Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 92, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35105301

RESUMO

BACKGROUND: Novel commercial kits for whole genome library preparation for next-generation sequencing on Illumina platforms promise shorter workflows, lower inputs and cost savings. Time savings are achieved by employing enzymatic DNA fragmentation and by combining end-repair and tailing reactions. Fewer cleanup steps also allow greater DNA input flexibility (1 ng-1 µg), PCR-free options from 100 ng DNA, and lower price as compared to the well-established sonication and tagmentation-based DNA library preparation kits. RESULTS: We compared the performance of four enzymatic fragmentation-based DNA library preparation kits (from New England Biolabs, Roche, Swift Biosciences and Quantabio) to a tagmentation-based kit (Illumina) using low input DNA amounts (10 ng) and PCR-free reactions with 100 ng DNA. With four technical replicates of each input amount and kit, we compared the kits' fragmentation sequence-bias as well as performance parameters such as sequence coverage and the clinically relevant detection of single nucleotide and indel variants. While all kits produced high quality sequence data and demonstrated similar performance, several enzymatic fragmentation methods produced library insert sizes which deviated from those intended. Libraries with longer insert lengths performed better in terms of coverage, SNV and indel detection. Lower performance of shorter-insert libraries could be explained by loss of sequence coverage to overlapping paired-end reads, exacerbated by the preferential sequencing of shorter fragments on Illumina sequencers. We also observed that libraries prepared with minimal or no PCR performed best with regard to indel detection. CONCLUSIONS: The enzymatic fragmentation-based DNA library preparation kits from NEB, Roche, Swift and Quantabio are good alternatives to the tagmentation based Nextera DNA flex kit from Illumina, offering reproducible results using flexible DNA inputs, quick workflows and lower prices. Libraries with insert DNA fragments longer than the cumulative sum of both read lengths avoid read overlap, thus produce more informative data that leads to strongly improved genome coverage and consequently also increased sensitivity and precision of SNP and indel detection. In order to best utilize such enzymatic fragmentation reagents, researchers should be prepared to invest time to optimize fragmentation conditions for their particular samples.


Assuntos
Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Biblioteca Gênica , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
2.
Genomics ; 113(6): 4149-4162, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34740778

RESUMO

With long reads and high coverage, RNA-seq enables comprehensive transcriptome analysis of cancer cells, provided that optimal length of libraries (and their inserts) is assured, to avoid overlap of paired reads and consequent loss of sequencing data. We assessed TruSeq Stranded library preparation protocols (poly(A) enrichment-PA and rRNA depletion-RD) for the thoroughness of transcriptome analysis of a heterogeneous cancer, acute lymphoblastic leukemia. We applied 2x150PE sequencing, >150 M reads/sample on Illumina NovaSeq6000. We show that PA outperforms RD for the analysis of gene expression and structural aberrations. RD is more suitable for detection of various classes of RNAs, mutations or polymorphisms. We demonstrate that reduced RNA fragmentation time (generating longer inserts) positively affects detection of structural RNA changes, without introducing bias into gene expression analysis. We recommend this modification for all RNA-seq studies utilizing reads longer than 75 nt, aimed to go beyond gene expression analysis and to detect also structural changes.


Assuntos
Perfilação da Expressão Gênica , Neoplasias , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , RNA Mensageiro/metabolismo , RNA-Seq , Análise de Sequência de RNA/métodos , Transcriptoma
3.
BMC Genomics ; 17: 399, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27225215

RESUMO

BACKGROUND: Whole exome sequencing (WES) has been proven to serve as a valuable basis for various applications such as variant calling and copy number variation (CNV) analyses. For those analyses the read coverage should be optimally balanced throughout protein coding regions at sufficient read depth. Unfortunately, WES is known for its uneven coverage within coding regions due to GC-rich regions or off-target enrichment. RESULTS: In order to examine the irregularities of WES within genes, we applied Agilent SureSelectXT exome capture on human samples and sequenced these via Illumina in 2 × 101 paired-end mode. As we suspected the sequenced insert length to be crucial in the uneven coverage of exome captured samples, we sheared 12 genomic DNA samples to two different DNA insert size lengths, namely 130 and 170 bp. Interestingly, although mean coverages of target regions were clearly higher in samples of 130 bp insert length, the level of evenness was more pronounced in 170 bp samples. Moreover, merging overlapping paired-end reads revealed a positive effect on evenness indicating overlapping reads as another reason for the unevenness. In addition, mutation analysis on a subset of the samples was performed. In these isogenic subclones, the false negative rate in the 130 bp samples was almost double to that in the 170 bp samples. Visual inspection of the discarded mutation sites exposed low coverages at the sites flanked by high amplitudes of coverage depth. CONCLUSIONS: Producing longer insert reads could be a good strategy to achieve better uniform read coverage in coding regions and hereby enhancing the effective sequencing yield to provide an improved basis for further variant calling and CNV analyses.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Sequência de Bases , Exoma , Genoma Humano , Humanos
4.
BMC Res Notes ; 9: 269, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27176120

RESUMO

BACKGROUND: Next-generation sequencing (NGS) technology has paved the way for rapid and cost-efficient de novo sequencing of bacterial genomes. In particular, the introduction of PCR-free library preparation procedures (LPPs) lead to major improvements as PCR bias is largely reduced. However, in order to facilitate the assembly of Illumina paired-end sequence data and to enhance assembly performance, an increase of insert sizes to facilitate the repeat bridging and resolution capabilities of current state of the art assembly tools is needed. In addition, information concerning the relationships between genomic GC content, library insert size and sequencing quality as well as the influence of library insert size, read length and sequencing depth on assembly performance would be helpful to specifically target sequencing projects. RESULTS: Optimized DNA fragmentation settings and fine-tuned resuspension buffer to bead buffer ratios during fragment size selection were integrated in the Illumina TruSeq(®) DNA PCR-free LPP in order to produce sequencing libraries varying in average insert size for bacterial genomes within a range of 35.4-73.0 % GC content. The modified protocol consumes only half of the reagents per sample, thus doubling the number of preparations possible with a kit. Examination of different libraries revealed that sequencing quality decreases with increased genomic GC content and with larger insert sizes. The estimation of assembly performance using assembly metrics like corrected NG50 and NGA50 showed that libraries with larger insert sizes can result in substantial assembly improvements as long as appropriate assembly tools are chosen. However, such improvements seem to be limited to genomes with a low to medium GC content. A positive trend between read length and assembly performance was observed while sequencing depth is less important, provided a minimum coverage is reached. CONCLUSIONS: Based on the optimized protocol developed, sequencing libraries with flexible insert sizes and lower reagent costs can be generated. Furthermore, increased knowledge about the interplay of sequencing quality, insert size, genomic GC content, read length, sequencing depth and the assembler used will help molecular biologists to set up an optimal experimental and analytical framework with respect to Illumina next-generation sequencing of bacterial genomes.


Assuntos
Genoma Bacteriano , Reação em Cadeia da Polimerase/métodos , DNA Bacteriano/genética
5.
J Arthroplasty ; 31(5): 968-70, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26725132

RESUMO

BACKGROUND: Some manufacturers have introduced polyethylene (PE) inserts in 1-mm increment thickness options to allow for finer adjustments in total knee arthroplasty kinematics. METHODS: Two surgeons with extensive experience performed 88 total knee arthroplasties using implants with 1-mm PE inserts. After trial components were inserted and the optimal PE thickness was selected, the insert was removed and a trial insert size was randomly chosen from opaque envelopes (1-mm smaller, same size, and 1-mm larger). The knee was re-examined and the surgeon determined which size PE had been placed. RESULTS: Surgeons reliably determined insert thicknesses in 62.5% (55 of 88; P = .050) of trials. Surgeons were not able to accurately detect 1-mm incremental changes of trial PE implants on a consistent basis. CONCLUSION: The potential clinical usefulness of this concept should be further evaluated.


Assuntos
Artroplastia do Joelho , Articulação do Joelho/cirurgia , Prótese do Joelho , Cirurgiões Ortopédicos , Idoso , Idoso de 80 Anos ou mais , Materiais Biocompatíveis , Competência Clínica , Cognição , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cirurgiões Ortopédicos/psicologia , Cirurgiões Ortopédicos/normas , Polietileno , Desenho de Prótese , Falha de Prótese
6.
Methods Mol Biol ; 1399: 1-28, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26791494

RESUMO

Archaea constitute one of the three recognized phylogenetic groups of organisms living on the planet, and the latest to be discovered. Most Archaea resist cultivation and are studied using molecular methods. High-throughput amplicon sequencing and metagenomic approaches have been key in uncovering hitherto unknown archaeal diversity, their metabolic potential, and have even provided an insight into genomes of a number of uncultivated members of this group. Here, we summarize protocols describing sampling, molecular, metagenomic, and metatranscriptomic analyses as well as bioinformatics approaches that have proved useful for the study of archaea in natural samples.


Assuntos
Archaea/genética , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metagenômica , Filogenia
7.
PeerJ ; 3: e996, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26056623

RESUMO

Scaffolding errors and incorrect repeat disambiguation during de novo assembly can result in large scale misassemblies in draft genomes. Nextera mate pair sequencing data provide additional information to resolve assembly ambiguities during scaffolding. Here, we introduce NxRepair, an open source toolkit for error correction in de novo assemblies that uses Nextera mate pair libraries to identify and correct large-scale errors. We show that NxRepair can identify and correct large scaffolding errors, without use of a reference sequence, resulting in quantitative improvements in the assembly quality. NxRepair can be downloaded from GitHub or PyPI, the Python Package Index; a tutorial and user documentation are also available.

8.
Front Genet ; 5: 111, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24834071

RESUMO

Next-generation sequencing (NGS) technologies have dramatically expanded the breadth of genomics. Genome-scale data, once restricted to a small number of biomedical model organisms, can now be generated for virtually any species at remarkable speed and low cost. Yet non-model organisms often lack a suitable reference to map sequence reads against, making alignment-based quality control (QC) of NGS data more challenging than cases where a well-assembled genome is already available. Here we show that by generating a rapid, non-optimized draft assembly of raw reads, it is possible to obtain reliable and informative QC metrics, thus removing the need for a high quality reference. We use benchmark datasets generated from control samples across a range of genome sizes to illustrate that QC inferences made using draft assemblies are broadly equivalent to those made using a well-established reference, and describe QC tools routinely used in our production facility to assess the quality of NGS data from non-model organisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA