Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 24(6): e2300553, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38459799

RESUMO

This study presents the synthesis of a cross-linked collagen material, named platinum-containing collagen gel (PCG), which is achieved by simply mixing collagen and derivatives of an anti-cancer platinum complex. The cross-linking reagents are derivatives of cisplatin or transplatin, generated through a ligand exchange with dimethyl sulfoxide. PCG exhibits superior physical strength and transparency compared with the native collagen gel formed through spontaneous fibril formation. The versatility of PCG as a cell culture scaffold, applicable to both 2D and 3D models, with low cytotoxicity is demonstrated. Furthermore, PCG exhibits pH-responsive gel-forming properties. This enables the removal of free cross-linker by dialysis in an acidic solution and subsequent gel formation upon neutralization. This material holds promise for application in cell culture scaffolds and medical injections.


Assuntos
Antineoplásicos , Materiais Biocompatíveis , Colágeno , Colágeno/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Humanos , Animais , Platina/química , Platina/farmacologia , Reagentes de Ligações Cruzadas/química , Cisplatino/farmacologia , Cisplatino/química , Concentração de Íons de Hidrogênio , Injeções
2.
Acta Biomater ; 176: 201-220, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160855

RESUMO

Low back pain resulting from disc degeneration is a leading cause of disability worldwide. However, to date few therapies target the cause and fail to repair the intervertebral disc (IVD). This study investigates the ability of an injectable hydrogel (NPgel), to inhibit catabolic protein expression and promote matrix expression in human nucleus pulposus (NP) cells within a tissue explant culture model isolated from degenerate discs. Furthermore, the injection capacity of NPgel into naturally degenerate whole human discs, effects on mechanical function, and resistance to extrusion during loading were investigated. Finally, the induction of potential regenerative effects in a physiologically loaded human organ culture system was investigated following injection of NPgel with or without bone marrow progenitor cells. Injection of NPgel into naturally degenerate human IVDs increased disc height and Young's modulus, and was retained during extrusion testing. Injection into cadaveric discs followed by culture under physiological loading increased MRI signal intensity, restored natural biomechanical properties and showed evidence of increased anabolism and decreased catabolism with tissue integration observed. These results provide essential proof of concept data supporting the use of NPgel as an injectable therapy for disc regeneration. STATEMENT OF SIGNIFICANCE: Low back pain resulting from disc degeneration is a leading cause of disability worldwide. However, to date few therapies target the cause and fail to repair the intervertebral disc. This study investigated the potential regenerative properties of an injectable hydrogel system (NPgel) within human tissue samples. To mimic the human in vivo conditions and the unique IVD niche, a dynamically loaded intact human disc culture system was utilised. NPgel improved the biomechanical properties, increased MRI intensity and decreased degree of degeneration. Furthermore, NPgel induced matrix production and decreased catabolic factors by the native cells of the disc. This manuscript provides evidence for the potential use of NPgel as a regenerative biomaterial for intervertebral disc degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Dor Lombar , Humanos , Hidrogéis/farmacologia , Hidrogéis/metabolismo , Degeneração do Disco Intervertebral/tratamento farmacológico , Degeneração do Disco Intervertebral/metabolismo , Técnicas de Cultura de Órgãos , Dor Lombar/metabolismo , Disco Intervertebral/metabolismo
3.
Adv Ther (Weinh) ; 5(9)2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36405778

RESUMO

Type 1 diabetes (T1D) is caused by the autoimmune loss of insulin-producing beta cells in the pancreas. The only clinical approach to patient management of blood glucose that doesn't require exogenous insulin is pancreas or islet transplantation. Unfortunately, donor islets are scarce and there is substantial islet loss immediately after transplantation due, in part, to the local inflammatory response. The delivery of stem cell-derived beta cells (e.g., from induced pluripotent stem cells) and dissociated islet cells hold promise as a treatment for T1D; however, these cells typically require re-aggregation in vitro prior to implantation. Microporous scaffolds have shown high potential to serve as a vehicle for organization, survival, and function of insulin-producing cells. In this study, we investigated the use of microporous annealed particle (MAP) scaffold for delivery of enzymatically dissociated islet cells, a model beta cell source, within the scaffold's interconnected pores. We found that MAP-based cell delivery enables survival and function of dissociated islets cells both in vitro and in an in vivo mouse model of T1D.

4.
Biomaterials ; 291: 121877, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36347132

RESUMO

Extracellular vesicles (EV) are increasingly recognized as a therapeutic option in heart failure. They are usually administered by direct intramyocardial injections with the caveat of a rapid wash-out from the myocardium which might weaken their therapeutic efficacy. To improve their delivery in the failing myocardium, we designed a system consisting of loading EV into a clinical-grade hyaluronic acid (HA) biomaterial. EV were isolated from umbilical cord-derived mesenchymal stromal cells. The suitability of HA as a delivery platform was then assessed in vitro. Rheology studies demonstrated the viscoelastic and shear thinning behaviors of the selected HA allowing its easy injection. Moreover, the release of HA-embedded EV was sustained over more than 10 days, and EV bioactivity was not altered by the biomaterial. In a rat model of myocardial ischemia reperfusion, we showed that HA-embedded EV preserved cardiac function (echocardiography), improved angiogenesis and decreased both apoptosis and fibrosis (histology and transcriptomics) when compared to intramyocardial administration of EV alone. These data thus strengthen the concept that inclusion of EV into a clinically useable biomaterial might optimize their beneficial effects on post-ischemic cardiac repair.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Ratos , Materiais Biocompatíveis , Infarto do Miocárdio/patologia , Miocárdio/patologia , Células-Tronco Mesenquimais/patologia , Ácido Hialurônico
5.
Nanomaterials (Basel) ; 11(6)2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205427

RESUMO

Injectable nanoscale hydroxyapatite (nHA) systems are highly promising biomaterials to address clinical needs in bone tissue regeneration, due to their excellent biocompatibility, bioinspired nature, and ability to be delivered in a minimally invasive manner. Bulk strontium-substituted hydroxyapatite (SrHA) is reported to encourage bone tissue growth by stimulating bone deposition and reducing bone resorption, but there are no detailed reports describing the preparation of a systematic substitution up to 100% at the nanoscale. The aim of this work was therefore to fabricate systematic series (0-100 atomic% Sr) of SrHA pastes and gels using two different rapid-mixing methodological approaches, wet precipitation and sol-gel. The full range of nanoscale SrHA materials were successfully prepared using both methods, with a measured substitution very close to the calculated amounts. As anticipated, the SrHA samples showed increased radiopacity, a beneficial property to aid in vivo or clinical monitoring of the material in situ over time. For indirect methods, the greatest cell viabilities were observed for the 100% substituted SrHA paste and gel, while direct viability results were most likely influenced by material disaggregation in the tissue culture media. It was concluded that nanoscale SrHAs were superior biomaterials for applications in bone surgery, due to increased radiopacity and improved biocompatibility.

6.
Biomaterials ; 228: 119554, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677395

RESUMO

Successful strategies to promote neovascularization of ischemic tissues are still scarce, being a central priority in regenerative medicine. Microparticles harboring primitive vascular beds are appealing cell delivery candidates for minimally-invasive therapeutic vascularization. However, dynamic cellular alterations associated with in vitro vascular morphogenesis are still elusive. Here, bioengineered microgels guided the assembly of entrapped outgrowth endothelial cells (OEC) and mesenchymal stem cells (MSC) into cohesive vascularized microtissues. During in vitro maturation, OEC formed capillary-like networks enveloped in newly-formed extracellular matrix. Gene expression profiling showed that OEC acquired a mesenchymal-like phenotype, suggesting the occurrence of partial endothelial-to-mesenchymal transition (EndMT), while MSC remained transcriptionally stable. The secretome of entrapped cells became more pro-angiogenic, with no significant alterations of the inflammatory profile. Importantly, matured microgels showed improved cell survival/retention after transplantation in mice, with preservation of capillary-like networks and de novo formation of human vascular structures. These findings support that in vitro priming and morphogenesis of vessel-forming cells improves their vasculogenic/angiogenic potential, which is of therapeutic relevance, shedding some light on the associated mechanisms.


Assuntos
Células-Tronco Mesenquimais , Microgéis , Animais , Células Endoteliais , Camundongos , Morfogênese , Neovascularização Fisiológica , Engenharia Tecidual
7.
Tissue Eng Part A ; 26(7-8): 379-386, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31621512

RESUMO

Background: Preterm birth is a common cause of morbidity and mortality in newborn infants. Cervical insufficiency (CI) is a significant cause of preterm birth. The treatment for CI is cerclage, which is a suture placed around the cervix to provide mechanical support. Cerclage, however, is associated with limited efficacy. Here we present an injectable, silk-based hydrogel as an alternative to cerclage. Objective: Pregnant rabbits were used as an animal model of pregnancy to study the mechanical properties, biocompatibility, and degradation of the hydrogel after cervical injection. Study Design: Silk hydrogel (200 µL volume) was injected into the cervix. Controls were either injected with saline or treated with cerclage (5-0 polyethylene terephthalate suture). To study the effect on mechanical properties, the cervix was tested in compression. Biodegradation of the hydrogel was followed over 6 weeks. For biocompatibility, expression levels of proinflammatory mediators were studied. Results: Hydrogel injection resulted in significant tissue augmentation-the cross-sectional area of the cervix increased 46.3 ± 3.0%. The modulus of the uninjected and hydrogel-injected tissues was 3.3 ± 0.7 and 3.2 ± 0.5 kPa at 5-10% strain, respectively (p = 0.8). Histology showed a mild inflammatory response surrounding the hydrogel. Biodegradation of the hydrogel showed 70% volume loss over 6 weeks. Hydrogel-injected tissue showed similar inflammatory response compared with cerclage. Conclusions: In pregnant rabbits, cervical injection of the silk-based hydrogel was biocompatible and naturally degraded. No adverse effects on timing of delivery and pup viability were seen. Silk-based hydrogels show promise for tissue augmentation during pregnancy. Impact Statement This research describes the use of injectable silk-based hydrogel for augmenting cervical tissue in vivo in a pregnant rabbit model. Further preclinical development of the methods and insights described in this article can lead to therapeutic use of this hydrogel as an alternative to cerclage in preterm birth due to cervical insufficiency.


Assuntos
Cerclagem Cervical/métodos , Hidrogéis/química , Hidrogéis/uso terapêutico , Seda/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Feminino , Injeções , Gravidez , Nascimento Prematuro/prevenção & controle , Coelhos
8.
Pharmaceutics ; 11(9)2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480533

RESUMO

Locally delivered anti-inflammatory compounds can restore the homeostasis of the degenerated intervertebral disc (IVD). With beneficial effects on IVD cells, epigallocatechin 3-gallate (EGCG) is a promising therapeutic candidate. However, EGCG is prone to rapid degradation and/or depletion. Therefore, the purpose of this study was to develop a method for controlled EGCG delivery in the degenerated IVD. Primary IVD cells were isolated from human donors undergoing IVD surgeries. EGCG was encapsulated into microparticles by electrospraying of glutaraldehyde-crosslinked gelatin. The resulting particles were characterized in terms of cytocompatibility and anti-inflammatory activity, and combined with a thermoresponsive carrier to produce an injectable EGCG delivery system. Subsequently, electrospraying was scaled up using the industrial NANOSPIDER™ technology. The produced EGCG microparticles reduced the expression of inflammatory (IL-6, IL-8, COX-2) and catabolic (MMP1, MMP3, MMP13) mediators in pro-inflammatory 3D cell cultures. Combining the EGCG microparticles with the carrier showed a trend towards modulating EGCG activity/release. Electrospray upscaling was achieved, leading to particles with homogenous spherical morphologies. In conclusion, electrospray-based encapsulation of EGCG resulted in cytocompatible microparticles that preserved the activity of EGCG and showed the potential to control EGCG release, thus favoring IVD health by downregulating local inflammation. Future studies will focus on further exploring the biological activity of the developed delivery system for potential clinical use.

9.
Biomaterials ; 179: 109-121, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29980073

RESUMO

The objective of this study was to design an injectable biomaterial system that becomes porous in situ to deliver and control vascular progenitor cell release. Alginate hydrogels were loaded with outgrowth endothelial cells (OECs) and alginate lyase, an enzyme which cleaves alginate polymer chains. We postulated and confirmed that higher alginate lyase concentrations mediated loss of hydrogel mechanical properties. Hydrogels incorporating 5 and 50 mU/mL of alginate lyase experienced approximately 28% and 57% loss of mass as well as 81% and 91% reduction in storage modulus respectively after a week. Additionally, computational methods and mechanical analysis revealed that hydrogels with alginate lyase significantly increased in mesh size over time. Furthermore, alginate lyase was not found to inhibit OEC proliferation, viability or sprouting potential. Finally, alginate hydrogels incorporating OECs and alginate lyase promoted up to nearly a 10 fold increase in OEC migration in vitro than nondegradable hydrogels over the course of a week and increased functional vasculature in vivo via a chick chorioallantoic membrane (CAM) assay. Overall, these findings demonstrate that alginate lyase incorporated hydrogels can provide a simple and robust system to promote controlled outward cell migration into native tissue for potential therapeutic revascularization applications.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Células Progenitoras Endoteliais/citologia , Hidrogéis/química , Células-Tronco/citologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Biologia Computacional , Humanos
10.
Polymers (Basel) ; 10(11)2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30961127

RESUMO

The development of non-cellularized injectable suspensions of viscous chitosan (CHI) solutions (1.7⁻3.3% (w/w)), filled with cellulose nanofibers (CNF) (0.02⁻0.6% (w/w)) of the type nanofibrillated cellulose, was proposed for viscosupplementation of the intervertebral disc nucleus pulposus tissue. The achievement of CNF/CHI formulations which can gel in situ at the disc injection site constitutes a minimally-invasive approach to restore damaged/degenerated discs. We studied physico-chemical aspects of the sol and gel states of the CNF/CHI formulations, including the rheological behavior in relation to injectability (sol state) and fiber mechanical reinforcement (gel state). CNF-CHI interactions could be evidenced by a double flow behavior due to the relaxation of the CHI polymer chains and those interacting with the CNFs. At high shear rates resembling the injection conditions with needles commonly used in surgical treatments, both the reference CHI viscous solutions and those filled with CNFs exhibited similar rheological behavior. The neutralization of the flowing and weakly acidic CNF/CHI suspensions yielded composite hydrogels in which the nanofibers reinforced the CHI matrix. We performed evaluations in relation to the biomedical application, such as the effect of the intradiscal injection of the CNF/CHI formulation in pig and rabbit spine models on disc biomechanics. We showed that the injectable formulations became hydrogels in situ after intradiscal gelation, due to CHI neutralization occurring in contact with the body fluids. No leakage of the injectate through the injection canal was observed and the gelled formulation restored the disc height and loss of mechanical properties, which is commonly related to disc degeneration.

11.
Biomaterials ; 154: 34-47, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29120817

RESUMO

Efficient cell delivery strategies are urgently needed to improve the outcome of cell-based pro-angiogenic therapies. This study describes the design of an injectable cell delivery platform, based on biomaterial-guided morphogenesis principles. Soft high-mannuronic acid alginate microgels, oxidized and functionalized with integrin-binding peptides, provided adequate biochemical/biomechanical cues for the co-assembly of mesenchymal stem cells and outgrowth endothelial cells (OEC) into pre-vascularized microtissues. In vitro priming conditions regulated OEC tubulogenesis, which only occurred under normoxia (+O2) in the presence of angiogenic factors (+GF) and, importantly, did not revert in an ischemic-like environment. Primed (+O2+GF) microgel-entrapped cells secreted a large variety of angiogenesis-related proteins and produced endogenous extracellular-matrix, rich in fibronectin and collagen type I, fostering cell-cell/cell-matrix interactions and establishing a stable angiogenic niche. Extending the pre-culture time resulted in higher cell outward migration and in vivo angiogenic potential. Microgels partially disintegrated upon implantation in chick embryos, promoting interaction between pre-vascularized microtissues and the host. Preserved human vascular structures were still detected in vivo, and human cells showed the ability to migrate and integrate with the chick vasculature. Our results suggest that an integrated approach combining pro-angiogenic cells, cell-instructive microgels and adequate in vitro priming may provide the basis for successful therapeutic angiogenesis.


Assuntos
Géis/química , Morfogênese , Neovascularização Patológica/terapia , Alginatos/química , Animais , Movimento Celular/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Embrião de Galinha , Células Endoteliais/citologia , Matriz Extracelular/metabolismo , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Células-Tronco Mesenquimais/citologia , Neovascularização Patológica/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Oligopeptídeos/farmacologia , Oxigênio/farmacologia
12.
Reprod Sci ; 21(10): 1266-73, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24520079

RESUMO

OBJECTIVE: To evaluate the biocompatibility of silk gel for cervical injection. STUDY DESIGN: Silk gel was injected into the cervix of pregnant rats on day 13 (n = 11) and harvested at day 17. Histology of silk gel was compared with suture controls. Also, human cervical fibroblasts were cultured on silk gel and tissue culture plastic (TCP) in vitro. Cell viability, proliferation, metabolic activity, gene expression (COL1A1, COL3A1, and COX2), and release of proinflammatory mediators (interleukin [IL] 6 and IL-8) were evaluated. RESULTS: In vivo, a mild foreign body response was seen surrounding the silk gel and suture controls. In vitro, cervical fibroblasts were viable, metabolically active, and proliferating at 72 hours. Release of IL-6 and IL-8 was similar on silk gel and TCP. Collagen and COX2 gene expression was similar or slightly decreased compared with TCP. CONCLUSIONS: Silk gel was well tolerated in vivo and in vitro, which supports continuing efforts to develop silk gels as an alternative to cervical cerclage.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Colo do Útero/efeitos dos fármacos , Seda/administração & dosagem , Administração Intravaginal , Animais , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Cerclagem Cervical/efeitos adversos , Cerclagem Cervical/métodos , Colo do Útero/citologia , Colo do Útero/fisiologia , Feminino , Humanos , Gravidez , Ratos , Seda/química , Sonicação/métodos
13.
Reprod Sci ; 20(8): 929-36, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23271162

RESUMO

OBJECTIVE: New therapies to prevent preterm birth are needed. Our objective was to study an injectable biomaterial for human cervical tissue as an alternative to cervical cerclage. STUDY DESIGN: Human cervical tissue specimens were obtained from premenopausal gynecological hysterectomies for benign indications. A 3-part biomaterial was formulated, consisting of silk protein solution blended with a 2-part polyethylene glycol gelation system. The solutions were injected into cervical tissue and the tissue was evaluated for mechanical properties, swelling, cytocompatibility, and histology. RESULTS: The stiffness of cervical tissue more than doubled after injection (P = .02). Swelling properties of injected tissue were no different than native tissue controls. Cervical fibroblasts remained viable for at least 48 hours when cultured on the biomaterial. CONCLUSIONS: We report a silk-based, biocompatible, injectable biomaterial that increased the stiffness of cervical tissue compared to uninjected controls. Animal studies are needed to assess this biomaterial in vivo.


Assuntos
Materiais Biocompatíveis , Cerclagem Cervical , Colo do Útero/efeitos dos fármacos , Polietilenoglicóis/administração & dosagem , Nascimento Prematuro/prevenção & controle , Seda/administração & dosagem , Sobrevivência Celular , Células Cultivadas , Colo do Útero/patologia , Elasticidade , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Injeções , Teste de Materiais , Polietilenoglicóis/química , Polietilenoglicóis/toxicidade , Seda/química , Seda/toxicidade , Estresse Mecânico , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA