mortality rate in patients with major hemorrhage approaches 50% even in mature trauma systems. A major determinant of clinical outcomes from a major injury is a complex, dynamic hemostatic landscape. Critically injured patients frequently present to the emergency department with an acute traumatic coagulopathy that increases mortality from bleeding, yet, within 48 to 72 hours after injury will switch from a hypocoagulable to a hypercoagulable state with increased risk of venous thromboembolism and multiple organ dysfunction. This review will focus on the role of platelets in these processes. As effectors of hemostasis and thrombosis, they are central to each phase of recovery from injury, and our understanding of postinjury platelet biology has dramatically advanced over the past decade. This review describes our current knowledge of the changes in platelet behavior that occur following major trauma, the mechanisms by which these changes develop, and the implications for clinical outcomes. Importantly, supported by research in other disease settings, this review also reflects the emerging role of thromboinflammation in trauma including cross talk between platelets, innate immune cells, and coagulation. We also address the unresolved questions and significant knowledge gaps that remain, and finally highlight areas that with the further study will help deliver further improvements in trauma care.


Assuntos
Transtornos da Coagulação Sanguínea , Trombose , Humanos , Inflamação/complicações , Trombose/complicações , Hemostasia , Hemorragia/etiologia , Plaquetas
10.
J Immunother Cancer ; 11(12)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38056893

RESUMO

BACKGROUND: Antibody therapies can direct natural killer (NK) cells to tumor cells, tumor-associated cells, and suppressive immune cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). This antigen-specific effector function of human NK cells is mediated by the IgG Fc receptor CD16A (FcγRIIIA). Preclinical and clinical studies indicate that increasing the binding affinity and avidity of CD16A for antibodies improves the therapeutic potential of ADCC. CD64 (FcγRI), expressed by myeloid cells but not NK cells, is the only high affinity IgG Fc receptor and is uniquely capable of stably binding to free monomeric IgG as a physiological function. We have reported on the generation of the FcγR fusion CD64/16A, consisting of the extracellular region of CD64 and the transmembrane and cytoplasmic regions from CD16A, retaining its signaling and cellular activity. Here, we generated induced pluripotent stem cell (iPSC)-derived NK (iNK) cells expressing CD64/16A as a potential adoptive NK cell therapy for increased ADCC potency. METHODS: iPSCs were engineered to express CD64/16A as well as an interleukin (IL)-15/IL-15Rα fusion (IL-15RF) protein and differentiated into iNK cells. iNK cells and peripheral blood NK cells were expanded using irradiated K562-mbIL21-41BBL feeder cells and examined. NK cells, ovarian tumor cell lines, and therapeutic monoclonal antibodies were used to assess ADCC in vitro, performed by a DELFIA EuTDA assay or in real-time by IncuCyte assays, and in vivo. For the latter, we developed a xenograft mouse model with high circulating levels of human IgG for more physiological relevance. RESULTS: We demonstrate that (1) iNK-CD64/16A cells after expansion or thaw from cryopreservation can be coupled to therapeutic antibodies, creating armed iNK cells; (2) antibody-armed iNK-CD64/16A cells can be redirected by added antibodies to target new tumor antigens, highlighting additional potential of these cells; (3) cytokine-autonomous activity by iNK-CD64/16A cells engineered to express IL-15RF; and that (4) antibody-armed iNK-CD64/16A cells thawed from cryopreservation are capable of sustained and robust ADCC in vitro and in vivo, as determined by using a modified tumor xenograft model with high levels of competing human IgG. CONCLUSIONS: iNK cells expressing CD64/16A provide an off-the-shelf multiantigen targeting platform to address tumor heterogeneity and mitigate antigen escape.


Assuntos
Células-Tronco Pluripotentes Induzidas , Receptores de IgG , Humanos , Animais , Camundongos , Receptores de IgG/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Matadoras Naturais , Linhagem Celular Tumoral , Imunoglobulina G
11.
J Immunother Cancer ; 11(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37935565

RESUMO

BACKGROUND: ADAR1, the major enzyme for RNA editing, has emerged as a tumor-intrinsic key determinant for cancer immunotherapy efficacy through modulating interferon-mediated innate immunity. However, the role of ADAR1 in innate immune cells such as macrophages remains unknown. METHODS: We first analyzed publicly accessible patient-derived single-cell RNA-sequencing and perturbed RNA sequencing data to elucidate the ADAR1 expression and function in macrophages. Subsequently, we evaluated the combined effects of ADAR1 conditional knockout in macrophages and interferon (IFN)-γ treatment on tumor growth in three distinct disease mouse models: LLC for lung cancer, B16-F10 for melanoma, and MC38 for colon cancer. To gain the mechanistic insights, we performed human cytokine arrays to identify differentially secreted cytokines in response to ADAR1 perturbations in THP-1 cells. Furthermore, we examined the effects of ADAR1 loss and IFN-γ treatment on vessel formation through immunohistochemical staining of mouse tumor sections and tube-forming experiments using HUVEC and SVEC4-10 cells. We also assessed the effects on CD8+ T cells using immunofluorescent and immunohistochemical staining and flow cytometry. To explore the translational potential, we examined the consequences of injecting ADAR1-deficient macrophages alongside IFN-γ treatment on tumor growth in LLC-tumor-bearing mice. RESULTS: Our analysis on public data suggests that ADAR1 loss in macrophages promotes antitumor immunity as in cancer cells. Indeed, ADAR1 loss in macrophages combined with IFN-γ treatment results in tumor regression in diverse disease mouse models. Mechanistically, the loss of ADAR1 in macrophages leads to the differential secretion of key cytokines: it inhibits the translation of CCL20, GDF15, IL-18BP, and TIM-3 by activating PKR/EIF2α signaling but increases the secretion of IFN-γ through transcriptional upregulation and interleukin (IL)-18 due to the 5'UTR uORF. Consequently, decreased CCL20 and GDF15 and increased IFN-γ suppress angiogenesis, while decreased IL-18BP and TIM-3 and increased IL-18 induce antitumor immunity by enhancing cytotoxicity of CD8+ T cells. We further demonstrate that combination therapy of injecting ADAR1-deficient macrophages and IFN-γ effectively suppresses tumors in vivo. CONCLUSION: This study provides a comprehensive elucidation of how ADAR1 loss within macrophages contributes to the establishment of an antitumor microenvironment, suggesting the therapeutic potential of targeting ADAR1 beyond the scope of cancer cells.


Assuntos
Interferon gama , Neoplasias , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Receptor Celular 2 do Vírus da Hepatite A , Microambiente Tumoral , Macrófagos , Citocinas , Adenosina Desaminase/genética
12.
Nervenarzt ; 94(10): 875-884, 2023 Oct.
Artigo em Alemão | MEDLINE | ID: mdl-37672086

RESUMO

BACKGROUND: Parkinson's and Alzheimer's disease (PD/AD) are characterized by cellular pathological changes that precede clinical manifestation and symptom onset by decades (prodromal period) as well as by a heterogeneity of clinical symptoms. Both diseases are recognized as system-wide diseases with organ-transgressing dysregulation and involvement of immunological and neuroinflammatory mechanisms facilitating pathological protein aggregation and neurodegeneration. OBJECTIVES: Overview of natural course, phenotypes and classification of PD/AD with a focus on underlying (system-wide) immunological and neuroinflammatory mechanisms. METHODS: Literature research and consideration of expert opinions. RESULTS: The accumulation of misfolded proteins such as amyloid­ß and synuclein in the course of neurodegenerative processes forms the basis of the current biological classifications, understanding of course and subtypes. Protein aggregation in PD/AD induces an innate immune response by activating microglia and the release of inflammatory mediators such as cytokines and chemokines and leading to further spread of neurodegeneration and accumulation of intracellular neurofibrillary tangles (NFTs). There is also growing evidence that adaptive immune responses involving auto-antibodies or auto-antigen-specific T­/B-cell reactions involving tau, amyloid­ß or synuclein might be involved in the disease progression or subtypes of PD/AD. CONCLUSIONS: Both innate and adaptive immune responses seem to be substantially involved in the pathological cascade leading to neurodegeneration in PD/AD and may contribute to disease progression and clinical subtypes. Thus, future targeted interventions should not only focus on protein aggregation but also on neuroinflammatory and immunological mechanisms.

13.
J Transl Autoimmun ; 7: 100211, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37731549

RESUMO

Psoriasis is a common, chronic skin disease that results mainly from the complex interplay between T cells, dendritic cells, and inflammatory cytokines including TNF-α, IL-17, IL-12, and IL-23. Successful therapy with anti-cytokine antibodies has proved the importance of these key cytokines, especially TNF-α. During the anti-TNF-α treatment of classical idiopathic psoriasis, a small portion of patients develop new psoriasiform lesions. This contradictory phenomenon was named paradoxical psoriasis which resembles idiopathic psoriasis clinically but presents overlapped histological patterns and distinct immunological processes. In this review, we discuss the differences between idiopathic psoriasis and paradoxical psoriasis with an emphasis on their innate immunity, as it is predominant in paradoxical psoriasis which exhibits type I IFN-mediated immunity without the activation of autoreactive T cells and memory T cells. We also put up an instructive algorithm for the management of paradoxical psoriasis. The decision on drug discontinuation or switching of biologics should be made based on the condition of underlying diseases and the severity of lesions.

14.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37648262

RESUMO

BACKGROUND: The natural killer (NK) complex (NKC) harbors multiple genes such as KLRC1 (encoding NKG2A) and KLRK1 (encoding NKG2D) that are central to regulation of NK cell function. We aimed at determining to what extent NKC haplotypes impact on NK cell repertoire and function, and whether such gene variants impact on outcome of IL-2-based immunotherapy in acute myeloid leukemia (AML). METHODS: Genotype status of NKG2D rs1049174 and NKG2A rs1983526 was determined using the TaqMan-Allelic discrimination approach. To dissect the impact of single nucloetide polymorphim (SNP) on NK cell function, we engineered the K562 cell line with CRISPR to be killed in a highly NKG2D-dependent fashion. NK cells were assayed for degranulation, intracellular cytokine production and cytotoxicity using flow cytometry. RESULTS: In AML patients receiving immunotherapy, the NKG2A gene variant, rs1983526, was associated with superior leukemia-free survival and overall survival. We observed that superior NK degranulation from individuals with the high-cytotoxicity NKG2D variant was explained by presence of a larger, highly responsive NKG2A+ subset. Notably, NK cells from donors homozygous for a favorable allele encoding NKG2A mounted stronger cytokine responses when challenged with leukemic cells, and NK cells from AML patients with this genotype displayed higher accumulation of granzyme B during histamine dihydrochloride/IL-2 immunotherapy. Additionally, among AML patients, the NKG2A SNP defined a subset of patients with HLA-B-21 TT with a strikingly favorable outcome. CONCLUSIONS: The study results imply that a dimorphism in the NKG2A gene is associated with enhanced NK cell effector function and improved outcome of IL-2-based immunotherapy in AML.


Assuntos
Interleucina-2 , Leucemia Mieloide Aguda , Humanos , Interleucina-2/genética , Interleucina-2/farmacologia , Interleucina-2/uso terapêutico , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Alelos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Citocinas
15.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37586764

RESUMO

BACKGROUND: Ovarian adenocarcinoma (OVAD) frequently metastasizes to the peritoneal cavity and manifests by the formation of ascites, which constitutes a tumor-promoting microenvironment. In the peritoneal cavity, two developmentally, phenotypically and functionally distinct macrophage subsets, immunocompetent large peritoneal macrophages (LPM) and immunosuppressive small peritoneal macrophages (SPM), coexist. Because peroxisome proliferator-activated receptor γ (PPARγ) is a critical factor participating in macrophage differentiation and cooperates with CCAAT/enhancer binding protein ß (C/EBPß), a transcription factor essential for SPM-to-LPM differentiation, PPARγ could be also involved in the regulation of SPM/LPM balance and could be a promising therapeutic target. METHODS: To evaluate the 15(S)-hydroxyeicosatetraenoic acid (HETE), a PPARγ endogenous ligand, impact on ovarian tumor growth, we intraperitoneally injected 15(S)-HETE into a murine ovarian cancer model. This experimental model consists in the intraperitoneally injection of ID8 cells expressing luciferase into syngeneic C57BL/6 female mice. This ID8 orthotopic mouse model is a well-established experimental model of end-stage epithelial OVAD. Tumor progression was monitored using an in vivo imaging system. Peritoneal immune cells in ascites were analyzed by flow cytometry and cell sorting. To determine whether the impact of 15(S)-HETE in tumor development is mediated through the macrophages, these cells were depleted by injection of liposomal clodronate. To further dissect how 15(S)-HETE mediated its antitumor effect, we assessed the tumor burden in tumor-bearing mice in which the PPARγ gene was selectively disrupted in myeloid-derived cells and in mice deficient of the recombination-activating gene Rag2. Finally, to validate our data in humans, we isolated and treated macrophages from ascites of individuals with OVAD. RESULTS: Here we show, in the murine experimental model of OVAD, that 15(S)-HETE treatment significantly suppresses the tumor growth, which is associated with the differentiation of SPM into LPM and the LPM residency in the peritoneal cavity. We demonstrate that C/EBPß and GATA6 play a central role in SPM-to-LPM differentiation and in LPM peritoneal residence through PPARγ activation during OVAD. Moreover, this SPM-to-LPM switch is associated with the increase of the effector/regulatory T-cell ratio. Finally, we report that 15(S)-HETE attenuates immunosuppressive properties of human ovarian tumor-associated macrophages from ascites. CONCLUSION: Altogether, these results promote PPARγ as a potential therapeutic target to restrain OVAD development and strengthen the use of PPARγ agonists in anticancer therapy.


Assuntos
Adenocarcinoma , Neoplasias Ovarianas , PPAR gama , Animais , Feminino , Humanos , Camundongos , Ascite , Carcinoma Epitelial do Ovário , Terapia de Imunossupressão , Imunossupressores , Macrófagos Peritoneais , Camundongos Endogâmicos C57BL , Neoplasias Ovarianas/tratamento farmacológico , Microambiente Tumoral
16.
J Immunother Cancer ; 11(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553182

RESUMO

BACKGROUND: The prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) remains extremely poor. It has been suggested that the adenosine pathway contributes to the ability of PDAC to evade the immune system and hence, its resistance to immuno-oncology therapies (IOT), by generating extracellular adenosine (eAdo). METHODS: Using genetically engineered allograft models of PDAC in syngeneic mice with defined and different immune infiltration and response to IOT and autochthonous tumors in KPC mice we investigated the impact of the adenosine pathway on the PDAC tumor microenvironment (TME). Flow cytometry and imaging mass cytometry (IMC) were used to characterize the subpopulation frequency and spatial distribution of tumor-infiltrating immune cells. Mass spectrometry imaging (MSI) was used to visualize adenosine compartmentalization in the PDAC tumors. RNA sequencing was used to evaluate the influence of the adenosine pathway on the shaping of the immune milieu and correlate our findings to published data sets in human PDAC. RESULTS: We demonstrated high expression of adenosine pathway components in tumor-infiltrating immune cells (particularly myeloid populations) in the murine models. MSI demonstrated that extracellular adenosine distribution is heterogeneous in tumors, with high concentrations in peri-necrotic, hypoxic regions, associated with rich myeloid infiltration, demonstrated using IMC. Protumorigenic M2 macrophages express high levels of the Adora2a receptor; particularly in the IOT resistant model. Blocking the in vivo formation and function of eAdo (Adoi), using a combination of anti-CD73 antibody and an Adora2a inhibitor slowed tumor growth and reduced metastatic burden. Additionally, blocking the adenosine pathway improved the efficacy of combinations of cytotoxic agents or immunotherapy. Adoi remodeled the TME, by reducing the infiltration of M2 macrophages and regulatory T cells. RNA sequencing analysis showed that genes related to immune modulation, hypoxia and tumor stroma were downregulated following Adoi and a specific adenosine signature derived from this is associated with a poorer prognosis in patients with PDAC. CONCLUSIONS: The formation of eAdo promotes the development of the immunosuppressive TME in PDAC, contributing to its resistance to conventional and novel therapies. Therefore, inhibition of the adenosine pathway may represent a strategy to modulate the PDAC immune milieu and improve therapy response in patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Adenosina , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Imunoterapia/métodos , Microambiente Tumoral
17.
J Immunother Cancer ; 11(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37487666

RESUMO

BACKGROUND: Interactions between immune and tumor cells are critical to determining cancer progression and response. In addition, preclinical prediction of immune-related drug efficacy is limited by interspecies differences between human and mouse, as well as inter-person germline and somatic variation. To address these gaps, we developed an autologous system that models the tumor microenvironment (TME) from individual patients with solid tumors. METHOD: With patient-derived bone marrow hematopoietic stem and progenitor cells (HSPCs), we engrafted a patient's hematopoietic system in MISTRG6 mice, followed by transfer of patient-derived xenograft (PDX) tissue, providing a fully genetically matched model to recapitulate the individual's TME. We used this system to prospectively study tumor-immune interactions in patients with solid tumor. RESULTS: Autologous PDX mice generated innate and adaptive immune populations; these cells populated the TME; and tumors from autologously engrafted mice grew larger than tumors from non-engrafted littermate controls. Single-cell transcriptomics revealed a prominent vascular endothelial growth factor A (VEGFA) signature in TME myeloid cells, and inhibition of human VEGF-A abrogated enhanced growth. CONCLUSIONS: Humanization of the interleukin 6 locus in MISTRG6 mice enhances HSPC engraftment, making it feasible to model tumor-immune interactions in an autologous manner from a bedside bone marrow aspirate. The TME from these autologous tumors display hallmarks of the human TME including innate and adaptive immune activation and provide a platform for preclinical drug testing.


Assuntos
Neoplasias , Fator A de Crescimento do Endotélio Vascular , Humanos , Animais , Camundongos , Microambiente Tumoral , Oncologia , Modelos Animais de Doenças
18.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37399354

RESUMO

BACKGROUND: Efforts to modulate the function of tumor-associated myeloid cell are underway to overcome the challenges in immunotherapy and find a cure. One potential therapeutic target is integrin CD11b, which can be used to modulate the myeloid-derived cells and induce tumor-reactive T-cell responses. However, CD11b can bind to multiple different ligands, leading to various myeloid cell functions such as adhesion, migration, phagocytosis, and proliferation. This has created a major challenge in understanding how CD11b converts the differences in the receptor-ligand binding into subsequent signaling responses and using this information for therapeutic development. METHODS: This study aimed to investigate the antitumor effect of a carbohydrate ligand, named BG34-200, which modulates the CD11b+ cells. We have applied peptide microarrays, multiparameter FACS (fluorescence-activated cell analysis) analysis, cellular/molecular immunological technology, advanced microscopic imaging, and transgenic mouse models of solid cancers, to study the interaction between BG34-200 carbohydrate ligand and CD11b protein and the resulting immunological changes in the context of solid cancers, including osteosarcoma, advanced melanoma, and pancreatic ductal adenocarcinoma (PDAC). RESULTS: Our results show that BG34-200 can bind directly to the activated CD11b on its I (or A) domain, at previously unreported peptide residues, in a multisite and multivalent manner. This engagement significantly impacts the biological function of tumor-associated inflammatory monocytes (TAIMs) in osteosarcoma, advanced melanoma, and PDAC backgrounds. Importantly, we observed that the BG34-200-CD11b engagement triggered endocytosis of the binding complexes in TAIMs, which induced intracellular F-actin cytoskeletal rearrangement, effective phagocytosis, and intrinsic ICAM-1 (intercellular adhesion molecule I) clustering. These structural biological changes resulted in the differentiation in TAIMs into monocyte-derived dendritic cells, which play a crucial role in T-cell activation in the tumor microenvironment. CONCLUSIONS: Our research has advanced the current understanding of the molecular basis of CD11b activation in solid cancers, revealing how it converts the differences in BG34 carbohydrate ligands into immune signaling responses. These findings could pave the way for the development of safe and novel BG34-200-based therapies that modulate myeloid-derived cell functions, thereby enhancing immunotherapy for solid cancers.


Assuntos
Melanoma , Osteossarcoma , Neoplasias Pancreáticas , Camundongos , Animais , Ligantes , Células Mieloides , Imunoterapia , Diferenciação Celular , Microambiente Tumoral , Neoplasias Pancreáticas
19.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37072351

RESUMO

BACKGROUND: Pancreatic cancer (PC) is a challenging diagnosis that is yet to benefit from the advancements in immuno-oncologic treatments. Irreversible electroporation (IRE), a non-thermal method of tumor ablation, is used in treatment of select patients with locally-advanced unresectable PC and has potentiated the effect of certain immunotherapies. Yeast-derived particulate ß-glucan induces trained innate immunity and successfully reduces murine PC tumor burden. This study tests the hypothesis that IRE may augment ß-glucan induced trained immunity in the treatment of PC. METHODS: ß-Glucan-trained pancreatic myeloid cells were evaluated ex vivo for trained responses and antitumor function after exposure to ablated and unablated tumor-conditioned media. ß-Glucan and IRE combination therapy was tested in an orthotopic murine PC model in wild-type and Rag-/- mice. Tumor immune phenotypes were assessed by flow cytometry. Effect of oral ß-glucan in the murine pancreas was evaluated and used in combination with IRE to treat PC. The peripheral blood of patients with PC taking oral ß-glucan after IRE was evaluated by mass cytometry. RESULTS: IRE-ablated tumor cells elicited a potent trained response ex vivo and augmented antitumor functionality. In vivo, ß-glucan in combination with IRE reduced local and distant tumor burden prolonging survival in a murine orthotopic PC model. This combination augmented immune cell infiltration to the PC tumor microenvironment and potentiated the trained response from tumor-infiltrating myeloid cells. The antitumor effect of this dual therapy occurred independent of the adaptive immune response. Further, orally administered ß-glucan was identified as an alternative route to induce trained immunity in the murine pancreas and prolonged PC survival in combination with IRE. ß-Glucan in vitro treatment also induced trained immunity in peripheral blood monocytes obtained from patients with treatment-naïve PC. Finally, orally administered ß-glucan was found to significantly alter the innate cell landscape within the peripheral blood of five patients with stage III locally-advanced PC who had undergone IRE. CONCLUSIONS: These data highlight a relevant and novel application of trained immunity within the setting of surgical ablation that may stand to benefit patients with PC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , beta-Glucanas , Camundongos , Animais , beta-Glucanas/farmacologia , beta-Glucanas/uso terapêutico , Imunidade Treinada , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Eletroporação/métodos , Microambiente Tumoral , Neoplasias Pancreáticas
20.
J Immunother Cancer ; 11(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37068796

RESUMO

BACKGROUND: Preclinical studies have firmly established the CD47-signal-regulatory protein (SIRP)α axis as a myeloid immune checkpoint in cancer, and this is corroborated by available evidence from the first clinical studies with CD47 blockers. However, CD47 is ubiquitously expressed and mediates functional interactions with other ligands as well, and therefore targeting of the primarily myeloid cell-restricted inhibitory immunoreceptor SIRPα may represent a better strategy. METHOD: We generated BYON4228, a novel SIRPα-directed antibody. An extensive preclinical characterization was performed, including direct comparisons to previously reported anti-SIRPα antibodies. RESULTS: BYON4228 is an antibody directed against SIRPα that recognizes both allelic variants of SIRPα in the human population, thereby maximizing its potential clinical applicability. Notably, BYON4228 does not recognize the closely related T-cell expressed SIRPγ that mediates interactions with CD47 as well, which are known to be instrumental in T-cell extravasation and activation. BYON4228 binds to the N-terminal Ig-like domain of SIRPα and its epitope largely overlaps with the CD47-binding site. BYON4228 blocks binding of CD47 to SIRPα and inhibits signaling through the CD47-SIRPα axis. Functional studies show that BYON4228 potentiates macrophage-mediated and neutrophil-mediated killing of hematologic and solid cancer cells in vitro in the presence of a variety of tumor-targeting antibodies, including trastuzumab, rituximab, daratumumab and cetuximab. The silenced Fc region of BYON4228 precludes immune cell-mediated elimination of SIRPα-positive myeloid cells, implying anticipated preservation of myeloid immune effector cells in patients. The unique profile of BYON4228 clearly distinguishes it from previously reported antibodies representative of agents in clinical development, which either lack recognition of one of the two SIRPα polymorphic variants (HEFLB), or cross-react with SIRPγ and inhibit CD47-SIRPγ interactions (SIRPAB-11-K322A, 1H9), and/or have functional Fc regions thereby displaying myeloid cell depletion activity (SIRPAB-11-K322A). In vivo, BYON4228 increases the antitumor activity of rituximab in a B-cell Raji xenograft model in human SIRPαBIT transgenic mice. Finally, BYON4228 shows a favorable safety profile in cynomolgus monkeys. CONCLUSIONS: Collectively, this defines BYON4228 as a preclinically highly differentiating pan-allelic SIRPα antibody without T-cell SIRPγ recognition that promotes the destruction of antibody-opsonized cancer cells. Clinical studies are planned to start in 2023.


Assuntos
Antígeno CD47 , Neoplasias , Camundongos , Animais , Humanos , Linfócitos T/metabolismo , Rituximab , Macrófagos , Neoplasias/tratamento farmacológico , Anticorpos Antineoplásicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...