Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Front Immunol ; 15: 1402862, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38863706

RESUMO

Ovarian cancer, ranking as the seventh most prevalent malignancy among women globally, faces significant challenges in diagnosis and therapeutic intervention. The difficulties in early detection are amplified by the limitations and inefficacies inherent in current screening methodologies, highlighting a pressing need for more efficacious diagnostic and treatment strategies. Phage display technology emerges as a pivotal innovation in this context, utilizing extensive phage-peptide libraries to identify ligands with specificity for cancer cell markers, thus enabling precision-targeted therapeutic strategies. This technology promises a paradigm shift in ovarian cancer management, concentrating on targeted drug delivery systems to improve treatment accuracy and efficacy while minimizing adverse effects. Through a meticulous review, this paper evaluates the revolutionary potential of phage display in enhancing ovarian cancer therapy, representing a significant advancement in combating this challenging disease. Phage display technology is heralded as an essential instrument for developing effective immunodiagnostic and therapeutic approaches in ovarian cancer, facilitating early detection, precision-targeted medication, and the implementation of customized treatment plans.


Assuntos
Técnicas de Visualização da Superfície Celular , Neoplasias Ovarianas , Biblioteca de Peptídeos , Feminino , Humanos , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/imunologia , Biomarcadores Tumorais , Animais , Imunoterapia/métodos
2.
Adv Exp Med Biol ; 1451: 253-271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801583

RESUMO

An outbreak of monkeypox (Mpox) was reported in more than 40 countries in early 2022. Accurate diagnosis of Mpox can be challenging, but history, clinical findings, and laboratory diagnosis can establish the diagnosis. The pre-analytic phase of testing includes collecting, storing, and transporting specimens. It is advised to swab the lesion site with virus transport medium (VTM) containing Dacron or polyester flock swabs from two different sites. Blood, urine, and semen samples may also be used. Timely sampling is necessary to obtain a sufficient amount of virus or antibodies. The analytical phase of infectious disease control involves diagnostic tools to determine the presence of the virus. While polymerase chain reaction (PCR) is the gold standard for detecting Mpox, genome sequencing is for identifying new or modified viruses. As a complement to these methods, isothermal amplification methods have been designed. ELISA assays are also available for the determination of antibodies. Electron microscopy is another effective diagnostic method for tissue identification of the virus. Wastewater fingerprinting provides some of the most effective diagnostic methods for virus identification at the community level. The advantages and disadvantages of these methods are further discussed. Post-analytic phase requires proper interpretation of test results and the preparation of accurate patient reports that include relevant medical history, clinical guidelines, and recommendations for follow-up testing or treatment.


Assuntos
Mpox , Humanos , Mpox/diagnóstico , Mpox/virologia , Mpox/epidemiologia , Monkeypox virus/genética , Monkeypox virus/isolamento & purificação , Ensaio de Imunoadsorção Enzimática/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , Manejo de Espécimes/métodos , Técnicas de Laboratório Clínico/métodos
4.
Front Bioinform ; 4: 1295972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38463209

RESUMO

Introduction: A fundamental challenge in computational vaccinology is that most B-cell epitopes are conformational and therefore hard to predict from sequence alone. Another significant challenge is that a great deal of the amino acid sequence of a viral surface protein might not in fact be antigenic. Thus, identifying the regions of a protein that are most promising for vaccine design based on the degree of surface exposure may not lead to a clinically relevant immune response. Methods: Linear peptides selected by phage display experiments that have high affinity to the monoclonal antibody of interest ("mimotopes") usually have similar physicochemical properties to the antigen epitope corresponding to that antibody. The sequences of these linear peptides can be used to find possible epitopes on the surface of the antigen structure or a homology model of the antigen in the absence of an antigen-antibody complex structure. Results and Discussion: Herein we describe two novel methods for mapping mimotopes to epitopes. The first is a novel algorithm named MimoTree that allows for gaps in the mimotopes and epitopes on the antigen. More specifically, a mimotope may have a gap that does not match to the epitope to allow it to adopt a conformation relevant for binding to an antibody, and residues may similarly be discontinuous in conformational epitopes. MimoTree is a fully automated epitope detection algorithm suitable for the identification of conformational as well as linear epitopes. The second is an ensemble approach, which combines the prediction results from MimoTree and two existing methods.

5.
Microbiol Spectr ; 12(1): e0343723, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078716

RESUMO

IMPORTANCE: The world is facing a measles resurgence, and improved diagnostic tests for measles infection are an urgent World Health Organization research priority. Detection of measles-specific immunoglobulin M (IgM) as a standard diagnostic test has low positive predictive value in elimination settings, and there is a need for new biomarkers of measles infection to enable enhanced surveillance and response to outbreaks. We demonstrate the detection of measles-specific dimeric immunoglobulin A (dIgA) in patients with confirmed measles infections using a new indirect enzyme-linked immunosorbent assay protocol that selects for the dIgA fraction from total IgA in the blood. The magnitude of measles-specific dIgA responses showed a low correlation with IgM responses, and our results highlight the potential of dIgA for further development as an alternative and/or complementary biomarker to IgM for serological diagnosis of measles infection.


Assuntos
Imunoglobulina A , Sarampo , Humanos , Anticorpos Antivirais , Sarampo/diagnóstico , Sarampo/epidemiologia , Valor Preditivo dos Testes , Imunoglobulina M , Biomarcadores
6.
Microbiol Spectr ; : e0196623, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668403

RESUMO

California serogroup viruses (CSGVs) of medical importance in the United States include La Crosse virus, Jamestown Canyon virus (JCV), California encephalitis virus, and snowshoe hare virus. Current diagnosis of CSGVs relies heavily on serologic techniques for detecting immunoglobulin M (IgM), an indication of a recent CSGV infection. However, human-positive control sera reactive to viruses in the serogroup are scarce because detection of recent infections is rare. Here, we describe the development of new murine monoclonal antibodies (MAbs) reactive to CSGVs and the engineering of a human-murine chimeric antibody by combining the variable regions of the broadly CSGV cross-reactive murine MAb, 3-3B6/2-3B2 and the constant region of the human IgM. MAb 3-3B6/2-3B2 recognizes a tertiary epitope on the Gn/Gc heterodimer, and epitopes important in JCV neutralization were mapped to the Gc glycoprotein. This engineered human IgM constitutively expressed in a HEK-293 stable cell line can replace human-positive control sera in diagnostic serological techniques such as IgM antibody capture enzyme-linked immunosorbent assay (MAC-ELISA). Compared to the parent murine MAbs, the human-chimeric IgM antibody had identical serological activity to CSGVs in ELISA and demonstrated equivalent reactivity compared to human immune sera in the MAC-ELISA.IMPORTANCEOrthobunyaviruses in the California serogroup cause severe neurological disease in children and adults. While these viruses are known to circulate widely in North America, their occurrence is rare. Serological testing for CSGVs is hindered by the limited availability and volumes of human-positive specimens needed as controls in serologic assays. Here, we described the development of a murine monoclonal antibody cross-reactive to CSGVs engineered to contain the variable regions of the murine antibody on the backbone of human IgM. The chimeric IgM produced from the stably expressing HEK293 cell line was evaluated for use as a surrogate human-positive control in a serologic diagnostic test.

7.
Anal Biochem ; 678: 115283, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37572840

RESUMO

Beta-casein is a primary milk protein that constitutes approximately 30% of the casein in bovine milk, with the two most common types in cattle being A1 and A2. The A2 protein differs from the A1 version due to a mutation in the codon at position 67, resulting in a histidine to proline substitution. However, the bioactive peptide, beta-casomorphine-7 (BCM7), which originates from partial proteolysis of the A1 variant, has been linked to several gastrointestinal disorders in humans. Production of A1 beta casein-free products is increasing demand in the milk market, worldwide. This study generated and characterized a polyclonal IgY antibody that specifically recognizes the A1 beta-casein protein present in cow's milk. A commercially available IgY anti-A1 antibody was used as a positive control, and the sensitivity and specificity of both the commercial and produced anti-A1 antibodies were evaluated. The results showed 100% sensitivity and specificity of 100% of the commercial IgY anti-A1. The in-house produced anti-A1 antibody demonstrated a sensitivity of 95.2% and a specificity of 100%, indicating its potential as a reliable and cost effective tool for detecting A1 beta-casein protein in milk samples.


Assuntos
Caseínas , Leite , Humanos , Animais , Feminino , Bovinos , Leite/química , Anticorpos/análise , Mutação
8.
ACS Sens ; 8(8): 2986-2995, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37582229

RESUMO

A large portion of the global population has been vaccinated with various vaccines or infected with SARS-CoV-2, the virus that causes COVID-19. The resulting IgG antibodies that target the receptor binding domain (RBD) of SARS-CoV-2 play a vital role in reducing infection rates and severe disease outcomes. Different immune histories result in the production of anti-RBD IgG antibodies with different binding affinities to RBDs of different variants, and the levels of these antibodies decrease over time. Therefore, it is important to have a low-cost, rapid method for quantifying the levels of anti-RBD IgG in decentralized testing for large populations. In this study, we describe a 30 min assay that allows for the quantification of anti-RBD IgG levels in a single drop of finger-prick whole blood. This assay uses force-dependent dissociation of nonspecifically absorbed RBD-coated superparamagnetic microbeads to determine the density of specifically linked microbeads to a protein A-coated transparent surface through anti-RBD IgGs, which can be measured using a simple light microscope and a low-magnification lens. The titer of serially diluted anti-RBD IgGs can be determined without any additional sample processing steps. The limit of detection for this assay is 0.7 ± 0.1 ng/mL referenced to the CR3022 anti-RBD IgG. The limits of the technology and its potential to be further developed to meet the need for point-of-care monitoring of immune protection status are discussed.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Bioensaio , Imunoglobulina G , Microesferas
9.
Vet Sci ; 10(7)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37505821

RESUMO

The immunodiagnostic assessment of dogs suspected of having immune-mediated hemolytic anemia (IMHA) is based on persistent autoagglutination of erythrocytes (after three saline washes), marked spherocytosis, and a positive direct antiglobulin (Coombs') test (DAT). However, the value of using the indirect antiglobulin test (IAT) for the detection of anti-erythrocytic autoantibodies in serum from dogs suspected of having IMHA is unclear. To evaluate the IAT, leftover serum samples from a large cohort of 94 dogs suspected of having IMHA and for which DAT results were known were incubated with DAT- erythrocytes, and five IAT techniques were performed (in part with different reagents and temperatures): microtiter plate (MICRO), microcapillary, laboratory gel column, gel minitube kit (GEL KIT), and immunochromatographic strip kit. Two IAT techniques (MICRO at 37 °C and GEL KIT with rabbit anti-dog polyvalent reagent) detected autoantibodies against erythrocytes in serum from 53% and 57% of DAT+ dogs, respectively, while other IATs performed less well. Moreover, while the analytic specificity of the IAT methods compared to the DAT ranged from 96-100%, the sensitivity range was only 9-57%. Thus, we still recommend DAT for diagnosis and monitoring of IMHA in dogs but conclude that a positive IAT result may aid diagnostically when serum is available, but fresh red blood cells are not.

10.
Vaccine ; 41(34): 5037-5044, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37407407

RESUMO

The Coronavirus (COVID-19) Disease Pandemic, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected millions of people worldwide, prompting a collective effort from the global scientific community to develop a vaccine against it. This study purports to investigate the influence of factors such as sex, age, type of vaccination (Comirnaty, BNT162b2, Pfizer Inc. or Vaxzevria, ChAdOx1-S, Oxford/AstraZeneca), and time since vaccine administration on the process of antibody production. Both of them are based on the introduction of SARS-CoV-2 spike protein (S protein) to the body using different mechanisms (mRNA and recombinant adenovirus, respectively). S protein is responsible for host cell attachment and penetration via its receptor-binding domain (RBD domain). The level of anti-RBD IgG antibodies was tested with an ELISA-based immunodiagnostic assay in serum samples from a total of 1395 patients at 3 time points: before vaccination, after the first dose, and after the second dose. Our novel statistical model, the Generalized Additive Model, revealed variability in antibody production dynamics for both vaccines. Interestingly, no discernible variation in antibody levels between men and women was found. A nonlinear relationship between age and antibody production was observed, characterized by decreased antibody levels for people up to 30 and over 60 years of age, with a lack of correlation in the middle age range. Collectively, our findings further the understanding of the mechanism driving vaccine-induced immunity. Additionally, we propose the Generalized Additive Model as a standardized way of presenting data in similar research.


Assuntos
Vacina BNT162 , COVID-19 , Masculino , Pessoa de Meia-Idade , Humanos , Feminino , Idoso , ChAdOx1 nCoV-19 , Estudos de Coortes , SARS-CoV-2 , Formação de Anticorpos , COVID-19/prevenção & controle , Vacinação , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
11.
Anal Chim Acta ; 1264: 341283, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37230728

RESUMO

In resource-limited conditions such as the COVID-19 pandemic, on-site detection of diseases using the Point-of-care testing (POCT) technique is becoming a key factor in overcoming crises and saving lives. For practical POCT in the field, affordable, sensitive, and rapid medical testing should be performed on simple and portable platforms, instead of laboratory facilities. In this review, we introduce recent approaches to the detection of respiratory virus targets, analysis trends, and prospects. Respiratory viruses occur everywhere and are one of the most common and widely spreading infectious diseases in the human global society. Seasonal influenza, avian influenza, coronavirus, and COVID-19 are examples of such diseases. On-site detection and POCT for respiratory viruses are state-of-the-art technologies in this field and are commercially valuable global healthcare topics. Cutting-edge POCT techniques have focused on the detection of respiratory viruses for early diagnosis, prevention, and monitoring to protect against the spread of COVID-19. In particular, we highlight the application of sensing techniques to each platform to reveal the challenges of the development stage. Recent POCT approaches have been summarized in terms of principle, sensitivity, analysis time, and convenience for field applications. Based on the analysis of current states, we also suggest the remaining challenges and prospects for the use of the POCT technique for respiratory virus detection to improve our protection ability and prevent the next pandemic.


Assuntos
COVID-19 , Vírus , Humanos , Testes Imediatos , Pandemias
12.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047541

RESUMO

Bovine mastitis is the most common disease affecting dairy cattle worldwide and it generates substantial losses for cattle breeders. One of the most common pathogens identified in infected milk samples is Staphylococcus aureus. Currently, there is no fast test for recognizing bacteria species on the market. The aim of this study was to bioinformatically and laboratory detect and characterize the fibronectin binding protein A (FnBPA) of S. aureus (SA) in milk samples obtained from cows diagnosed with mastitis. More than 90,000,000 amino acid sequences were subjected to bioinformatic detection in the search for a potential biomarker for bovine SA. The analysis of FnBPA included the detection of signal peptides and nonclassical proteins, antigenicity, and the prediction of epitopes. To confirm the presence of the fnbA gene in four SA isolates, amplification with specific primers was performed. FnBPA was detected by immunoblotting. The immunoreactivity and selectivity were performed with monoclonal anti-FnBPA antibodies and SA-negative serum. The bioinformatic analysis showed that FnBPA is a surface, conservative, immunoreactive, and species-specific protein with antigenic potential. Its presence was confirmed in all of the SA isolates we studied. Immunoblotting proved its immunoreactivity and specificity. Thus, it can be considered a potential biomarker in mastitis immunodiagnostics.


Assuntos
Mastite Bovina , Infecções Estafilocócicas , Feminino , Animais , Bovinos , Staphylococcus aureus/metabolismo , Projetos Piloto , Mastite Bovina/diagnóstico , Mastite Bovina/microbiologia , Adesinas Bacterianas/metabolismo , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/veterinária , Leite/metabolismo
13.
Parasit Vectors ; 16(1): 150, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37106348

RESUMO

BACKGROUND: Dirofilaria immitis is the causative agent of heartworm disease in wild and domestic canids, felids, and mustelids. Recent studies demonstrate that additional families in the order Carnivora are also susceptible to infection. Therefore, the objectives of this study were to (1) better understand current practices surrounding heartworm prevention and diagnostics in zoological facilities located in the state of Texas, USA, and (2) assess archival serum samples of carnivores kept in these facilities for the presence D. immitis antigen and/or antibody. METHODS: A questionnaire was completed by veterinarians or veterinary technicians representing 10 zoological facilities across Texas. This questionnaire was designed at the taxonomic family level, encompassing the 12 terrestrial carnivore families Ailuridae, Canidae, Eupleridae, Felidae, Herpestidae, Hyaenidae, Mephitidae, Mustelidae, Prionodontidae, Procyonidae, Ursidae, and Viverridae. The second objective was achieved with the use of archival serum samples made available by six zoo facilities. RESULTS: Risk perception varied across facilities for every family, including among species belonging to Canidae. All facilities used monthly heartworm prevention in canids and felids, with more variation existing in the other families. The use of diagnostic testing and type and route of administration of preventive varied by facility, with oral ivermectin the most commonly used preventive. A total of 217 archival serum samples, belonging to 211 individual animals encompassing 11 families and 39 species, were tested with a commercial heartworm antigen ELISA test, pre- and post-immune-complex dissociation. A subset of samples was also assessed for the presence of feline anti-heartworm antibodies using a commercial ELISA test. Two animals, both of which were Asian small-clawed otters from the same facility, had antigen detected (0.95%). CONCLUSIONS: This study demonstrates that while the zoo veterinary community is aware of the risk and health impact of heartworm disease in canids and felids, there is still a great deal of uncertainty regarding the risks and ideal strategies for prevention in other carnivore families. The low proportion of antigen detection may serve as a baseline for future prevalence studies across the southern United States, where there is an emerging concern of macrocyclic lactone resistance in heartworm.


Assuntos
Canidae , Dirofilaria immitis , Dirofilariose , Doenças do Cão , Hyaenidae , Mustelidae , Ursidae , Cães , Gatos , Animais , Dirofilariose/diagnóstico , Dirofilariose/epidemiologia , Dirofilariose/prevenção & controle , Texas/epidemiologia , Doenças do Cão/epidemiologia , Viverridae , Percepção
14.
Int J Biol Macromol ; 236: 123727, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36863668

RESUMO

Snakebite envenoming is a medical emergency requiring urgent and specific treatment. Unfortunately, snakebite diagnostics are scarce, time-consuming and lacking specificity. Hence, this study aimed to develop a simple, quick and specific snakebite diagnostic assay using animal antibodies. Anti-venom horse immunoglobulin G (IgG) and chicken immunoglobulin Y (IgY) were produced against the venoms of four major medically important snake species in Southeast Asia, i.e., the Monocled Cobra (Naja kaouthia), Malayan Krait (Bungarus candidus), Malayan Pit Viper (Calloselasma rhodostoma), and White-lipped Green Pit Viper (Trimeresurus albolabris). Different capture:detection configurations of double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) were constructed using both immunoglobulins, and the horse IgG:IgG-HRP configuration was found to be most selective and sensitive in detecting the corresponding venoms. The method was further streamlined to develop a rapid immunodetection assay, which is able to produce a visual color change within 30 min for discrimination between different snake species. The study shows it is feasible to develop a simple, quick and specific immunodiagnostic assay using horse IgG, which can be derived directly from antisera prepared for antivenom production. The proof-of-concept indicates it is a sustainable and affordable approach in keeping with on-going antivenom manufacturing activities for specific species in the region.


Assuntos
Mordeduras de Serpentes , Trimeresurus , Cavalos , Animais , Mordeduras de Serpentes/diagnóstico , Mordeduras de Serpentes/terapia , Antivenenos , Peçonhas , Sudeste Asiático , Imunoglobulina G , Bungarus
15.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36768923

RESUMO

Combining adaptive and innate immunity induction modes, the repertoire of immunoglobulin M (IgM) can reflect changes in the internal environment including malignancies. Previously, it was shown that a mimotope library reflecting the public IgM repertoire of healthy donors (IgM IgOme) can be mined for efficient probes of tumor biomarker antibody reactivities. To better explore the interpretability of this approach for IgM, solid tumor-related profiles of IgM reactivities to linear epitopes of actual tumor antigens and viral epitopes were studied. The probes were designed as oriented planar microarrays of 4526 peptide sequences (as overlapping 15-mers) derived from 24 tumor-associated antigens and 209 cancer-related B cell epitopes from 30 viral antigens. The IgM reactivity in sera from 21 patients with glioblastoma multiforme, brain metastases of other tumors, and non-tumor-bearing neurosurgery patients was thus probed in a proof-of-principle study. A graph representation of the binding data was developed, which mapped the cross-reactivity of the mixture of IgM (poly)specificities, delineating different antibody footprints in the features of the graph-neighborhoods and cliques. The reactivity graph mapped the major features of the IgM repertoire such as the magnitude of the reactivity (titer) and major cross-reactivities, which correlated with blood group reactivity, non-self recognition, and even idiotypic specificities. A correlation between an aspect of this image of the IgM IgOme, namely, small cliques reflecting rare self-reactivities and the capacity of subsets of the epitopes to separate the diagnostic groups studied was found. In this way, the graph representation helped the feature selection in its filtering step and provided reduced feature sets, which, after recursive feature elimination, produced a classifier containing 51 peptide reactivities separating the three diagnostic groups with an unexpected efficiency. Thus, IgM IgOme approaches to repertoire studies is greatly augmented when self/viral antigens are used and the data are represented as a reactivity graph. This approach is most general, and if it is applicable to tumors in immunologically privileged sites, it can be applied to any solid tumors, for instance, breast or lung cancer.


Assuntos
Biomarcadores Tumorais , Neoplasias , Humanos , Imunoglobulina M , Autoantígenos , Peptídeos , Epitopos , Antígenos Virais , Neoplasias/diagnóstico
16.
Artigo em Inglês | MEDLINE | ID: mdl-36767890

RESUMO

Dermatitis herpetiformis (Duhring's disease, DH) is a chronic blistering cutaneous condition with pruritic polymorphic lesions, consisting of vesicles, papules or nodules and erythema, found predominantly on the extensor surfaces of the limbs, buttocks, and neck. Diagnosis is based on characteristic clinical and immunopathological findings. Oral manifestations of DH have rarely been described. The aim of the study was to evaluate IgA, IgG, IgM and C3 complement deposits in the oral mucosa in DH patients. Direct immunofluorescence (DIF) was performed on the oral mucosa specimens collected from 10 DH patients. Biopsy was taken in a local anesthesia from perilesional site from the buccal mucosa and then preserved in a standard procedure using polyclonal rabbit IgG, IgA, IgM and C3 antibodies. Granular IgA and C3 deposits were found in 6 patients (60%), and in 3 subjects (30%) the result was indeterminate. Significant fluorescence of the deposits along the basement membrane was observed in 2 patients, moderate fluorescence in 3 patients, and in 4 cases the result was indeterminate. C3 deposits were found in 5 subjects (50%), 3 of them being moderate and 2 indeterminate. No IgM and IgG deposits were detected in the collected buccal mucosa specimens.


Assuntos
Dermatite Herpetiforme , Humanos , Dermatite Herpetiforme/diagnóstico , Dermatite Herpetiforme/patologia , Mucosa Bucal/patologia , Imunoglobulina A , Eritema , Imunoglobulina G
17.
Microbiol Spectr ; : e0245722, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36719206

RESUMO

Since its emergence in late 2019, the coronavirus disease 2019 (COVID-19) pandemic has caused severe disruption to key aspects of human life globally and highlighted the need for timely, adaptive, and accessible pandemic response strategies. Here, we introduce the cell-free dot blot (CFDB) method, a practical and ultra-low-cost immune diagnostic platform capable of rapid response and mass immunity screening for the current and future pandemics. Similar in mechanism to the widely used enzyme-linked immunosorbent assays (ELISAs), our method is novel and advantageous in that (i) it uses linear DNA to produce the target viral antigen fused to a SpyTag peptide in a cell-free expression system without the need for traditional cloning and antigen purification, (ii) it uses SpyCatcher2-Apex2, an Escherichia coli-produced peroxidase conjugate as a universal secondary detection reagent, obviating the need for commercial or sophisticated enzyme conjugates, and (iii) sera are spotted directly on a nitrocellulose membrane, enabling a simple "dipping" mechanism for downstream incubation and washing steps, as opposed to individual processing of wells in a multiwell plate. To demonstrate the utility of our method, we performed CFDB to detect anti-severe acute respiratory syndrome coronavirus 2 nucleocapsid protein antibodies in precharacterized human sera (23 negative and 36 positive for COVID-19) and hamster sera (16 negative and 36 positive for COVID-19), including independent testing at a collaborating laboratory, and we show assay performance comparable to that of conventional ELISAs. At a similar capacity to 96-well plate ELISA kits, one CFDB assay costs only ~$3 USD. We believe that CFDB can become a valuable pandemic response tool for adaptive and accessible sero-surveillance in human and animal populations. IMPORTANCE The recent COVID-19 pandemic has highlighted the need for diagnostic platforms that are rapidly adaptable, affordable, and accessible globally, especially for low-resource settings. To address this need, we describe the development and functional validation of a novel immunoassay technique termed the cell-free dot blot (CFDB) method. Based on the principles of cell-free synthetic biology and alternative dot blotting procedures, our CFDB immunoassay is designed to provide for timely, practical, and low-cost responses to existing and emerging public health threats, such as the COVID-19 pandemic, at a similar throughput and comparable performance as conventional ELISAs. Notably, the molecular detection reagents used in CFDB can be produced rapidly in-house, using established protocols and basic laboratory infrastructure, minimizing reliance on strained commercial reagents. In addition, the materials and imaging instruments required for CFDB are the same as those used for common Western blotting experiments, further expanding the reach of CFDB in decentralized facilities.

18.
Micromachines (Basel) ; 13(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36557516

RESUMO

The targeted delivery of cancer immunotherapies has increased noticeably in recent years. Recent advancements in immunotherapy, particularly in blocking the immune checkpoints (ICs) axis, have shown favorable treatment outcomes for multiple types of cancer including melanoma and non-small-cell lung cancer (NSLC). Engineered micromachines, including microparticles, and nanoplatforms (organic and inorganic), functionalized with immune agonists can effectively deliver immune-targeting molecules to solid tumors. This review focuses on the nanomaterial-based strategies that have shown promise in identifying and targeting various immunological markers in the tumor microenvironment (TME) for cancer diagnosis and therapy. Nanomaterials-based cancer immunotherapy has improved treatment outcomes by triggering an immune response in the TME. Evaluating the expression levels of ICs in the TME also could potentially aid in diagnosing patients who would respond to IC blockade therapy. Detecting immunological checkpoints in the TME using noninvasive imaging systems via tailored nanosensors improves the identification of patient outcomes in immuno-oncology (IO). To enhance patient-specific analysis, lab-on-chip (LOC) technology is a rapid, cost-effective, and accurate way of recapitulating the TME. Such novel nanomaterial-based technologies have been of great interest for testing immunotherapies and assessing biomarkers. Finally, we provide a perspective on the developments in artificial intelligence tools to facilitate ICs-based nano theranostics toward cancer immunotherapy.

19.
J Clin Microbiol ; 60(10): e0112822, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36190260

RESUMO

Establishing diagnosis of latent and active histoplasmosis is challenging. Interferon gamma-release assays (IGRAs) may provide evidence of latent and active infection. An enzyme-linked immunospot (ELISpot) assay was developed using yeast cell lysate (YCL) antigen prepared from a representative North American Histoplasma capsulatum strain. Assay parameters were optimized by measuring responses in healthy volunteers with and without Histoplasma infection. Assay performance as an aid for diagnosing histoplasmosis was assessed in a prospective cohort of 88 people with suspected or confirmed infection, and 44 healthy controls enrolled in two centers in North America (2013 to 2018). Antigen specificity of IFN-γ release was demonstrated using ELISpot and enzyme-linked immunosorbent assay (ELISA). Antigen-evoked, single-cell mRNA expression by memory T cells was shown using flow cytometry. The area under the receiver operating characteristic curve (AUC) was estimated at 0.89 (95% confidence interval [CI]: 78.5% to 99.9%). At optimal cutoff, sensitivity was 77.2% (95% CI: 54.6% to 92.2%) and specificity was 100% (95% CI: 89.7% to 100%). Sixteen of 44 healthy volunteers (36.4%) from a region of hyperendemicity had positive responses, suggesting detection of previously unrecognized (latent) infection. The ELISpot assay is sensitive and specific as an aid to diagnose H. capsulatum infection and disease, supporting proof of concept and further development.


Assuntos
Histoplasmose , Testes de Liberação de Interferon-gama , Humanos , Histoplasmose/diagnóstico , Interferon gama , Estudos Prospectivos , ELISPOT , Antígenos de Fungos , Ensaio de Imunoadsorção Enzimática , RNA Mensageiro , Sensibilidade e Especificidade
20.
Vaccines (Basel) ; 10(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36016088

RESUMO

The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has severely impacted human health and the health management system globally. The ongoing pandemic has required the development of more effective diagnostic strategies for restricting deadly disease. For appropriate disease management, accurate and rapid screening and isolation of the affected population is an efficient means of containment and the decimation of the disease. Therefore, considerable efforts are being directed toward the development of rapid and robust diagnostic techniques for respiratory infections, including SARS-CoV-2. In this article, we have summarized the origin, transmission, and various diagnostic techniques utilized for the detection of the SARS-CoV-2 virus. These higher-end techniques can also detect the virus copy number in asymptomatic samples. Furthermore, emerging rapid, cost-effective, and point-of-care diagnostic devices capable of large-scale population screening for COVID-19 are discussed. Finally, some breakthrough developments based on spectroscopic diagnosis that could revolutionize the field of rapid diagnosis are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA