Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.870
Filtrar
1.
Mol Cell Biochem ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39112808

RESUMO

Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous obstructive diseases characterized by airflow limitations and are recognized as significant contributors to fatality all over the globe. Asthma accounts for about 4, 55,000 deaths, and COPD is the 3rd leading contributor of mortality worldwide. The pathogenesis of these two obstructive disorders is complex and involves numerous mechanistic pathways, including inflammation-mediated and non-inflammation-mediated pathways. Among all the pathological categorizations, programmed cell deaths (PCDs) play a dominating role in the progression of these obstructive diseases. The two major PCDs that are involved in structural and functional remodeling in the progression of asthma and COPD are Pyroptosis and Ferroptosis. Pyroptosis is a PCD mechanism mediated by the activation of the Nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome, leading to the maturation and release of Interleukin-1ß and Interleukin-18, whereas ferroptosis is a lipid peroxidation-associated cell death. In this review, the major molecular pathways contributing to these multifaceted cell deaths have been discussed, and crosstalk among them regarding the pathogenesis of asthma and COPD has been highlighted. Further, the possible therapeutic approaches that can be utilized to mitigate both cell deaths at once have also been illustrated.

2.
Pediatr Pulmonol ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115441

RESUMO

OBJECTIVES: Bronchopulmonary dysplasia (BPD), the most common late morbidity in preterm infants, is characterized by impaired alveolar development caused by persistent lung inflammation. Studies have shown that NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome-mediated inflammation is critically involved in the development of BPD. As a traditional Chinese medicinal herb, Eclipta prostrata (EAP) exhibits potent anti-inflammatory properties. Our study aims to investigate whether EAP could improve the lung development of BPD by suppressing the lung inflammatory response. METHODS: The BPD rat model was established by intra-amniotic injection of lipopolysaccharide (LPS) and postnatal exposure to hyperoxia. Changes in the NLRP3 inflammasome and pyroptosis were assessed by treatment with EAP. The effect of EAP on the NLRP3 inflammasome was tested in vitro using the THP-1 cell line and primary alveolar macrophages. Proteomics analysis was used to elucidate the mechanism of action of EAP. RESULTS: Histopathological and immunofluorescence results of lung tissues revealed that LPS and hyperoxia induced lung injury and triggered NLRP3 inflammasome activation and pyroptosis in alveolar macrophages. EAP ameliorated BPD lung injury, inhibited NLRP3 inflammasome activation and reduced gasdermin D (GSDMD) expression in alveolar macrophages. EAP downregulated the expression of NLRP3 inflammasome pathway molecules (NLRP3, caspase-1, and IL-1ß) and GSDMD in LPS-stimulated THP-1 macrophages and primary alveolar macrophages. In addition, proteomics analysis identified that dihydrolipoamide dehydrogenase (DLD) interacted with EAP. Inhibition of DLD activity abolished the protective effects of EAP. CONCLUSIONS: Our study suggested that EAP could attenuate arrest of alveolar development via inhibiting NLRP3 inflammasome in a DLD-dependent way, and could be a potential therapeutic method for BPD.

3.
J Adv Res ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39103049

RESUMO

INTRODUCTION: Osteoarthritis (OA) is a highly prevalent degenerative disease worldwide, and tumor necrosis factor (TNF-α) is closely associated with its development. Growth differentiation factor 11 (GDF11) has demonstrated anti-injury and anti-aging abilities in certain tissues; however, its regulatory role in OA remains unclear and requires further investigation. OBJECTIVES: To identify whether GDF11 can attenuate osteoarthritis. To exploring the the potential mechanism of GDF11 in alleviating osteoarthritis. METHODS: In this study, we cultured and stimulated mouse primary chondrocytes with or without TNF-α, analyzing the resulting damage phenotype through microarray analysis. Additionally, we employed GDF11 conditional knockout mice OA model to examine the relationship between GDF11 and OA. To investigate the target of GDF11's function, we utilized NLRP3 knockout mice and its inhibitor to verify the potential involvement of the NLRP3 inflammasome. RESULTS: Our in vitro experiments demonstrated that endogenous overexpression of GDF11 significantly inhibited TNF-α-induced cartilage matrix degradation and inflammatory expression in chondrocytes. Furthermore, loss of GDF11 led to NLRP3 inflammasome activation, inflammation, and metabolic dysfunction. In an in vivo surgically induced mouse model, intraarticular administration of recombinant human GDF11 alleviated OA pathogenesis, whereas GDF11 conditional knockout reversed this effect. Additionally, findings from the NLRP3-knockout DMM mouse model revealed that GDF11 exerted its protective effect by inhibiting NLRP3. CONCLUSION: These findings demonstrate the ability of GDF11 to suppress TNF-α-induced inflammation and cartilage degeneration by preventing mitochondrial dysfunction and inhibiting NLRP3 inflammasome activation, suggesting its potential as a promising therapeutic drug for osteoarthritis.

4.
Curr Eye Res ; : 1-10, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39104014

RESUMO

PURPOSE: Diabetic retinopathy (DR) is one of the most severe and common complications caused by diabetic mellites. Inhibiting NLRP3 inflammasome activation displays a crucial therapeutic value in DR. Studies have shown that KCNQ1OT1 plays a critical role in regulating NLRP3 inflammasome activation and participates in the pathogenesis of diabetic complications. The present study aims to explore the role, and the potential mechanism of KCNQ1OT1 in regulating the activation of NLRP3 inflammasome in DR. METHODS: qRT-PCR was used to detect the expression of KCNQ1OT1, miR-17-5p, TXNIP, NLRP3, ASC, caspase-1 and IL-1ß. Western blot was performed to detect the expression of NLRP3, ASC, caspase-1, IL-1ß and TXNIP. Immunohistochemistry and immunostaining were performed to detect the expression of caspase-1. The levels of the inflammatory cytokine IL-1ß were determined by ELISA assay. FISH was used to detect the subcellular localisation of KCNQ1OT1. Bioinformatic analysis, luciferase reporter assay and in vitro studies were performed to elucidate the mechanism of KCNQ1OT1-mediated dysfunction. RESULTS: The expression of KCNQ1OT1 and the activation of NLRP3 inflammasome were increased in experimental DR models. KCNQ1OT1 knockdown alleviated NLRP3 inflammasome-associated molecules expression. In addition, KCNQ1OT1 was found to be localized mainly in the cytoplasm of Müller cells and facilitated TXNIP expression by acting as a miR-17-5p sponge. KCNQ1OT1 promoted the activation of NLRP3 inflammasome through miR-17-5p/TXNIP axis. CONCLUSIONS: In conclusion, it was found in this study that KCNQ1OT1 promoted the activation of NLRP3 inflammasome both in vitro and in vivo, which was mediated by miR-17-5p/TXNIP axis. KCNQ1OT1 might be an effective interference target for the prevention and treatment of DR.

5.
Zhongguo Gu Shang ; 37(7): 684-8, 2024 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-39104069

RESUMO

OBJECTIVE: To investigate the changes and clinical significance of NOD like receptor protein 3 (NLRP3) inflammasomes and related factors in patients with spinal fractures complicated with acute spinal cord injury (SCI). METHODS: Eighty-six spinal fracture patients complicated with acute SCI admitted to hospital from June 2019 to March 2022 were selected as SCI group, There were 48 males and 38 females, with an average age of (43.48±6.58) years old. And 100 healthy volunteers who underwent physical examination during the same time were selected as control group, including 56 males patients and 44 females patients, with an average age of (45.13±6.43) years old. Peripheral blood mononuclear cell (PBMC) were collected, and the mRNA expressions of NLRP3 and Caspase-1 were detected. Serum was collected and the levels of interleukin (IL)- 1ß, IL-18 were detected. According to Frankel's grade, the SCI group was divided into complete injury patients and incomplete injury patients, and according to the Japanese Orthopedic Society (JOA) grade, the SCI group was divided into good prognosis group and poor prognosis group. The difference of NLRP3, Caspase-1, IL-1ß, IL-18 among groups were compared, the influencing factors for poor prognosis in SCI patients was analyzed by Logistic regression. RESULTS: The mRNA expression levels of NLRP3 (1.41±0.33) and Caspase-1 (1.44±0.35) in PBMC and the levels of IL-1ß(45.34±13.22) pg·ml-1, IL-18(40.95±8.77) pg·ml-1 in serum of SCI group were higher than those of the control group[(1.00±0.19), (1.00±0.16), (16.58±4.24) pg·ml-1, (12.57±3.68) pg·ml-1] (P<0.05). The mRNA expression levels of NLRP3(1.63±0.34) and Caspase-1 (1.67±0.27) in PBMC and the levels of IL-1ß(51.09±11.10) pg·ml-1, IL-18 (47.65±7.93) pg·ml-1 in serum of patients with complete injury in the SCI group were higher than those of patients with incomplete injury [(1.31±0.27), (1.34±0.33), (42.85±13.36) pg·ml-1, (38.05±7.48) pg·ml-1](P<0.05). The mRNA expression levels of NLRP3 (1.66±0.31) and Caspase-1 (1.72±0.31)in PBMC and the levels of IL-1ß(51.21±11.31) pg·ml-1, IL-18 (45.70±7.25) pg·ml-1 in serum, the proportion of complete injury(21 patients), and the proportion of spinal cord edema or bleeding of patients(15 patients) with poor prognosis in the SCI group were higher than those of patients with good prognosis[(1.28±0.26), (1.37±0.36), (42.79±13.25) pg·ml-1、(38.90±8.63) pg·ml-1, 5、20 cases](P<0.05). Complete injury and the mRNA expression of NLRP3 in PBMC were the influencing factors for poor prognosis in the SCI group (P<0.05). CONCLUSION: The activation of NLRP3 inflammasomes in patients with spinal fractures complicated with acute SCI is associated with worsening injury and poor prognosis, and NLRP3 expression can serve as a marker for evaluating prognosis.


Assuntos
Caspase 1 , Inflamassomos , Interleucina-18 , Interleucina-1beta , Proteína 3 que Contém Domínio de Pirina da Família NLR , Traumatismos da Medula Espinal , Fraturas da Coluna Vertebral , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Masculino , Feminino , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/sangue , Adulto , Pessoa de Meia-Idade , Interleucina-18/sangue , Interleucina-1beta/sangue , Interleucina-1beta/genética , Caspase 1/sangue , Fraturas da Coluna Vertebral/sangue , Fraturas da Coluna Vertebral/complicações , Leucócitos Mononucleares/metabolismo , Prognóstico , Relevância Clínica
6.
Front Aging Neurosci ; 16: 1388654, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109268

RESUMO

Background: Blood inflammatory biomarkers have emerged as important tools for diagnosing, assessing treatment responses, and predicting neurodegenerative diseases. This study evaluated the associations between blood inflammatory biomarkers and brain tissue volume loss in elderly people. Methods: This study included 111 participants (age 67.86 ± 8.29 years; 32 men and 79 women). A battery of the following blood inflammatory biomarkers was measured, including interleukin 1-beta (IL1ß), NACHT, LRR, and PYD domains-containing protein 3 (NLRP3), monomer Aß42 (mAß), oligomeric Aß42 (oAß), miR155, neurite outgrowth inhibitor A (nogo-A), phosphorylated tau (P-tau), and total tau (T-tau). Three-dimensional T1-weight images (3D T1WI) of all participants were prospectively obtained and segmented into gray matter and white matter to measure the gray matter volume (GMV), white matter volume (WMV), and gray-white matter boundary tissue volume (gwBTV). The association between blood biomarkers and tissue volumes was assessed using voxel-based and region-of-interest analyses. Results: GMV and gwBTV significantly decreased as the levels of IL1ß and T-tau increased, while no significant association was found between the level of P-tau and the three brain tissue volumes. Three brain tissue volumes were negatively correlated with the levels of IL1ß, P-tau, and T-tau in the hippocampus. Specifically, IL1ß and T-tau levels showed a distinct negative association with the three brain tissue volume losses in the hippocampus. In addition, gwBTV was negatively associated with the level of NLRP3. Conclusion: The observed association between brain tissue volume loss and elevated levels of IL1ß and T-tau suggests that these biomarkers in the blood may serve as potential biomarkers of cognitive impairment in elderly people. Thus, IL1ß and T-tau could be used to assess disease severity and monitor treatment response after diagnosis in elderly people who are at risk of cognitive decline.

7.
Front Endocrinol (Lausanne) ; 15: 1397301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104818

RESUMO

Diabetic nephropathy (DN), a prevalent complication of diabetes mellitus (DM), is clinically marked by progressive proteinuria and a decline in glomerular filtration rate. The etiology and pathogenesis of DN encompass a spectrum of factors, including hemodynamic alterations, inflammation, and oxidative stress, yet remain incompletely understood. The NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, a critical component of the body's innate immunity, plays a pivotal role in the pathophysiology of DN by promoting the release of inflammatory cytokines, thus contributing to the progression of this chronic inflammatory condition. Recent studies highlight the involvement of the NLRP3 inflammasome in the renal pathology associated with DN. This article delves into the activation pathways of the NLRP3 inflammasome and its pathogenic implications in DN. Additionally, it reviews the therapeutic potential of traditional Chinese medicine (TCM) in modulating the NLRP3 inflammasome, aiming to provide comprehensive insights into the pathogenesis of DN and the current advancements in TCM interventions targeting NLRP3 inflammatory vesicles. Such insights are expected to lay the groundwork for further exploration into TCM-based treatments for DN.


Assuntos
Nefropatias Diabéticas , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Inflamassomos/metabolismo , Animais , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa/métodos
8.
Cell Chem Biol ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39106869

RESUMO

The septin cytoskeleton is primarily known for roles in cell division and host defense against bacterial infection. Despite recent insights, the full breadth of roles for septins in host defense is poorly understood. In macrophages, Shigella induces pyroptosis, a pro-inflammatory form of cell death dependent upon gasdermin D (GSDMD) pores at the plasma membrane and cell surface protein ninjurin-1 (NINJ1) for membrane rupture. Here, we discover that septins promote macrophage pyroptosis induced by lipopolysaccharide (LPS)/nigericin and Shigella infection, but do not affect cytokine expression or release. We observe that septin filaments assemble at the plasma membrane, and cleavage of GSDMD is impaired in septin-depleted cells. We found that septins regulate mitochondrial dynamics and the expression of NINJ1. Using a Shigella-zebrafish infection model, we show that septin-mediated pyroptosis is an in vivo mechanism of infection control. The discovery of septins as a mediator of pyroptosis may inspire innovative anti-bacterial and anti-inflammatory treatments.

9.
Cell Mol Immunol ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107476

RESUMO

Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.

10.
J Control Release ; 374: 15-27, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39111596

RESUMO

Recent studies have indicated that the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is an ideal therapeutic target for osteoporosis because it affects the differentiation of osteoblasts and osteoclasts. RNA sequencing utilizing multifunctional graphene oxide (GO) nanosheets revealed a correlation between GO nanomaterials and the NLRP3 inflammasome, as well as osteogenic genes in macrophages. This study aimed to construct a bone microenvironment-responsive multifunctional two-dimensional GO coating on the surface of microporous sulfonated polyetheretherketone (SPEEK) via polydopamine modification (SPEEK@PDA-GO). In vitro analysis showed that the SPEEK@PDA-GO implants weakened the STAT3-mediated NLRP3/caspase-1/IL-1ß signaling pathway in macrophages and subsequently prevented the formation of an extracellular inflammatory microenvironment, which is crucial for osteoclastogenesis. SPEEK@PDA-GO displayed significantly higher expression of M2 macrophage markers and osteogenic genes, indicating that the multifunctional GO nanosheets could facilitate bone regeneration via their immunomodulatory properties. The ability of SPEEK@PDA-GO to stimulate new bone formation and block bone loss caused by estrogen loss due to ovariectomy was also analyzed. The findings of this study offer valuable information on the possible involvement of the NLRP3 inflammasome in the interaction between the immune system and bone health in patients with osteoporosis.

11.
Clin Kidney J ; 17(8): sfae216, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39114498

RESUMO

Background: In contrast to childhood minimal change disease (MCD), adult-onset MCD frequently recurs and requires prolonged immunosuppressive therapy. Accordingly, an investigation of the pathogenesis of adult MCD is required. MCD is usually accompanied by severe dyslipidaemia. Oxidized low-density lipoprotein (ox-LDL) is known to function in a damage-associated molecular pattern (DAMP) through CD36, triggering the NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome and programmed cell death called pyroptosis. However, the relationship between MCD pathogenesis and NLRP3 inflammasome/pyroptosis activation via CD36 is not fully understood. Methods: We conducted comprehensive histological and clinical evaluations by analysing renal biopsy (RBx) specimens and urine samples obtained from 26 patients with MCD. These samples were compared with control kidneys from 15 transplant donors and urine samples from 15 healthy volunteers. Results: The number of podocytes was lower in the MCD group than in the control group. Urinary ox-LDL levels were higher in the MCD group than in the control group. Immunofluorescence staining revealed that NLRP3 and CD36 were upregulated in MCD podocytes. Urinary interleukin (IL)-18 levels increased in patients with MCD. Steroid therapy performed before RBx appeared to maintain the podocyte number and reduce urinary ox-LDL and IL-18 levels. Conclusion: In MCD, the NLRP3 inflammasome and pyroptosis cascade seem to be activated via upregulation of CD36 in podocytes, associated with increased urinary ox-LDL. Elevated urinary IL-18 levels suggest that pyroptosis may occur in MCD. Further research is required to confirm the significance of the podocyte NLRP3 inflammasome/pyroptosis in MCD.

12.
Cell Rep ; 43(8): 114609, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39116210

RESUMO

The NLRP3 inflammasome is dysregulated in autoinflammatory disorders caused by inherited mutations and contributes to the pathogenesis of several chronic inflammatory diseases. In this study, we discovered that disulfiram, a safe US Food and Drug Administration (FDA)-approved drug, specifically inhibits the NLRP3 inflammasome but not the NLRC4 or AIM2 inflammasomes. Disulfiram suppresses caspase-1 activation, ASC speck formation, and pyroptosis induced by several stimuli that activate NLRP3. Mechanistically, NLRP3 is palmitoylated at cysteine 126, a modification required for its localization to the trans-Golgi network and inflammasome activation, which was inhibited by disulfiram. Administration of disulfiram to animals inhibited the NLRP3, but not NLRC4, inflammasome in vivo. Our study uncovers a mechanism by which disulfiram targets NLRP3 and provides a rationale for using a safe FDA-approved drug for the treatment of NLRP3-associated inflammatory diseases.

13.
Toxicon ; : 108060, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117157

RESUMO

T-2 toxin is recognized as the most potent and prevalent secondary metabolite among monotrichous mycotoxins produced by Fusarium species. Multiple studies have substantiated the hepatotoxic effects of T-2 toxin. This study aimed to investigate whether NF-κB and NLRP3-mediated pyroptosis is involved in the underlying mechanism of T-2 toxin hepatotoxicity. We designed three groups of rat models, blank control; solvent control and T-2 toxin (0.2 mg/kg body weight/day), which were euthanized at week 8 after gavage staining of the toxin. Through HE staining and biochemical indicators associated with liver injury, we observed that T-2 toxin induced liver damage in rats. By Western blot analysis and qRT-PCR, we found that the expression levels of pyroptosis-related genes and proteins were significantly higher in the T-2 toxin group. In addition, we also found a significant increase in the expression of p-NF-κB protein, an upstream regulator of NLRP3. In conclusion, NF-κB and NLRP3-mediated pyroptosis may be involved in the mechanism of hepatotoxic action of T-2 toxin, which provides a new perspective.

14.
Biochem Pharmacol ; 229: 116476, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128588

RESUMO

Fibronectin type III domain-containing protein 5 (FNDC5) exerts potential anti-arrhythmic effects. However, the function and mechanism of FNDC5 in diabetes-associated atrial fibrillation (AF) remain unknown. In this study, bioinformatics analysis, in vivo and in vitro experiments were conducted to explore the alteration and role of FNDC5 in diabetes-related atrial remodeling and AF susceptibility. RNA sequencing data from atrial samples of permanent AF patients and diabetic mice exhibited significantly decreased FNDC5 at the transcriptional level, which was in line with the protein expression in diabetic mice as well as high glucose and palmitic acid (HG+PA) injured atrial myocytes. Diabetic mice exhibited adverse atrial remodeling and increased AF inducibility. Moreover, reduced atrial FNDC5 was accompanied with exacerbated NOD-like receptor pyrin domain containing 3 (NLRP3) activation and disturbed mitochondrial fission and fusion processes, as evidenced by decreased expressions of optic atrophy 1 (OPA-1), mitofusin (MFN-1, MFN-2) and increased phosphorylation of dynamin-related protein 1 (Ser616). These effects were validated in HG+PA-treated atrial myocytes. Critically, FNDC5 overexpression remarkably enhanced cellular antioxidant capacity by upregulating the expressions of superoxide dismutase (SOD1, SOD2) level. In addition, HG+PA-induced mitochondrial dysfunction was ameliorated by FNDC5 overexpression as evidenced by improved mitochondrial dynamics and membrane potential. Moreover, NLRP3 inflammasome-mediated inflammation was reduced by FNDC5 overexpression, and AMPK signaling might serve as the key down-stream effector. The present study demonstrated that reduced atrial FNDC5-AMPK signaling contributed to the pathogenesis of diabetes- associated AF by impairing mitochondrial dynamics and activating the NLRP3 inflammasome. These findings provide promising therapeutic avenues for diabetes-associated AF.

15.
Heliyon ; 10(14): e34591, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39130485

RESUMO

Objective: Drug-induced liver injury (DILI), a type of acute inflammation, has sparked significant concern owing to its unpredictability and severity. Psoraleae Fructus (PF), an edible Chinese herb widely used in traditional Chinese medicine (TCM), causes liver injury. Therefore, the elucidation of the mechanism underlying PF-induced liver injury and the search for more effective means of detoxification using herbal compatibility has become an urgent issue. This study evaluated the hepatoprotective effects of Paeoniae Radix Alba (PRA), a hepatoprotective Chinese medicine, on PF-induced liver injury and explored the underlying mechanisms. Methods: A rat model of lipopolysaccharide (LPS)-induced immune stress was established to evaluate the hepatotoxicity of PF and the detoxifying effect of PRA. Subsequently, inflammatory pathways were identified using network pharmacology. Finally, the molecular mechanism by which PRA alleviates PF-induced liver injury was validated using an inflammasome activation model in bone marrow-derived macrophages (BMDMs). Results: In vivo, hepatocytes in rats treated with LPS + PF exhibited massive inflammatory infiltration and apoptosis, and the expression of liver injury indicators and inflammatory factors was significantly upregulated, which was reversed by PRA pretreatment. Network pharmacology showed that PRA alleviated PF-induced liver injury and was associated with the NOD-like receptor signaling pathway. Moreover, PF directly induced inflammasome activation in LPS-primed BMDMs which in turn induced caspase-1 activation and the secretion of downstream effector cytokines such as IL-1ß. PRA pretreatment inhibited PF-induced activation of the NLRP3 inflammasome by mitigating the accumulation of mitochondrial reactive oxygen species (mtROS). Conclusions: The present study demonstrates that PRA alleviated PF induced-liver injury by inhibiting NLRP3 inflammasome activation. The results of this study are expected to inform the prevention and control of PF-induced hepatotoxicity in clinical practice.

16.
Front Pharmacol ; 15: 1388753, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130631

RESUMO

Background: Wuwei Xiaodu Drink (WWXDD), a classical decoction of traditional Chinese medicine, has been clinically used for the treatment of gout in China for many years. This study aimed to demonstrate the efficacy of WWXDD in treating gout flares and elucidate its underlying therapeutic mechanism. Methods: A randomized control trial was conducted to compare the effectiveness of WWXDD with low-dose colchicine in gout arthritis. The primary outcome was the clinical response rate on the 7th day, and joint syndrome score and serological tests were secondary outcome measures and were compared in the two groups on the 1st and 7th day. Then we used a network pharmacology approach to investigate the possible mechanism of WWXDD in treating gout, and the effects of WWXDD on the MSU-induced rat model were observed. Results: In the clinical trial, a total of 78 participants completed the study, and the results demonstrated comparable clinical complete response rates, joint symptom scores, and serological test outcomes between the two groups on the 7th day. Network pharmacology analysis identified 51 core genes that target gout and WWXDD interactions. Notably, strong significant correlations were observed with inflammation cytokine genes and metabolism-related genes. Furthermore, it was found that WWXDD reduced gene expression levels of inflammation cytokines including IL-1ß, TNF, and IL-18 in an MSU-induced rat model while increasing IL-10 expression. Additionally, WWXDD decreased insulin gene expression in this model. Moreover, WWXDD exhibited a reduction in both gene and protein expressions associated with the NLRP3-mediated inflammatory pathway in inflamed joints of rats. Conclusion: The results of the present study suggested the anti-inflammatory effects of WWXDD in the treatment of gouty arthritis, partially through inhibiting NLRP3 inflammasome activation. Clinical Trial Registration: ClinicalTrials.gov, identifier ChiCTR2100047807.

17.
Front Immunol ; 15: 1435892, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39131161

RESUMO

Allergic diseases like asthma, allergic rhinitis and dermatitis pose a significant global health burden, driving the search for novel therapies. The NLRP3 inflammasome, a key component of the innate immune system, is implicated in various inflammatory diseases. Upon exposure to allergens, NLRP3 undergoes a two-step activation process (priming and assembly) to form active inflammasomes. These inflammasomes trigger caspase-1 activation, leading to the cleavage of pro-inflammatory cytokines (IL-1ß and IL-18) and GSDMD. This process induces pyroptosis and amplifies inflammation. Recent studies in humans and mice strongly suggest a link between the NLRP3 inflammasome, IL-1ß, and IL-18, and the development of allergic diseases. However, further research is needed to fully understand NLRP3's specific mechanisms in allergies. This review aims to summarize the latest advances in NLRP3 activation and regulation. We will discuss small molecule drugs and natural products targeting NLRP3 as potential therapeutic strategies for allergic diseases.


Assuntos
Hipersensibilidade , Inflamassomos , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Humanos , Inflamassomos/metabolismo , Inflamassomos/imunologia , Animais , Hipersensibilidade/imunologia , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/metabolismo , Hipersensibilidade/terapia , Inflamação/imunologia , Inflamação/metabolismo
18.
Front Immunol ; 15: 1418422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39136022

RESUMO

Introduction: Alzheimer pathology (AD) is characterized by the deposition of amyloid beta (Aß) and chronic neuroinflammation, with the NLRP3 inflammasome playing a significant role. This study demonstrated that the OCD drug fluvoxamine maleate (FXN) can potently ameliorate AD pathology in 5XFAD mice by promoting autophagy-mediated clearance of Aß and inhibiting the NLRP3 inflammasome. Methods: We used mice primary astrocytes to establish the mechanism of action of FXN against NLRP3 inflammasome by using various techniques like ELISA, Western blotting, confocal microscopy, Immunofluorescence, etc. The anti-AD activity of FXN was validated in transgenic 5XFAD mice following two months of treatment. This was followed by behavior analysis, examination of inflammatory and autophagy proteins and immunohistochemistry analysis for Aß load in the hippocampi. Results: Our data showed that FXN, at a low concentration of 78 nM, induces autophagy to inhibit NF-κB and the NLRP3 inflammasome, apart from directly inhibiting NLRP3 inflammasome in primary astrocytes. FXN activated the PRKAA2 pathway through CAMKK2 signaling, leading to autophagy induction. It inhibited the ATP-mediated NLRP3 inflammasome activation by promoting the autophagic degradation of NF-κB, resulting in the downregulation of pro-IL-1ß and NLRP3. The anti-NLRP3 inflammasome effect of FXN was reversed when autophagy was inhibited by either genetic knockdown of the PRKAA2 pathway or pharmacological inhibition with bafilomycin A1. Furthermore, FXN treatment led to improved AD pathology in 5XFAD mice, resulting in significant improvements in various behavioral parameters such as working memory and neuromuscular coordination, making their behavior more similar to that of wild-type animals. FXN improved behavior in 5XFAD mice by clearing the Aß deposits from the hippocampi and significantly reducing multiple inflammatory proteins, including NF-κB, GFAP, IBA1, IL-1ß, TNF-α, and IL-6, which are associated with NF-κB and NLRP3 inflammasome in the brain. Moreover, these changes were accompanied by increased expression of autophagic proteins. Discussion: Our data suggest that FXN ameliorates AD pathology, by simultaneously targeting two key pathological features: Aß deposits and neuroinflammation. As an already approved drug, FXN holds potential as a candidate for human studies against AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Astrócitos , Autofagia , Modelos Animais de Doenças , Fluvoxamina , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doenças Neuroinflamatórias , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Camundongos , Fluvoxamina/farmacologia , Fluvoxamina/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Autofagia/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos
19.
Life Sci ; 354: 122951, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39127315

RESUMO

In the contemporary landscape of oncology, immunotherapy, represented by immune checkpoint blockade (ICB) therapy, stands out as a beacon of innovation in cancer treatment. Despite its promise, the therapy's progression is hindered by suboptimal clinical response rates. Addressing this challenge, the modulation of the NLRP3 inflammasome-GSDMD-mediated pyroptosis pathway holds promise as a means to augment the efficacy of immunotherapy. In the pathway, the NLRP3 inflammasome serves as a pivotal molecular sensor that responds to inflammatory stimuli within the organism. Its activation leads to the release of cytokines interleukin 1ß and interleukin 18 through the cleavage of GSDMD, thereby forming membrane pores and potentially resulting in pyroptosis. This cascade of processes exerts a profound impact on tumor development and progression, with its function and expression exhibiting variability across different tumor types and developmental stages. Consequently, understanding the specific roles of the NLRP3 inflammasome and GSDMD-mediated pyroptosis in diverse tumors is imperative for comprehending tumorigenesis and crafting precise therapeutic strategies. This review aims to elucidate the structure and activation mechanisms of the NLRP3 inflammasome, as well as the induction mechanisms of GSDMD-mediated pyroptosis. Additionally, we provide a comprehensive overview of the involvement of this pathway in various cancer types and its applications in tumor immunotherapy, nanotherapy, and other fields. Emphasis is placed on the feasibility of leveraging this approach to enhance ICB therapy within the field of immunotherapy. Furthermore, we discuss the potential applications of this pathway in other immunotherapy methods, such as chimeric antigen receptor T-cell (CAR-T) therapy and tumor vaccines.

20.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125681

RESUMO

The search for bioactive compounds in natural products holds promise for discovering new pharmacologically active molecules. This study explores the anti-inflammatory potential of açaí (Euterpe oleracea Mart.) constituents against the NLRP3 inflammasome using high-throughput molecular modeling techniques. Utilizing methods such as molecular docking, molecular dynamics simulation, binding free energy calculations (MM/GBSA), and in silico toxicology, we compared açaí compounds with known NLRP3 inhibitors, MCC950 and NP3-146 (RM5). The docking studies revealed significant interactions between açaí constituents and the NLRP3 protein, while molecular dynamics simulations indicated structural stabilization. MM/GBSA calculations demonstrated favorable binding energies for catechin, apigenin, and epicatechin, although slightly lower than those of MCC950 and RM5. Importantly, in silico toxicology predicted lower toxicity for açaí compounds compared to synthetic inhibitors. These findings suggest that açaí-derived compounds are promising candidates for developing new anti-inflammatory therapies targeting the NLRP3 inflammasome, combining efficacy with a superior safety profile. Future research should include in vitro and in vivo validation to confirm the therapeutic potential and safety of these natural products. This study underscores the value of computational approaches in accelerating natural product-based drug discovery and highlights the pharmacological promise of Amazonian biodiversity.


Assuntos
Anti-Inflamatórios , Inflamassomos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Euterpe/química , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA