Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 289
Filtrar
1.
J Leukoc Biol ; 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970506

RESUMO

In the era of personalized cancer treatment, understanding the complexities of tumor biology and immune modulation is paramount. This comprehensive analysis delves into the multifaceted role of Zinc Finger Protein 207 (ZNF207) in pan-cancer, shedding light on its involvement in tumorigenesis, immune evasion, and therapeutic implications. Through integrated genomic and clinical data analysis, we reveal consistent upregulation of ZNF207 across diverse cancer types, highlighting its potential as a prognostic marker and therapeutic target, particularly for liver cancers. Notably, ZNF207 demonstrates intricate associations with clinical-pathological features, immune subtypes, and molecular pathways, indicating its pervasive influence in cancer biology. Furthermore, our study uncovers ZNF207's involvement in immune escape mechanisms, suggesting its potential as a modulator of immune responses within the tumor microenvironment. These findings underscore the significance of ZNF207 in shaping cancer progression and immune landscape, presenting promising avenues for targeted therapy and immunomodulation. Recognizing ZNF207's multifaceted contributions to cancer progression and immune evasion suggests its central role in understanding tumor immunology, beyond mere therapeutic targeting. Nevertheless, further mechanistic studies are imperative to elucidate ZNF207's precise molecular mechanisms and therapeutic implications in cancer treatment. This study primarily utilized various bioinformatics tools such as TIMER 2.0, cProSite, UALCAN, SangerBox, GEPIA2, TISIDB and TIDE to analyze the expression of ZNF207 in multiple cancer samples from the TCGA database.

2.
Int Immunopharmacol ; 138: 112609, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971103

RESUMO

T-cell-engaging bispecific antibody (TCB) therapies have emerged as a promising immunotherapeutic approach, effectively redirecting effector T cells to selectively eliminate tumor cells. The therapeutic potential of TCBs has been well recognized, particularly with the approval of multiple TCBs in recent years for the treatment of hematologic malignancies as well as some solid tumors. However, TCBs encounter multiple challenges in treating solid tumors, such as on-target off-tumor toxicity, cytokine release syndrome (CRS), and T cell dysfunction within the immunosuppressive tumor microenvironment, all of which may impact their therapeutic efficacy. In this review, we summarize clinical data on TCBs for solid tumor treatment, highlight the challenges faced, and discuss potential solutions based on emerging strategies from current clinical and preclinical research. These solutions include TCB structural optimization, target selection, and combination strategies. This comprehensive analysis aims to guide the development of TCBs from design to clinical application, addressing the evolving landscape of cancer immunotherapy.

3.
Explor Target Antitumor Ther ; 5(3): 699-713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966176

RESUMO

Primary effusion lymphoma (PEL) is a large B-cell neoplasm usually presenting as a serious effusion in body cavities without detectable tumor masses. It is an AIDS-related non-Hodgkin's lymphoma (HL) with human herpes virus 8 (HHV8)/Kaposi sarcoma-associated herpes virus (KSHV) infection. A combination antiretroviral therapy (cART) prolongs the lifespan of AIDS and AIDS-related malignant lymphoma patients, but PEL continues to have a dismal prognosis. PEL showed disappointing outcomes with standard chemotherapy such as CHOP or CHOP-like regimens. A PEL status highlights the urgent need for new therapeutic approaches and treatment strategies and improve clinical outcomes. This review discusses the current knowledge and some recent clinical trials for PEL in the platform of immunotherapy as well as promising future immunotherapeutic approaches for PEL.

4.
Pharmgenomics Pers Med ; 17: 319-336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952778

RESUMO

Background: Lung cancer is the leading cause of cancer deaths worldwide, primarily due to lung adenocarcinoma (LUAD). However, the heterogeneity of programmed cell death results in varied prognostic and predictive outcomes. This study aimed to develop an LUAD evaluation marker based on cuproptosis-related lncRNAs. Methods: First, transcriptome data and clinical data related to LUAD were downloaded from the Cancer Genome Atlas (TCGA), and cuproptosis-related genes were analyzed to identify cuproptosis-related lncRNAs. Univariate, LASSO, and multivariate Cox regression analyses were conducted to construct cuproptosis-associated lncRNA models. LUAD patients were categorized into high-risk and low-risk groups using prognostic risk values. Kaplan-Meier analysis, PCA, GSEA, and nomograms were employed to evaluate and validate the results. Results: 7 cuproptosis-related lncRNAs were identified, and a risk model was created. High-risk tumors exhibited cuproptosis-related gene alterations in 95.54% of cases, while low-risk tumors showed alterations in 85.65% of cases, mainly involving TP53. The risk value outperformed other clinical variables and tumor mutation burden as a predictor of 1-, 3-, and 5-year overall survival. The cuproptosis-related lncRNA-based risk model demonstrated high validity for LUAD evaluation, potentially influencing individualized treatment approaches. Expression analysis of four candidate cuproptosis-related lncRNAs (AL606834.1, AL161431.1, AC007613.1, and LINC02835) in LUAD tissues and adjacent normal tissues revealed significantly higher expression levels of AL606834.1 and AL161431.1 in LUAD tissues, positively correlating with tumor stage, lymph node metastasis, and histopathological grade. Conversely, AC007613.1 and LINC02835 exhibited lower expression levels, negatively correlating with these factors. High expression of AL606834.1 and AL161431.1 indicated poor prognosis, while low expression of AC007613.1 and LINC02835 was associated with unfavorable outcomes. Univariate and multivariate analyses confirmed these lncRNAs as independent risk factors for LUAD prognosis. Conclusion: The 4 cuproptosis-related (lncRNAsAL606834.1, AL161431.1, AC007613.1, and LINC02835) can accurately predict the prognosis of patients with LUAD and may provide new insights into clinical applications and immunotherapy.

5.
Biomed Pharmacother ; 177: 117063, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38968800

RESUMO

Off-targeting toxicity and immunosuppressive tumor microenvironment still restrict the therapeutic requirement of photodynamic therapy (PDT). The development of metal ion-coordination-based nanoparticles (NPs) for cancer therapy has advantages, such as precious nanostructure and potent therapeutic effect as well as great safety. In this study, we prepared calcium ions (Ca2+)-coordination photosensitizer NPs, based on Ca2+-pyrochloric acid (PPA)-coordination as the new photosensitive nanoamplifiers, and microneedles (MNs) as the personalized apparatus, and investigated the nanoamplifiers for treating the melanoma via transdermal administration. This nanoamplifiers was synthesized via a simple coordination of Ca2+ and PPA with the addition of bovine serum albumin (BSA), and further fabricated into MNs (nanoamplifiers@MNs). Following inserted into the tumor, the released nanoamplifiers from the tips and back layer exhibited great photodynamic activity under irradiation, inducing cancer cell death. Meanwhile, Ca2+ acted as the second messenger, promoting M1 polarization of macrophages and maturation of dendritic cells (DCs), thereby enhancing the immune activation effect in the tumor microenvironment. As a result, such nanoamplifiers effectively achieved significant efficacy against malignant melanoma tumors by synergistically tumor killing and potent anti-tumor immune activation without obviously side effect. This work demonstrated the potential of MNs-mediated metal ion-coordination-based nanoamplifier as a novel photodynamic therapeutic platform for the efficient and safe treatment of cancer.

6.
J Cancer ; 15(12): 3890-3902, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911384

RESUMO

Skin cutaneous melanoma (SKCM) is a highly malignant tumor that is prone to immune escape and distant metastasis. Immunotherapy is considered to be the best treatment for patients with SKCM. However, not all patients benefit from it. We observed a significant differential expression of the lncRNA CYTOR in patients with SKCM based on single-cell and bulk RNA sequencing data mining results. The results showed that compared to normal tissue lncRNA CYTOR expression was significantly upregulated in SKCM tissue. Subsequently, we validated this finding in clinical samples, and we also found that the expression of lncRNA CYTOR in SKCM was higher as it progressed. lncRNA CYTOR was differentially expressed in patients who responded to immunotherapy, suggesting that it may serve as a biomarker to predict the efficacy of SKCM immunotherapy. In-depth analysis revealed that lncRNA CYTOR expression was strongly correlated with immune cell infiltration, immune response, and immune checkpoint expression. Meanwhile, our experiments revealed that CYTOR affects SKCM cell invasion and clone formation and is associated with the activation of the EMT pathway. In summary, our findings illustrate, for the first time, the value of CYTOR as a potential prognostic and immunotherapeutic response marker in SKCM.

7.
Nano Lett ; 24(25): 7629-7636, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38874796

RESUMO

Vaccination for cancers arising from human papillomavirus (HPV) infection holds immense potential, yet clinical success has been elusive. Herein, we describe vaccination studies involving spherical nucleic acids (SNAs) incorporating a CpG adjuvant and a peptide antigen (E711-19) from the HPV-E7 oncoprotein. Administering the vaccine to humanized mice induced immunity-dependent on the oligonucleotide anchor chemistry (cholesterol vs (C12)9). SNAs containing a (C12)9-anchor enhanced IFN-γ production >200-fold, doubled memory CD8+ T-cell formation, and delivered more than twice the amount of oligonucleotide to lymph nodes in vivo compared to a simple admixture. Importantly, the analogous construct with a weaker cholesterol anchor performed similar to admix. Moreover, (C12)9-SNAs activated 50% more dendritic cells and generated T-cells cytotoxic toward an HPV+ cancer cell line, UM-SCC-104, with near 2-fold greater efficiency. These observations highlight the pivotal role of structural design, and specifically oligonucleotide anchoring strength (which correlates with overall construct stability), in developing efficacious therapeutic vaccines.


Assuntos
Vacinas Anticâncer , Proteínas E7 de Papillomavirus , Animais , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/química , Vacinas Anticâncer/administração & dosagem , Camundongos , Proteínas E7 de Papillomavirus/imunologia , Proteínas E7 de Papillomavirus/química , Humanos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/imunologia , Ácidos Nucleicos/química , Ácidos Nucleicos/imunologia , DNA/química , DNA/imunologia
8.
Cell Stem Cell ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38925125

RESUMO

Cancer stem cells (CSCs) are heterogeneous, possess self-renewal attributes, and orchestrate important crosstalk in tumors. We propose that the CSC state represents "mimicry" by cancer cells that leads to phenotypic plasticity. CSC mimicry is suggested as CSCs can impersonate immune cells, vasculo-endothelia, or lymphangiogenic cells to support cancer growth. CSCs facilitate both paracrine and juxtracrine signaling to prime tumor-associated immune and stromal cells to adopt pro-tumoral phenotypes, driving therapeutic resistance. Here, we outline the ingenuity of CSCs' mimicry in their quest to evade immune detection, which leads to immunotherapeutic resistance, and highlight CSC-mimicry-targeted therapeutic strategies for robust immunotherapy.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38834774

RESUMO

BACKGROUND: Adhesion G protein-coupled receptors (aGPCRs), a distinctive subset of the G protein-coupled receptor (GPCR) superfamily, play crucial roles in various physiological and pathological processes, with implications in tumor development. Despite the global prevalence of breast cancer (BRCA), specific aGPCRs as potential drug targets or biomarkers remain underexplored. METHODS: UALCAN, GEPIA, Kaplan-Meier Plotter, MethSurv, cBiopportal, String, GeneMANIA, DAVID, Timer, Metascape, and qPCR were applied in this work. RESULTS: Our analysis revealed significantly increased transcriptional levels of ADGRB2, ADGRC1, ADGRC2, ADGRC3, ADGRE1, ADGRF2, ADGRF4, and ADGRL1 in BRCA primary tumors. Further analysis indicated a significant correlation between the expressions of certain aGPCRs and the pathological stage of BRCA. High expression of ADGRA1, ADGRF2, ADGRF4, ADGRG1, ADGRG2, ADGRG4, ADGRG6, and ADGRG7 was significantly correlated with poor overall survival (OS) in BRCA patients. Additionally, high expression of ADGRF2 and ADGRF4 indicated inferior recurrence-free survival (RFS) in BRCA patients. The RT-qPCR experiments also confirmed that the mRNA levels of ADGRF2 and ADGRF4 were higher in BRCA cells and tissues. Functional analysis highlighted the diverse roles of aGPCRs, encompassing GPCR signaling and metabolic energy reserves. Moreover, aGPCRs may exert influence or actively participate in the development of BRCA through their impact on immune status. CONCLUSION: aGPCRs, particularly ADGRF2 and ADGRF4, hold promise as immunotherapeutic targets and prognostic biomarkers in BRCA.

10.
Cancer Lett ; 596: 217018, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38844062

RESUMO

Relapse and treatment resistance pose significant challenges in the management of pediatric B cell acute lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML). The efficacy of immunotherapy in leukemia remains limited due to factors such as the immunosuppressive tumor microenvironment (TME) and lack of suitable immunotherapeutic targets. Thus, an in-depth characterization of the TME in pediatric leukemia is warranted to improve the efficacy of immunotherapy. Here, we used single-cell RNA sequencing (scRNA-seq) to characterize the TME of pediatric B-ALL and AML, focusing specifically on bone-marrow-derived T cells. Moreover, we investigated the transcriptome changes during the initiation, remission, and relapse stages of pediatric AML. Our findings revealed that specific functional expression programs correlated with fluctuations in various T cell subsets, which may be associated with AML progression and relapse. Furthermore, our analysis of cellular communication networks led to the identification of VISTA, CD244, and TIM3 as potential immunotherapeutic targets in pediatric AML. Finally, we detected elevated proportions of γδ T cells and associated functional genes in samples from pediatric patients diagnosed with B-ALL and AML, which could inform the development of novel therapeutic approaches, potentially focusing on γδ T cells.


Assuntos
Leucemia Mieloide Aguda , Análise de Célula Única , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Análise de Célula Única/métodos , Criança , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/patologia , Transcriptoma , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Perfilação da Expressão Gênica/métodos , Pré-Escolar , Masculino , Feminino , Antígenos B7/genética , Adolescente , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Regulação Leucêmica da Expressão Gênica
11.
Clin Transl Oncol ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822977

RESUMO

OBJECTIVE: This research conducted multi-index comprehensive evaluations of the immunotherapeutic efficacy and response in non-small cell lung cancer (NSCLC). METHODS: Forty-five patients with epidermal growth factor receptor (EGFR)/anaplastic lymphoma kinase (ALK) wild-type advanced NSCLC who received immunotherapy were included. Immunohistochemistry was adopted to detect the expression levels of programmed death ligand 1 (PD-L1) with X-ray cross-complementing protein 1 (XRCC1) and excision repair cross-complementing group 1 (ERCC1) proteins in tumor tissues. Flow cytometry was utilized to measure the levels of T-cell subsets in peripheral blood before and after treatment. PCR-RELP method was employed to evaluate XRCC1 and ERCC1 gene polymorphisms in peripheral blood. According to the treatment effect, patients evaluated as complete response (CR), partial response (PR), and stable disease (SD) were categorized into the immune response group, and patients evaluated as progressive disease (PD) were categorized into the immune unresponsive group. The correlation between PD-L1 protein expression, XRCC1 and ERCC1 protein expression, gene polymorphisms, T-cell subpopulation levels, and treatment efficacy was analyzed. RESULTS: The therapeutic efficacy of patients with positive PD-L1 expression was better than that of patients with negative PD-L1 expression (P < 0.05). After treatment, peripheral blood CD3+ and CD4+ cell levels and Thl/Th2 cell levels were higher and CD8+ T cells were lower in the immune response group than in the immune unresponsive group (P < 0.05). Among the patients in the immune response group, peripheral blood CD3+ and CD4+ cell levels were higher and CD8+ T cells were lower in patients with positive PD-L1 expression than in patients with negative PD-L1 expression (P < 0.05). In the XRCC1 gene, the proportion of patients in the immune response group carrying the Arg/Trp + Trp/Trp genotype was higher than that of patients in the immune unresponsive group (P < 0.05). In the ERCC1 gene, the proportion of patients in the immune response group carrying the C/T + T/T genotype was higher than that of patients in the immune unresponsive group (P < 0.05). The positive expression rates of XRCC1 and ERCC1 in patients in the immune unresponsive group were higher than those in the immune response group (P < 0.05). CONCLUSION: PD-L1 protein expression, XRCC1 and ERCC1 protein expression, and gene polymorphisms are associated with immunotherapy outcome in EGFR/ALK wild-type advanced NSCLC patients, and may be biological indicators for predicting immunotherapy outcome in EGFR/ALK wild-type advanced NSCLC patients.

12.
Biology (Basel) ; 13(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38785789

RESUMO

Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.

13.
Aging (Albany NY) ; 16(9): 7774-7798, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696324

RESUMO

BACKGROUND: Dysregulation of the immune system and N6-methyladenosine (m6A) contribute to immune therapy resistance and cancer progression in urothelial carcinoma (UC). This study aims to identify immune-related molecules, that are m6A-modified, and that are associated with tumor progression, poor prognosis, and immunotherapy response. METHODS: We identified prognostic immune genes (PIGs) using Cox analysis and random survival forest variable hunting algorithm (RSF-VH) on immune genes retrieved from the Immunology Database and Analysis Portal database (ImmPort). The RM2Target database and MeRIP-seq analysis, combined with a hypergeometric test, assessed m6A methylation in these PIGs. We analyzed the correlation between the immune pattern and prognosis, as well as their association with clinical factors in multiple datasets. Moreover, we explored the interplay between immune patterns, tumor immune cell infiltration, and m6A regulators. RESULTS: 28 PIGs were identified, of which the 10 most significant were termed methylated prognostic immune genes (MPIGs). These MPIGs were used to create an immune pattern score. Kaplan-Meier and Cox analyses indicated this pattern as an independent risk factor for UC. We observed significant associations between the immune pattern, tumor progression, and immune cell infiltration. Differential expression analysis showed correlations with m6A regulators expression. This immune pattern proved effective in predicting immunotherapy response in UC in real-world settings. CONCLUSION: The study identified a m6A-modified immune pattern in UC, offering prognostic and therapeutic response predictions. This emphasizes that immune genes may influence tumor immune status and progression through m6A modifications.


Assuntos
Adenosina , Imunoterapia , Humanos , Adenosina/análogos & derivados , Prognóstico , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Carcinoma de Células de Transição/imunologia , Carcinoma de Células de Transição/genética , Carcinoma de Células de Transição/tratamento farmacológico , Carcinoma de Células de Transição/mortalidade , Carcinoma de Células de Transição/patologia , Carcinoma de Células de Transição/terapia
14.
J Med Virol ; 96(5): e29678, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38751128

RESUMO

Death due to severe influenza is usually a fatal complication of a dysregulated immune response more than the acute virulence of an infectious agent. Although spleen tyrosine kinase (SYK) as a critical immune signaling molecule and therapeutic target plays roles in airway inflammation and acute lung injury, the role of SYK in influenza virus infection is not clear. Here, we investigated the antiviral and anti-inflammatory effects of SYK inhibitor R406 on influenza infection through a coculture model of human alveolar epithelial (A549) and macrophage (THP-1) cell lines and mouse model. The results showed that R406 treatment increased the viability of A549 and decreased the pathogenicity and mortality of lethal influenza virus in mice with influenza A infection, decreased levels of intracellular signaling molecules under the condition of inflammation during influenza virus infection. Combination therapy with oseltamivir further ameliorated histopathological damage in the lungs of mice and further delayed the initial time to death compared with R406 treatment alone. This study demonstrated that phosphorylation of SYK is involved in the pathogenesis of influenza, and R406 has antiviral and anti-inflammatory effects on the treatment of the disease, which may be realized through multiple pathways, including the already reported SYK/STAT/IFNs-mediated antiviral pathway, as well as TNF-α/SYK- and SYK/Akt-based immunomodulation pathway.


Assuntos
Anti-Inflamatórios , Antivirais , Modelos Animais de Doenças , Infecções por Orthomyxoviridae , Oxazinas , Quinase Syk , Animais , Humanos , Quinase Syk/antagonistas & inibidores , Camundongos , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/imunologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Oxazinas/farmacologia , Oxazinas/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Pulmão/patologia , Pulmão/virologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Células A549 , Vírus da Influenza A/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico , Influenza Humana/tratamento farmacológico , Influenza Humana/imunologia , Células THP-1 , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
15.
Trends Mol Med ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38763850

RESUMO

Clustered regularly interspaced palindromic repeats (CRISPR)-based technology, a powerful toolset for the unbiased functional genomic screening of biological processes, has facilitated several scientific breakthroughs in the biomedical field. Cancer immunotherapy has advanced the treatment of numerous malignancies that previously had restricted treatment options or unfavorable outcomes. In the realm of cancer immunotherapy, the application of CRISPR/CRISPR-associated protein 9 (Cas9)-based genetic perturbation screening has enabled the identification of genes, biomarkers, and signaling pathways that govern various cancer immunoreactivities, as well as the development of effective immunotherapeutic targets. In this review, we summarize the advances in CRISPR/Cas9-based screening for cancer immunotherapy and outline the immunotherapeutic targets identified via CRISPR screening based on cancer-type classification.

17.
Vaccines (Basel) ; 12(4)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38675740

RESUMO

Multi-drug-resistant (MDR) Acinetobacter baumannii is an opportunistic pathogen associated with hospital-acquired infections. Due to its environmental persistence, virulence, and limited treatment options, this organism causes both increased patient mortality and incurred healthcare costs. Thus, prophylactic vaccination could be ideal for intervention against MDR Acinetobacter infection in susceptible populations. In this study, we employed immunoinformatics to identify peptides containing both putative B- and T-cell epitopes from proteins associated with A. baumannii pathogenesis. A novel Acinetobacter Multi-Epitope Vaccine (AMEV2) was constructed using an A. baumannii thioredoxin A (TrxA) leading protein sequence followed by five identified peptide antigens. Antisera from A. baumannii infected mice demonstrated reactivity to rAMEV2, and subcutaneous immunization of mice with rAMEV2 produced high antibody titer against the construct as well as peptide components. Immunization results in increased frequency of IL-4-secreting splenocytes indicative of a Th2 response. AMEV2-immunized mice were protected against intranasal challenge with a hypervirulent strain of A. baumannii and demonstrated reduced bacterial burden at 48 h. In contrast, all mock vaccinated mice succumbed to infection within 3 days. Results presented here provide insight into the effectiveness of immunoinformatic-based vaccine design and its potential as an effective strategy to combat the rise of MDR pathogens.

18.
J Cell Mol Med ; 28(8): e18304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38652093

RESUMO

Liver hepatocellular carcinoma (LIHC) is a significant global health issue with limited treatment options. In this study, single-cell RNA sequencing (scRNA-seq) data were used to explore the molecular mechanisms of LIHC development and identify potential targets for therapy. The expression of peroxisome proliferator-activated receptors (PPAR)-related genes was analysed in LIHC samples, and primary cell populations, including natural killer cells, T cells, B cells, myeloid cells, endothelial cells, fibroblasts and hepatocytes, were identified. Analysis of the differentially expressed genes (DEGs) between normal and tumour tissues revealed significant changes in gene expression in various cell populations. PPAR activity was evaluated using the 'AUCell' R software, which indicated higher scores in the normal versus the malignant hepatocytes. Furthermore, the DEGs showed significant enrichment of pathways related to lipid and glucose metabolism, cell development, differentiation and inflammation. A prognostic model was then constructed using 8 PPARs-related genes, including FABP5, LPL, ACAA1, PPARD, FABP4, PLIN1, HMGCS2 and CYP7A1, identified using least absolute shrinkage and selection operator-Cox regression analysis, and validated in the TCGA-LIHC, ICGI-LIRI and GSE14520 datasets. Patients with low-risk scores had better prognosis in all cohorts. Based on the expression of the eight model genes, two clusters of patients were identified by ConsensusCluster analysis. We also predicted small-molecule drugs targeting the model genes, and identified perfluorohexanesulfonic acid, triflumizole and perfluorononanoic acid as potential candidates. Finally, wound healing assay confirmed that PPARD can promote the migration of liver cancer cells. Overall, our study offers novel perspectives on the molecular mechanisms of LIHC and potential areas for therapeutic intervention, which may facilitate the development of more effective treatment regimens.


Assuntos
Carcinoma Hepatocelular , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Simulação de Acoplamento Molecular , Receptores Ativados por Proliferador de Peroxissomo , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Prognóstico , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/genética , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
19.
Braz J Otorhinolaryngol ; 90(4): 101411, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663041

RESUMO

OBJECTIVES: The role of Epoxide Hydrolase-4 (EPHX4), a member of epoxide hydrolase family, has not been investigated in cancer. The purpose of this article is to explore the application value of EPHX4 in laryngeal cancer and its relationship with immune infiltration. METHODS: We observed that EPHX4 expression and its survival assays in laryngeal cancer specimens based on The Cancer Genome Atlas (TCGA) cohorts. We also analyzed the correlation between immune cell infiltration levels and EPHX4 gene copy number in laryngeal cancer. Finally, we conducted in vitro assay to evaluate the functions of EPHX4 in laryngeal cancer cell line. RESULTS: EPHX4 is highly expressed in laryngeal cancer specimens and has a poor prognosis. EPHX4 related immune cell analysis showed that it participated in NK Natural killer cell mediated cytotoxicity. Finally, Cell experiments indicate that EPHX4 could promote laryngeal cancer cell line proliferation, colony formation and invasion. CONCLUSIONS: Our research results suggest that EPHX4 may be a potential immunotherapy target for laryngeal cancer. The nominated immune signature is a helpful and promising prognostic indicator in laryngeal cancer. LEVELS OF EVIDENCE: Level 3.

20.
Apoptosis ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578322

RESUMO

BACKGROUND: Breast cancer (BC) exhibits remarkable heterogeneity. However, the transcriptomic heterogeneity of BC at the single-cell level has not been fully elucidated. METHODS: We acquired BC samples from 14 patients. Single-cell RNA sequencing (scRNA-seq), bioinformatic analyses, along with immunohistochemistry (IHC) and immunofluorescence (IF) assays were carried out. RESULTS: According to the scRNA-seq results, 10 different cell types were identified. We found that Cancer-Associated Fibroblasts (CAFs) exhibited distinct biological functions and may promote resistance to therapy. Metabolic analysis of tumor cells revealed heterogeneity in glycolysis, gluconeogenesis, and fatty acid synthetase reprogramming, which led to chemotherapy resistance. Furthermore, patients with multiple metastases and progression were predicted to benefit from immunotherapy based on a heterogeneity analysis of T cells and tumor cells. CONCLUSIONS: Our findings provide a comprehensive understanding of the heterogeneity of BC, provide comprehensive insight into the correlation between cancer metabolism and chemotherapy resistance, and enable the prediction of immunotherapy responses based on T-cell heterogeneity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...