Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.064
Filtrar
1.
Math Biosci ; : 109223, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38821257

RESUMO

Integrated Pest Management (IPM) poses a challenge in determining the optimal timing of pesticide sprays to ensure that pest populations remain below the Economic Injury Level (EIL), due to the long-term residual effects of many pesticides and the delayed responses of pest populations to pesticide sprays. To address this issue, a specific pesticide kill-rate function is incorporated into a deterministic exponential growth model and a subsequent stochastic model. The findings suggest the existence of an optimal pesticide spraying cycle that can periodically control pests below the EIL. The results regarding stochasticity indicate that random fluctuations promote pest extinction and ensure that the pest population, under the optimal cycle, does not exceed the EIL on average, even with a finite number of IPM strategies. All those confirm that the modeling approach can accurately reveal the intrinsic relationship between the two key indicators Economic Threshold and EIL in the IPM strategy, and further realize the precise characterization of the residual effect and delayed response of pesticide application.

2.
J Med Entomol ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38726974

RESUMO

White-tailed deer, Odocoileus virginianus Zimmermann (Artiodactyla: Cervidae), are the primary wildlife host for adult stages of blacklegged ticks (Acari: Ixodidae: Ixodes scapularis Say) and an important host for lone star ticks (Acari: Ixodidae: Amblyomma americanum Linnaeus), both of which are vectors of numerous tick-borne pathogens. The 4-poster passive deer treatment device is a topical, host-targeted method to control free-living tick populations and has been proven to successfully reduce tick abundance in several states. Aggressive behavior of white-tailed deer at concentrated feeding stations is hypothesized to interfere with the effective use of 4-poster devices and deer contact with acaricide applicators. We analyzed images collected by camera traps at 4-poster feeding stations deployed at 3 sites in Maryland and found a negative relationship between some aggressive interactions and contact with applicators. Our results emphasize the need for further investigation into whether deer social dynamics can impact 4-poster efficacy for tick control. This study serves as a reminder that intraspecific interactions are important to consider when using host-targeted acaricide approaches.

3.
Proc Natl Acad Sci U S A ; 121(22): e2401185121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38768340

RESUMO

The origin of the German cockroach, Blattella germanica, is enigmatic, in part because it is ubiquitous worldwide in human-built structures but absent from any natural habitats. The first historical records of this species are from ca. 250 years ago (ya) from central Europe (hence its name). However, recent research suggests that the center of diversity of the genus is Asian, where its closest relatives are found. To solve this paradox, we sampled genome-wide markers of 281 cockroaches from 17 countries across six continents. We confirm that B. germanica evolved from the Asian cockroach Blattella asahinai approximately 2,100 ya, probably by adapting to human settlements in India or Myanmar. Our genomic analyses reconstructed two primary global spread routes, one older, westward route to the Middle East coinciding with various Islamic dynasties (~1,200 ya), and another younger eastward route coinciding with the European colonial period (~390 ya). While Europe was not central to the early domestication and spread of the German cockroach, European advances in long-distance transportation and temperature-controlled housing were likely important for the more recent global spread, increasing chances of successful dispersal to and establishment in new regions. The global genetic structure of German cockroaches further supports our model, as it generally aligns with geopolitical boundaries, suggesting regional bridgehead populations established following the advent of international commerce.


Assuntos
Blattellidae , Animais , Blattellidae/genética , Filogenia , Europa (Continente) , Evolução Biológica
4.
J Agric Food Chem ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769753

RESUMO

Pseudococcus longispinus (Targioni-Tozzetti) (Hemiptera: Coccoidea: Pseudococcidae), a polyphagous and cosmopolitan pest native to Australia, is a highly damaging pest for numerous crops of economic importance. The sex pheromone of this species (2-(1,5,5-trimethylcyclopent-2-en-1-yl)ethyl acetate), currently used for pest monitoring purposes, was not attractive to males in field experiments conducted in Spanish persimmon orchards infested with this mealybug. The virgin and mated female volatile profiles of these P. longispinus populations were studied by the volatile collection of effluvia in Porapak-Q. The resulting extracts were analyzed by gas chromatography coupled to mass spectrometry (GC-MS), revealing a new compound specific to virgin females and different from the previously described sex pheromone. Based on GC-MS data and nuclear magnetic resonance experiments, we envisaged monoterpene 2-(1,5-dimethyl-4-methylenecyclopent-2-en-1-yl)ethyl acetate as the new sex pheromone candidate, which was synthesized and shown to be attractive in the field to P. longispinus males of the Spanish population.

5.
J Econ Entomol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757658

RESUMO

The hibiscus bud weevil (HBW), Anthonomus testaceosquamosus Linell (Coleoptera: Curculionidae), is a significant threat to tropical hibiscus (Hibiscus rosa-sinensis) in Florida, USA, since its invasion in 2017. As a regulated pest in the state, early detection is crucial. Based on the success of pheromone-based monitoring programs for other weevil pests, such as the boll weevil, cranberry weevil, and pepper weevil, this study explores the potential use of these pheromone lures for early detection of HBW. To account for differences in efficacy based on trap color, height, and design, different pheromone lure sizes (4 mm, 10 mm, full-size), trap types (Yellow sticky trap, Japanese beetle trap, Boll weevil trap), and heights (0 m, 1.1 m) were also tested in this study. In laboratory assays, males and females exhibited higher attraction to full-size cranberry weevil lure discs than other lure size-type combinations. In semi-field trials, yellow sticky traps baited with cranberry weevil lures captured more weevils than Japanese beetle or boll weevil traps baited with cranberry weevil lures, while trap height did not influence HBW capture. In semi-field, 4-choice bioassays, yellow sticky traps baited with cranberry weevil lures captured more HBW compared to yellow sticky traps baited with pepper weevil, boll weevil, or unbaited traps. Further research is required to thoroughly evaluate the cranberry weevil lure's efficacy in capturing HBW. Our study suggests the potential for utilizing yellow sticky traps baited with lures for early HBW detection and highlights the importance of selecting the appropriate lure, trap type, and height for optimal efficacy.

6.
J Econ Entomol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748467

RESUMO

Biopesticides based on RNA interference (RNAi) took a major step forward with the first registration of a sprayable RNAi product, which targets the world's most damaging potato pest. Proactive resistance management is needed to delay the evolution of resistance by pests and sustain the efficacy of RNAi biopesticides.

7.
Data Brief ; 54: 110415, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38690319

RESUMO

This article presents data on farming operations traceability and associated performances, for winegrowing systems with low phytosanitary inputs. 343 farms were sampled from the DEPHY network: a governmental initiative to produce references on phytosanitary-efficient cropping systems under real conditions of production. Data were collected every campaign between 2017 and 2020, by multiple extensionists who provide support to the voluntarily enlisted growers, in exchange for traceability of their practices and their commitment to reducing pesticide use. The dataset includes raw data of farming operations (date, machinery, inputs, products and doses, etc.), and performance indicators computed at farm level (Treatment Frequency Index, workload, expenses, greenhouse gas emissions, etc.). This information could be useful to researchers, policymakers and agricultural consultants. It provides leads to understand how winegrowers manage to successfully reduce their pesticide consumption, as well as assessing the triggers and entailments of such transitions.

8.
Pest Manag Sci ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801197

RESUMO

BACKGROUND: Chrysodeixis includens (Walker) and Rachiplusia nu (Guenée) are major Plusiinae pests of soybean in the Southern Cone region of South America. In recent decades, C. includens was the main defoliator of soybean in Brazil, but from 2021 onwards, R. nu emerged as an important soybean pest in various regions of the country. Here, we characterize the differential susceptibility and resistance to insecticides in these Plusiinae pests from two soybean regions of Brazil. RESULTS: Except for spinetoram and chlorfenapyr (comparable lethality against both species) and a Bt-based biopesticide (more lethal for C. includens), the tested insecticides showed higher lethality against R. nu than against C. includens, but populations of the same species, even separated by long distances, presented similar resistance levels. For both species, the 90% lethal concentration (LC90) values of most insecticides were higher than the field-recommended dose. Nevertheless, the field-recommended doses of spinetoram, metaflumizone, emamectin benzoate, cyclaniliprole and chlorfenapyr showed comparable control efficacy against both species, whereas indoxacarb, chlorantraniliprole, flubendiamide, teflubenzuron and chlorfluazuron were more lethal for R. nu, and methoxyfenozide and the Bt-based insecticide were more lethal for C. includens. Thiodicarb, methomyl and lambda-cyhalothrin showed low lethality against both species. CONCLUSIONS: Large interspecific differences in the susceptibility to insecticides was found in major Plusiinae pests of soybean in Brazil. Furthermore, variations in susceptibility to insecticides occurred consistently among species and populations, regardless of the collection site and thus despite unequal temporal and spatial exposure to insecticides. These results demonstrate that accurate species identification is essential for effective control of Plusiinae in soybean. © 2024 Society of Chemical Industry.

9.
Front Microbiol ; 15: 1362089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756732

RESUMO

Entomopathogenic fungi (EPF) are economical and environmentally friendly, forming an essential part of integrated pest management strategies. We screened six strains of Beauveria bassiana (B1-B6) (Hypocreales: Cordycipitaceae), of which B4 was the most virulent to Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further assessed the biological characteristics of strain B4 and the environmental factors influencing its ability to infect B. dorsalis. We also evaluated the effects of B4 on two of the natural predators of B. dorsalis. We found that strain B4 was the most virulent to 3rd instar larvae, pupae, and adult B. dorsalis, causing mortality rates of 52.67, 61.33, and 90.67%, respectively. B4 was not toxic to B. dorsalis eggs. The optimum B4 effects on B. dorsalis were achieved at a relative humidity of 91-100% and a temperature of 25°C. Among the six insecticides commonly used for B. dorsalis control, 1.8% abamectin emulsifiable concentrate had the strongest inhibitory effect on B4 strain germination. B4 spraying affected both natural enemies (Amblyseius cucumeris and Anastatus japonicus), reducing the number of A. cucumeris and killing A. japonicus adults. We found a valuable strain of EPF (B4) that is virulent against many life stages of B. dorsalis and has great potential for the biological control of B. dorsalis. We also provide an important theoretical and practical base for developing a potential fungicide to control B. dorsalis.

10.
J Insect Sci ; 24(3)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805647

RESUMO

The parasitic mite Varroa destructor (Anderson and Trueman) is one of the greatest stressors of Apis mellifera (L.) honey bee colonies. When Varroa infestations reach damaging levels during fall, rapid control is necessary to minimize damage to colonies. We performed a field trial in the US Southeast to determine if a combination of registered treatments (Apivar, amitraz-based; and Apiguard, thymol-based) could provide rapid and effective control of Varroa. We compared colonies that received this combination treatment against colonies that received amitraz-based positive control treatments: (i) Apivar alone; or (ii) amitraz emulsifiable concentrate ("amitraz EC"). While not registered, amitraz EC is used by beekeepers in the United States in part because it is thought to control Varroa more rapidly and effectively than registered products. Based on measurements of Varroa infestation rates of colonies after 21 days of treatment, we found that the combination treatment controlled Varroa nearly as rapidly as the amitraz EC treatment: this or other combinations could be useful for Varroa management. At the end of the 42-day trial, colonies in the amitraz EC group had higher bee populations than those in the Apivar group, which suggests that rapid control helps reduce Varroa damage. Colonies in the combination group had lower bee populations than those in the amitraz EC group, which indicates that the combination treatment needs to be optimized to avoid damage to colonies.


Assuntos
Acaricidas , Timol , Toluidinas , Varroidae , Animais , Toluidinas/farmacologia , Abelhas/parasitologia , Varroidae/efeitos dos fármacos , Varroidae/fisiologia , Timol/farmacologia , Criação de Abelhas/métodos
11.
Front Insect Sci ; 4: 1324044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715767

RESUMO

Alfalfa (Medicago sativa L.) is an economically important commodity in the Intermountain Western United States. A major concern for alfalfa producers in this region is the alfalfa weevil (Hypera postica Gyllenhal). Insecticide resistance development coupled with regulatory changes in pesticide use has resulted in renewed interest by producers in non-chemical control methods such as cultural control. One such cultural control method is early harvest, which consists of producers timing their harvests early in the season to decrease alfalfa weevil damage. This method is thought to be effective by exposing weevil larvae to adverse conditions before significant damage occurs. Still, early harvest can be difficult to employ because recommendations are often vague. To better understand how early harvest impacts both alfalfa weevils and their natural enemies and how producers are using this method across the Intermountain Western United States, we conducted a study in alfalfa production fields in Colorado, Montana, and Wyoming over three growing seasons. We determined that the timing of the initial alfalfa harvest spanned more than 1 month across fields, and alfalfa plant stage at harvest ranged from late vegetative to early bloom. Harvest was more impactful on reducing alfalfa weevil densities the earlier it was implemented. Removing windrows in a timely manner is likely useful to further decrease alfalfa weevil densities. Harvest timing was not associated with parasitism rates of alfalfa weevil, but higher parasitism rates were associated with lower post-harvest alfalfa weevil densities. This work has increased our understanding of early harvest in an on-farm setting and to improve recommendations for producers across the Intermountain Western United States.

12.
BMC Ecol Evol ; 24(1): 60, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734594

RESUMO

BACKGROUND: Foraging behavior in insects is optimised for locating scattered resources in a complex environment. This behavior can be exploited for use in pest control. Inhibition of feeding can protect crops whereas stimulation can increase the uptake of insecticides. For example, the success of a bait spray, depends on either contact or ingestion, and thus on the insect finding it. METHODS: To develop an effective bait spray against the invasive pest, Drosophila suzukii, we investigated aspects of foraging behavior that influence the likelihood that the pest interacts with the baits, in summer and winter morphotypes. We video-recorded the flies' approach behavior towards four stimuli in a two-choice experiment on strawberry leaflets. To determine the most effective bait positioning, we also assessed where on plants the pest naturally forages, using a potted raspberry plant under natural environmental conditions. We also studied starvation resistance at 20 °C and 12 °C for both morphs. RESULTS: We found that summer morph flies spent similar time on all baits (agar, combi-protec, yeast) whereas winter morphs spent more time on yeast than the other baits. Both morphs showed a preference to feed at the top of our plant's canopy. Colder temperatures enhanced survival under starvation conditions in both morphs, and mortality was reduced by food treatment. CONCLUSIONS: These findings on feeding behavior support informed decisions on the type and placement of a bait to increase pest control.


Assuntos
Drosophila , Comportamento Alimentar , Controle de Insetos , Animais , Drosophila/fisiologia , Controle de Insetos/métodos , Comportamento Alimentar/fisiologia , Inseticidas/farmacologia , Inseticidas/administração & dosagem , Rubus , Fragaria , Feminino , Estações do Ano
13.
Artigo em Inglês | MEDLINE | ID: mdl-38695217

RESUMO

The achievements of the Green Revolution in meeting the nutritional needs of a growing global population have been won at the expense of unintended consequences for the environment. Some of these negative impacts are now threatening the sustainability of food production through the loss of pollinators and natural enemies of crop pests, the evolution of pesticide resistance, declining soil health and vulnerability to climate change. In the search for farming systems that are sustainable both agronomically and environmentally, alternative approaches have been proposed variously called 'agroecological', 'conservation agriculture', 'regenerative' and 'sustainable intensification'. While the widespread recognition of the need for more sustainable farming is to be welcomed, this has created etymological confusion that has the potential to become a barrier to transformation. There is a need, therefore, for objective criteria to evaluate alternative farming systems and to quantify farm sustainability against multiple outcomes. To help meet this challenge, we reviewed the ecological theories that explain variance in regulating and supporting ecosystem services delivered by biological communities in farmland to identify guiding principles for management change. For each theory, we identified associated system metrics that could be used as proxies for agroecosystem function. We identified five principles derived from ecological theory: (i) provide key habitats for ecosystem service providers; (ii) increase crop and non-crop habitat diversity; (iii) increase edge density: (iv) increase nutrient-use efficiency; and (v) avoid extremes of disturbance. By making published knowledge the foundation of the choice of associated metrics, our aim was to establish a broad consensus for their use in sustainability assessment frameworks. Further analysis of their association with farm-scale data on biological communities and/or ecosystem service delivery would provide additional validation for their selection and support for the underpinning theories.

14.
Sci Rep ; 14(1): 12259, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806558

RESUMO

Tribolium castaneum and Rhyzopertha dominica are cosmopolitan, destructive postharvest pests. Although research has investigated how high densities of T. castaneum affect attraction to the aggregation pheromone by conspecifics, research into the behavioral response of both species to food cues after high density exposure has been lacking despite its importance to foraging ecology. Our goal was to manipulate and observe the effects of crowding on the behavioral response of both species to common food and pheromonal stimuli and to determine how the headspace emission patterns from grain differed under increasing densities. Densities of colonies for both species was altered (10-500 adults) on a fixed quantity of food (10 g of flour or whole wheat), then the behavioral response to common food and pheromonal cues was evaluated in a wind tunnel and release-recapture experiment, while volatiles were examined through gas chromatography coupled with mass spectrometry. Importantly, at least for T. castaneum, crowded conditions attenuate attraction to food-based stimuli, but not pheromonal stimuli. Crowding seemed to have no effect on R. dominica attraction to food and pheromonal stimuli in the wind tunnel, but exposure to high density cues did elicit 2.1-3.8-fold higher captures in traps. The relative composition and abundance of headspace volatiles emitted varied significantly with different densities of beetles and was also species-specific. Overall, our results have implications for expanding our understanding of the foraging ecology of two economically important pests.


Assuntos
Besouros , Comportamento Alimentar , Feromônios , Tribolium , Animais , Tribolium/fisiologia , Besouros/fisiologia , Comportamento Alimentar/fisiologia , Feromônios/metabolismo , Densidade Demográfica , Comportamento Animal/fisiologia
15.
Arch Microbiol ; 206(6): 268, 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38762847

RESUMO

Actinomycetes, a diverse group of bacteria with filamentous growth characteristics, have long captivated researchers and biochemists for their prolific production of secondary metabolites. Among the myriad roles played by actinomycete secondary metabolites, their historical significance in the field of biocontrol stands out prominently. The fascinating journey begins with the discovery of antibiotics, where renowned compounds like streptomycin, tetracycline, and erythromycin revolutionized medicine and agriculture. The history of biocontrol traces its roots back to the early twentieth century, when scientists recognized the potential of naturally occurring agents to combat pests and diseases. The emergence of synthetic pesticides in the mid-twentieth century temporarily overshadowed interest in biocontrol. However, with growing environmental concerns and the realization of the negative ecological impacts of chemical pesticides, the pendulum swung back towards exploring sustainable alternatives. Beyond their historical role as antibiotics, actinomycete-produced secondary metabolites encompass a rich repertoire with biopesticide potential. The classification of these compounds based on chemical structure and mode of action is highlighted, demonstrating their versatility against both plant pathogens and insect pests. Additionally, this review provides in-depth insights into how endophytic actinomycete strains play a pivotal role in biocontrol strategies. Case studies elucidate their effectiveness in inhibiting Spodoptera spp. and nematodes through the production of bioactive compounds. By unraveling the multifunctional roles of endophytic actinomycetes, this review contributes compelling narrative knowledge to the field of sustainable agriculture, emphasizing the potential of these microbial allies in crafting effective, environmentally friendly biocontrol strategies for combating agricultural pests.


Assuntos
Actinobacteria , Agricultura , Controle Biológico de Vetores , Actinobacteria/metabolismo , Animais , Agentes de Controle Biológico/metabolismo , Metabolismo Secundário , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Praguicidas/metabolismo , Spodoptera/microbiologia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Nematoides/microbiologia , Endófitos/metabolismo
16.
J Environ Manage ; 359: 121022, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38704958

RESUMO

Pesticides are critical for protecting agricultural crops, but the off-site transport of these materials via spray drift and runoff poses risks to surface waters and aquatic life. California's Central Coast region is a major agricultural hub in the United States characterized by year-round production and intensive use of pesticides and other chemical inputs. As a result, the quality of many waterbodies in the region has been degraded. A recent regulatory program enacted by the Central Coast Regional Water Quality Control Board set new pesticide limits for waterways and imposed enhanced enforcement mechanisms to help ensure that water quality targets are met by specific dates. This regulatory program, however, does not mandate specific changes to pest management programs. In this study, we evaluate the economic, environmental, and pest management impacts of adopting two alternative pest management programs with reduced risks to surface water: 1) replacing currently used insecticide active ingredients (AIs) that pose the greatest risk to surface water with lower-risk alternatives and 2) converting conventional arthropod pest management programs to organic ones. We utilize pesticide use and toxicity data from California's Department of Pesticide Regulation to develop our baseline and two alternative scenarios. We focus on three crop groups (cole crops, lettuce and strawberry) due to their economic importance to the Central Coast and use of high-risk AIs. For Scenario 1, we estimate that implementing the alternative program in the years 2017-2019 would have reduced annual net returns on average by $90.26 - $190.54/ha, depending on the crop. Increased material costs accounted for the greatest share of this effect (71.9%-95.6%). In contrast, Scenario 2 would have reduced annual net returns on average by $5,628.12 - $18,708.28/ha during the study period, with yield loss accounting for the greatest share (92.8-97.9%). Both alternative programs would have reduced the associated toxic units by at least 98.1% compared to the baseline scenario. Our analysis provides important guidance for policymakers and agricultural producers looking to achieve environmental protection goals while minimizing economic impacts.


Assuntos
Agricultura , Controle de Pragas , Praguicidas , California , Agricultura/economia , Controle de Pragas/economia , Produtos Agrícolas , Qualidade da Água
17.
Environ Entomol ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809140

RESUMO

Coffee berry borer (Hypothenemus hampei Ferrari) (Coleoptera: Curculionidae) is the most damaging insect pest of coffee worldwide, causing significant losses in coffee yields and quality. Knowledge of vertical and temporal flight patterns in coffee berry borer could be used to optimize spray timing and precision targeting of areas within the coffee tree, which may be more susceptible. In the present study, we estimated the vertical distribution of coffee berry borer females using traps set at 1-m intervals up to 5 m in height. We also quantified coffee berry borer infestation in the low, mid, and high canopy and documented fruit availability. Temporal flight patterns were estimated using timer traps, and correlation analyses were conducted to determine the relationship between the timing of daily flight and weather variables. Across the 4 study sites, we observed that 77%-84% of the trap catch was at 1 m, 11%-20% was at 2 m, and 1%-4% was at 3-5 m in height. Fruit infestation was significantly higher in the low branches (35%) relative to the high branches (17%). Flight height remained the same year-round, regardless of fruit availability. Coffee berry borer flew in low numbers during the day and night but peaked from 12 to 4 PM. Daily flight was positively correlated with an increase in air temperature and wind speed and negatively correlated with relative humidity. Findings from this study suggest that pesticide sprays should target low- to mid-level branches at 1-2 m in height and aim to be conducted in the early afternoon when coffee berry borer are actively flying and most vulnerable to chemical controls.

18.
Med Vet Entomol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567802

RESUMO

Geographically expanding and invading ticks are a global concern. The Asian longhorned tick (ALT, Haemaphysalis longicornis) was introduced to the mid-Atlantic US between 2010 and 2017 and recently invaded Ohio, an inland state. To date, ALTs in the US have been associated with livestock exsanguination and transmission of the agent of bovine theileriosis. To inform management, studies describing tick ecology and epidemiology of associated disease agents are critical. In this study, we described phenology, habitat and host associations, and tested for agents of medical and veterinary concern at the site of the first known established ALT population in Ohio, where pesticide treatment was applied in early fall 2021. In spring-fall 2022, we sampled wildlife (small mammals) and collected ticks from forest, edge, and grassland habitats. We also opportunistically sampled harvested white-tailed deer at nearby processing stations and fresh wildlife carcasses found near roads. Field-collected ALTs were tested for five agents using real-time PCR. We found that ALT nymphs emerged in June, followed by adults, and concluded with larvae in the fall. ALTs were detected in all habitats but not in wildlife. We also found a 4.88% (2/41) prevalence of Anaplasma phagocytophilum across ALT adults and nymphs. Host and habitat associations were similar to other studies in the eastern United States, but two potential differences in phenology were identified. Whether ALTs will acquire more endemic disease agents requires further investigations. Our findings provide the first evidence regarding ALT life history from the Midwest region of the United States and can inform exposure risk and guide integrated management.

19.
J Chem Ecol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568416

RESUMO

Fast and effective monitoring and surveillance techniques are crucial for the swift implementation of control methods to prevent the spread of Huanglongbing, a devastating citrus disease, and its invasive psyllid vector, Asian citrus psyllid, Diaphorina citri, into South Africa, as well as to control the native vector, African citrus triozid, Trioza erytreae. Monitoring for citrus psyllid pests can be improved by using semiochemical odorants to augment already visually attractive yellow sticky traps. However, environmental variables such as temperature and humidity could influence odorant release rates. Five field cages were used to test the ability of a selection of odorants to improve yellow sticky trap efficacy in capturing citrus psyllids. Environmental effects on odorant loss from the dispensers were also investigated. The odorants that most improved yellow sticky trap captures in field cages were then tested under open field conditions alongside lower concentrations of those same lures. Gas chromatography-mass spectrometry was used to calculate odorant release rates as well as to determine if any contamination occurred under field conditions. None of the odorants under field cage or field conditions significantly improved psyllid capture on yellow sticky traps. Temperature influenced odorant loss, and release rate from polyethylene bulbs decreased over time. Based on these results, the use of unbaited yellow sticky traps seems to be the most effective method for monitoring of Huanglongbing vectors.

20.
PeerJ ; 12: e17223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618573

RESUMO

Background: The beet armyworm, Spodoptera exigua (Hübner), is an important agricultural pest worldwide that has caused serious economic losses in the main crop-producing areas of China. To effectively monitor and control this pest, it is crucial to investigate its population dynamics and seasonal migration patterns in northern China. Methods: In this study, we monitored the population dynamics of S. exigua using sex pheromone traps in Shenyang, Liaoning Province from 2012 to 2022, combining these data with amigration trajectory simulation approach and synoptic weather analysis. Results: There were significant interannual and seasonal variations in the capture number of S. exigua, and the total number of S. exigua exceeded 2,000 individuals in 2018 and 2020. The highest and lowest numbers of S. exigua were trapped in September and May, accounting for 34.65% ± 6.81% and 0.11% ± 0.04% of the annual totals, respectively. The average occurrence period was 140.9 ± 9.34 days during 2012-2022. In addition, the biomass of S. exigua also increased significantly during these years. The simulated seasonal migration trajectories also revealed varying source regions in different months, primarily originated from Northeast China and East China. These unique insights into the migration patterns of S. exigua will contribute to a deeper understanding of its occurrence in northern China and provide a theoretical basis for regional monitoring, early warning, and the development of effective management strategies for long-range migratory pests.


Assuntos
Agricultura , Humanos , Animais , Spodoptera , Estações do Ano , Dinâmica Populacional , China/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...