Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Int Immunopharmacol ; 135: 112271, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762923

RESUMO

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signal has drawn much consideration due to its sensitivity to DNA in innate immune mechanisms. Activation of the cGAS-STIN signaling pathway induces the production of interferon and inflammatory cytokines, resulting in immune responses, or inflammatory diseases. The intestinal tract is a vital organ for the body's nutrition absorption, recent studies have had various points of view on the job of cGAS-STING pathway in various intestinal sicknesses. Therefore, understanding its role and mechanism in the intestinal environment can help to develop new strategies for the treatment of intestinal diseases. This article examines the mechanism of the cGAS-STING pathway and its function in inflammatory bowel disease, intestinal cancer, and long-injury ischemia-reperfusion, lists the current medications that target it for the treatment of intestinal diseases, and discusses the impact of intestinal flora on this signaling pathway, to offer a theoretical and scientific foundation for upcoming targeted therapies for intestinal disorders via the cGAS-STING pathway.

2.
Free Radic Biol Med ; 221: 111-124, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38763207

RESUMO

Intestinal ischemia‒reperfusion (IIR) injury is a common complication of surgery, but clear molecular insights and valuable therapeutic targets are lacking. Mitochondrial calcium overload is an early sign of various diseases and is considered a vital factor in ischemia‒reperfusion injury. The mitochondrial calcium uniporter (MCU), which is located on the inner mitochondrial membrane, is the primary mediator of calcium ion entry into the mitochondria. However, the specific mechanism of MCU in IIR injury remains to be clarified. In this study, we generated an IIR model using C57BL/6 mice and Caco-2 cells and found increases in the calcium levels and MCU expression following IIR injury. The specific inhibition of MCU markedly attenuated IIR injury. Moreover, MCU knockdown alleviates mitochondrial dysfunction by reducing oxidative stress and apoptosis. Mechanistically, MCU knockdown substantially reduced the translocation of Drp1 and thus its binding to Fis1 receptors, resulting in decreased mitochondrial fission. Taken together, our findings demonstrated that MCU is a novel upstream regulator of Drp1 in ischemia‒reperfusion and represents a predictive and therapeutic target for IIR.

3.
Aging (Albany NY) ; 16(9): 7961-7978, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38709282

RESUMO

BACKGROUND: This study combined bioinformatics and experimental verification in a mouse model of intestinal ischemia-reperfusion injury (IRI) to explore the protection mechanism exerted by butyrate against IRI. METHODS: GeneCards, Bioinformatics Analysis Tool for Molecular Mechanisms of Traditional Chinese Medicine and GSE190581 were used to explore the relationship between butyrate and IRI and aging. Protein-protein interaction networks involving butyrate and IRI were constructed via the STRING database, with hub gene analysis performed through Cytoscape. Functional enrichment analysis was conducted on intersection genes. A mouse model of IRI was established, followed by direct arterial injection of butyrate. The experiment comprised five groups: normal, sham, model, vehicle, low-dose butyrate, and high-dose butyrate. Intestinal tissue observation was done via transmission electron microscopy (TEM), histological examination via hematoxylin and eosin (H&E) staining, tight junction proteins detection via immunohistochemistry, and Western blot analysis of hub genes. Drug-target interactions were evaluated through molecular docking. RESULTS: Butyrate protected against IRI by targeting 458 genes, including HMGB1 and TLR4. Toll-like receptor pathway was implicated. Butyrate improved intestinal IRI by reducing mucosal damage, increasing tight junction proteins, and lowering levels of HMGB1, TLR4, and MyD88. Molecular docking showed strong binding energies between butyrate and HMGB1 (-3.7 kcal/mol) and TLR4 (-3.8 kcal/mol). CONCLUSIONS: According to bioinformatics predictions, butyrate mitigates IRI via multiple-target and multiple-channel mechanisms. The extent of IRI can be reduced by butyrate through the inhibition of the HMGB1-TLR4-MyD88 signaling pathway, which is related to senescence.


Assuntos
Butiratos , Proteína HMGB1 , Fator 88 de Diferenciação Mieloide , Traumatismo por Reperfusão , Transdução de Sinais , Receptor 4 Toll-Like , Animais , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/genética , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Proteína HMGB1/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Butiratos/farmacologia , Masculino , Simulação de Acoplamento Molecular , Intestinos/efeitos dos fármacos , Intestinos/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas
4.
Int Immunopharmacol ; 133: 112155, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688134

RESUMO

BACKGROUND: Ferroptosis is an iron-dependent and cystathione-non-dependent non-apoptotic cell death characterized by elevated intracellular free iron levels and reduced antioxidant capacity, leading to the accumulation of lipid peroxides. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy, increasing labile iron levels, which can result in oxidative damage. However, the specific mechanism of NCOA4-mediated ferritinophagy in intestinal ischemia-reperfusion and the underlying mechanisms have not been reported in detail. OBJECT: 1. To investigate the role of NCOA4 in ferroptosis of intestinal epithelial cells induced by II/R injury in mouse. 2. To investigate the mechanism of action of NCOA4-induced ferroptosis. METHODS: 1. Construct a mouse II/R injury model and detect ferroptosis related markers such as HE staining, immunohistochemistry, ELISA, and WB methods. 2. Detect expression of NCOA4 in the intestine of mouse with II/R injury model and analyze its correlation with intestinal ferroptosis in mouse with II/R injury model. 3. Construct an ischemia-reperfusion model at the cellular level through hypoxia and reoxygenation, and overexpress/knockdown NCOA4 to detect markers related to ferroptosis. Based on animal experimental results, analyze the correlation and mechanism of action between NCOA4 and intestinal epithelial ferroptosis induced by II/R injury in mouse. RESULTS: 1. Ferroptosis occurred in the intestinal epithelial cells of II/R-injured mouse, and the expression of critical factors of ferroptosis, ACSL4, MDA and 15-LOX, was significantly increased, while the levels of GPX4 and GSH were significantly decreased. 2. The expression of NCOA4 in the intestinal epithelium of mouse with II/R injure was significantly increased, the expression of ferritin was significantly decreased, and the level of free ferrous ions was significantly increased; the expression of autophagy-related proteins LC3 and Beclin-1 protein was increased, and the expression of P62 was decreased, and these changes were reversed by autophagy inhibitors. 3. Knockdown of NCOA4 at the cellular level resulted in increased ferritin expression and decreased ferroptosis, and CO-IP experiments suggested that NCOA4 can bind to ferritin, which suggests that NCOA4 most likely mediates ferritinophagy to induce ferroptosis. CONCLUSION: This thesis explored the role of NCOA4 in II/R injury in mice and the mechanism of action. The research results suggest that NCOA4 can mediate ferritinophagy to induce ferroptosis during II/R injury. This experiment reveals the pathological mechanism of II/R injury and provides some scientific basis for the development of drugs for the treatment of II/R injury based on the purpose of alleviating ferroptosis.


Assuntos
Ferroptose , Coativadores de Receptor Nuclear , Traumatismo por Reperfusão , Animais , Ferroptose/fisiologia , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/patologia , Modelos Animais de Doenças , Ferro/metabolismo , Ferritinas/metabolismo
5.
J Pharm Pharmacol ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538077

RESUMO

OBJECTIVES: Intestinal ischemia reperfusion (IIR) is a critical emergency situation that needs immediate intervention. Small intestine is one of the most sensitive tissues to IR injury and it remains a highly morbid condition, with reported mortality rates ranging from 30% to 90%. Thus, we aimed to evaluate the suspected protective role of sacubitril/valsartan (SAC/VAL) on IIR injury. METHODS: Thirty-two adult male Wistar rats were used in our model and divided into four groups: sham group, SAC/VAL treated group without IIR, IIR group, and SAC/VAL treated group with IIR. SAC/VAL in a dose of 30 mg/kg was administered orally just before induction of IIR. KEY FINDINGS: SAC/VAL significantly ameliorated IIR-induced changes as it decreased malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), angiotensin II (ANG II), interleukin 6 (IL 6), active caspase 3, and signal transducer- and activator-of transcription (STAT1). However, SAC/VAL administration significantly increased antioxidant parameters such as total antioxidant capacity (TAC), superoxide dismutase (SOD), and reduced glutathione (GSH). Moreover, alteration of the histological structure was observed in IIR group that was improved by SAC/VAL. CONCLUSIONS: SAC/VAL prevents IIR-induced damage via modulation of renin angiotensin aldosterone system, antioxidant, anti-apoptotic, anti-inflammatory properties, and regulation of IL6/STAT1 pathway.

6.
Int Immunopharmacol ; 132: 111900, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531200

RESUMO

The precise mechanism of ferroptosis as a regulatory cell death in intestinal ischemia injury induced by vascular intestinal obstruction (Vio) remains to be elucidated. Here, we evaluated iron levels, glutathione peroxidase 4 (GPX4) and Acyl-CoA synthetase long-chain family member 4 (ACSL4) changes after intestinal ischemia injury to validate ferroptosis. As an enzyme for Fe3+ reduction to Fe2+, Ferric Chelate Reductase 1 (FRRS1) is involved in the electron transport chain and the tricarboxylic acid (TCA) cycle in mitochondria. However, whether it is involved in ferroptosis and its role in intestinal ischemia injury need to be clarified. In the present study, FRRS1 was overexpressed in vivo and in vitro. The results showed that overexpression of FRRS1 prevented ischemia-induced iron levels, reactive oxygen species (ROS) production, lipid peroxidation, inflammatory responses, and cell death. Meanwhile, FRRS1 overexpression promoted GPX4 expression and suppressed ACSL4 levels. Further studies revealed that FRRS1 overexpression inhibited the activity of large tumor suppressor 1 (LATS1) / Yes-associated protein (YAP) / transcriptional co-activator with PDZ-binding motif (TAZ), a key component of Hippo signaling. In conclusion, this study demonstrates that FRRS1 is intimately involved in the inhibition of ferroptosis and thus protection of the intestine from intestinal ischemia injury, its downstream mechanism was related to Hippo signaling. These data provide new sight for the prevention and treatment of intestinal ischemia injury.


Assuntos
Coenzima A Ligases , Ferroptose , Via de Sinalização Hippo , Intestinos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Animais , Camundongos , Masculino , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Intestinos/patologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Isquemia/metabolismo , Proteínas de Sinalização YAP/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos
7.
Int J Surg Case Rep ; 116: 109328, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38320416

RESUMO

INTRODUCTION AND IMPORTANCE: Pneumatosis cystoides intestinalis (PCI) is an uncommon condition characterized by intramural gas accumulation in the intestinal submucosa. Idiopathic or secondary is presented with non-specific clinical signs; in some cases, diagnosis is incidental. Its acute presentation is uncommon, and surgical management could be performed in selected cases. CASE PRESENTATION: We present the case of an 85-year-old woman with 3 days of abdominal pain, 6 months of weight loss, and abdominal distension after meals. Abdominal computed tomography evidenced PCI at the small intestine with changes due to intestinal ischemia and internal mesenteric hernia. Intestinal resection and lateral-lateral mechanical anastomosis were performed with no complications after 90 days of follow-up. CLINICAL DISCUSSION: PCI is an infrequent and benign condition; pathophysiology is, to date, poorly understood. Idiopathic or secondary to other gastrointestinal pathologies are described. The final diagnosis is performed with histopathological analysis. Nevertheless, in some cases, the benign nature could be presented as an acute abdomen, and surgical management should be in the physician's armamentarium. CONCLUSION: PCI is an uncommon and benign entity. Nevertheless, in some cases, it could be presented as an acute abdomen. The surgical approach is appropriate, safe, and feasible.

8.
Free Radic Biol Med ; 214: 115-128, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331008

RESUMO

Sestrins are metabolic regulators that respond to stress by reducing the levels of reactive oxygen species (ROS) and inhibiting the activity of target of rapamycin complex 1 (mTORC1). Previous research has demonstrated that Sestrin2 mitigates ischemia-reperfusion (IR) injury in the heart, liver, and kidneys. However, its specific role in intestinal ischemia-reperfusion (IIR) injury remains unclear. To elucidate the role of Sestrin2 in IIR injury, we conducted an experimental study using a C57BL/6J mouse model of IIR. We noticed an increase in the levels of Sestrin2 expression and indicators associated with ferroptosis. Our study revealed that manipulating Sestrin2 expression in Caco-2 cells through overexpression or knockdown resulted in a corresponding decrease or increase, respectively, in ferroptosis levels. Furthermore, our investigation revealed that Sestrin2 alleviated ferroptosis caused by IIR injury through the activation of the Keap1/Nrf2 signal pathway. This finding highlights the potential of Sestrin2 as a therapeutic target for alleviating IIR injury. These findings indicated that the modulation of Sestrin2 could be a promising strategy for managing prolonged IIR injury.


Assuntos
Ferroptose , Isquemia Mesentérica , Traumatismo por Reperfusão , Animais , Humanos , Camundongos , Células CACO-2 , Ferroptose/genética , Isquemia , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Reperfusão , Traumatismo por Reperfusão/genética , Transdução de Sinais
9.
J Surg Res ; 296: 603-611, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38350299

RESUMO

INTRODUCTION: Ischemic gut injury is common in the intensive care unit, impairs gut barrier function, and contributes to multiorgan dysfunction. One novel intervention to mitigate ischemic gut injury is the direct luminal delivery of oxygen microbubbles (OMB). Formulations of OMB can be modified to control the rate of oxygen delivery. This project examined whether luminal delivery of pectin-modified OMB (OMBp5) can reduce ischemic gut injury in a rodent model. METHODS: The OMBp5 formulation was adapted to improve delivery of oxygen along the length of small intestine. Adult Sprague-Dawley rats (n = 24) were randomly allocated to three groups: sham-surgery (SS), intestinal ischemia (II), and intestinal ischemia plus luminal delivery of OMBp5 (II + O). Ischemia-reperfusion injury was induced by superior mesenteric artery occlusion for 45 min followed by reperfusion for 30 min. Outcome data included macroscopic score of mucosal injury, the histological score of gut injury, and plasma biomarkers of intestinal injury. RESULTS: Macroscopic, microscopic data, and intestinal injury biomarker results demonstrated minimal intestinal damage in the SS group and constant damage in the II group. II + O group had a significantly improved macroscopic score throughout the gut mucosa (P = 0.04) than the II. The mean histological score of gut injury for the II + O group was significantly improved on the II group (P ≤ 0.01) in the proximal intestine only, within 30 cm of delivery. No differences were observed in plasma biomarkers of intestinal injury following OMBp5 treatment. CONCLUSIONS: This proof-of-concept study has demonstrated that luminal OMBp5 decreases ischemic injury to the proximal small intestine. There is a need to improve oxygen delivery over the full length of the intestine. These findings support further studies with clinically relevant end points, such as systemic inflammation and vital organ dysfunction.


Assuntos
Isquemia Mesentérica , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Roedores , Pectinas , Microbolhas , Isquemia/etiologia , Isquemia/terapia , Isquemia/patologia , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , Isquemia Mesentérica/etiologia , Isquemia Mesentérica/terapia , Isquemia Mesentérica/patologia , Biomarcadores , Mucosa Intestinal/patologia , Intestinos/patologia
10.
J Biophotonics ; 17(4): e202300382, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38247043

RESUMO

In acute intestinal ischemia, the progression of ischemia varies across different layers of intestinal tissue. We established a mouse model and used swept-source optical coherence tomography (OCT) to observe the intestinal ischemic process longitudinally in different tissue layers. Employing a method that combines asymmetric gradient filtering with adaptive weighting, we eliminated the vessel trailing phenomenon in OCT angiograms, reducing the confounding effects of superficial vessels on the imaging of deeper vasculature. We quantitatively assessed changes in vascular perfusion density (VPD), vessel length, and vessel average diameter across various intestinal layers. Our results showed a significant reduction in VPD in all layers during ischemia. The mucosa layer experienced the most significant impact, primarily due to disrupted capillary blood flow, followed by the submucosa layer, where vascular constriction or decreased velocity was the primary factor.


Assuntos
Angiografia , Tomografia de Coerência Óptica , Animais , Camundongos , Tomografia de Coerência Óptica/métodos , Angiografia/métodos , Capilares , Intestinos/diagnóstico por imagem , Isquemia/diagnóstico por imagem
11.
J Agric Food Chem ; 72(4): 2202-2213, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38247134

RESUMO

Intestinal ischemia-reperfusion (I/R) injury is a serious disease in medical settings, and gut dysbiosis is a major contributor to its development. Polysaccharides from Agaricus blazei Murill (ABM) showed a range of pharmacological activities, yet no studies assessed the potential of ABM polysaccharides for alleviating intestinal I/R injury. Here, we purified a major polysaccharide (ABP1) from an ABM fruit body and subsequently tested its potential to mitigate intestinal I/R injury in a mouse model of temporary superior mesenteric artery occlusion. The results reveal that ABP1 pretreatment enhances gut barrier function via upregulation of the expression of tight junction proteins such as ZO-1 and occludin. Additionally, ABP1 intervention reduces the recruitment of neutrophils and the polarization of M1 macrophages and limits inflammation by blocking the assembly of the NLRP3 inflammasome. Moreover, the role of ABP1 in regulating the gut microbiota was confirmed via antibiotic treatment. The omics data reveals that ABP1 reprograms gut microbiota compositions, characterized by a decrease of Proteobacteria and an increase of Lachnospiraceae and Lactobacillaceae, especially the SCFA-producing genera such as Ligilactobacillus and Blautia. Overall, this work highlights the therapeutic potential of ABP1 against intestinal I/R injury, which mainly exhibits its effects via regulating the gut microbiota and suppressing the overactivated inflammation response.


Assuntos
Agaricus , Microbioma Gastrointestinal , Traumatismo por Reperfusão , Camundongos , Animais , Polissacarídeos/farmacologia , Inflamação/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Isquemia
12.
Biomed Pharmacother ; 170: 115984, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070244

RESUMO

In recent years, the incidence of intestinal ischemia-reperfusion injury (II/RI), inflammatory bowel disease (IBD), and colorectal cancer (CRC) has been gradually increasing, posing significant threats to human health. Autophagy and endoplasmic reticulum stress (ERS) play important roles in II/RI. Damage caused by ischemia and cellular stress can activate ERS, which in turn initiates autophagy to clear damaged organelles and abnormal proteins, thereby alleviating ERS and maintaining the intestinal environment. In IBD, chronic inflammation damages intestinal tissues and activates autophagy and ERS. Autophagy is initiated by upregulating ATG genes and downregulating factors that inhibit autophagy, thereby clearing abnormal proteins, damaged organelles, and bacteria. Simultaneously, persistent inflammatory stimulation can also trigger ERS, leading to protein imbalance and abnormal folding in the ER lumen. The activation of ERS can maintain cellular homeostasis by initiating the autophagy process, thereby reducing inflammatory responses and cell apoptosis in the intestine. In CRC, excessive cell proliferation and protein synthesis lead to increased ERS. The activation of ERS, regulated by signaling pathways such as IRE1α and PERK, can initiate autophagy to clear abnormal proteins and damaged organelles, thereby reducing the negative effects of ERS. It can be seen that autophagy and ERS play a crucial regulatory role in the development of intestinal diseases. Therefore, the progress in targeted therapy for intestinal diseases based on autophagy and ERS provides novel strategies for managing intestinal diseases. In this paper, we review the advances in regulation of autophagy and ERS in intestinal diseases, emphasizing the potential molecular mechanisms for therapeutic applications.


Assuntos
Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Traumatismo por Reperfusão , Humanos , Endorribonucleases , Proteínas Serina-Treonina Quinases , Estresse do Retículo Endoplasmático/fisiologia , Intestinos , Apoptose/genética , Traumatismo por Reperfusão/metabolismo , Autofagia/fisiologia
13.
Kaohsiung J Med Sci ; 40(2): 175-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010861

RESUMO

Intestinal ischemia/reperfusion (I/R) injury is a life-threatening condition with no effective treatment currently available. Curcumin (CCM), a polyphenol compound in Curcuma Longa, reportedly has positive effects against intestinal I/R injury. However, the mechanism underlying the protective effect of CCM against intestinal I/R injury has not been fully clarified. To determine whether the protective effect of CCM was mediated by epigenetic effects on Wnt/ß-catenin signaling, the effect of CCM was examined in vivo and in vitro. An intestinal I/R model was established in Sprague-Dawley (SD) rats with superior mesenteric artery occlusion, and Caco-2 cells were subjected to hypoxia/reoxygenation (H/R) for in vivo simulation of I/R. The results showed that CCM significantly reduced inflammatory, cell apoptosis, and oxidative stress induced by I/R insult in vivo and in vitro. Western blot analysis showed that CCM preconditioning reduced the protein levels of ß-catenin, p-GSK3ß, and cyclin-D1 and increased the protein level of GSK3ß compared with the I/R group. Overexpressing ß-catenin aggravated H/R injury, and knocking down ß-catenin relieved H/R injury by improving intestinal permeability and reducing the cell apoptosis. Moreover, Naked cuticle homolog 2(NKD2) mRNA and protein levels were upregulated in the CCM-pretreated group. 5-aza-2'-deoxycytidine (5-AZA) treatment improved intestinal epithelial barrier impairment induced by H/R. Besides, the protein levels of total ß-catenin, phosphor-ß-catenin and cyclin-D1 were reduced after overexpressing NKD2 in Caco-2 cells following H/R insult. In conclusion, Our study suggests that CCM could attenuate intestinal I/R injury in vitro and in vivo by suppressing the Wnt/ß-catenin signaling pathway via inhibition of NKD2 methylation.


Assuntos
Curcumina , Traumatismo por Reperfusão , Ratos , Humanos , Animais , Ratos Sprague-Dawley , beta Catenina/genética , beta Catenina/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Via de Sinalização Wnt/genética , Células CACO-2 , Glicogênio Sintase Quinase 3 beta/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Metilação , Isquemia , Ciclinas/metabolismo , Ciclinas/farmacologia , Apoptose , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
14.
J Control Release ; 366: 182-193, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38145659

RESUMO

Intestinal ischemia reperfusion injury (II/R injury) is a common and intractable pathophysiological process in critical patients, for which exploring new treatments and mechanisms is of great importance to improve treatment outcomes. Apigenin-7-O-Glucoside (AGL) is a sugar derivative of apigenin natural product with various pharmacological activities to protect against intestinal diseases. In this study, we synthesized two amphiphilic molecules, namely DTPA-N10-10 and mPEG-TK-DA, which can scavenge free radicals and reactive oxygen species (ROS). They were successfully encapsulated AGL through self-assembly, resulting in the formation of multi-site ROS scavenging nanoparticles called PDN@AGL. In vitro and in vivo experiments demonstrated that PDN@AGL could protect intestinal tissues by reducing lipid peroxidation, lowering ROS levels and inhibiting ferroptosis during II/R injury. Furthermore, our study revealed, for the first time, that the regulation of the ATF3/SLC7A11 pathway by PDN@AGL may play a crucial role in mitigating II/R injury. In conclusion, our study confirmed the beneficial effects of PDN@AGL in combating II/R injury through the ATF3/SLC7A11-mediated regulation of ferroptosis and oxidative stress. These findings lay the groundwork for the potential application of PDN@AGL in the treatment of II/R injury.


Assuntos
Fator 3 Ativador da Transcrição , Sistema y+ de Transporte de Aminoácidos , Apigenina , Ferroptose , Intestinos , Nanopartículas , Traumatismo por Reperfusão , Humanos , Apigenina/administração & dosagem , Apigenina/farmacologia , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão/tratamento farmacológico , Intestinos/irrigação sanguínea
15.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G228-G246, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38147796

RESUMO

Ischemic damage to the intestinal epithelial barrier, such as in necrotizing enterocolitis or small intestinal volvulus, is associated with higher mortality rates in younger patients. We have recently reported a powerful pig model to investigate these age-dependent outcomes in which mucosal barrier restitution is strikingly absent in neonates but can be rescued by direct application of homogenized mucosa from older, juvenile pigs by a yet-undefined mechanism. Within the mucosa, a postnatally developing network of enteric glial cells (EGCs) is gaining recognition as a key regulator of the mucosal barrier. Therefore, we hypothesized that the developing EGC network may play an important role in coordinating intestinal barrier repair in neonates. Neonatal and juvenile jejunal mucosa recovering from surgically induced intestinal ischemia was visualized by scanning electron microscopy and the transcriptomic phenotypes were assessed by bulk RNA sequencing. EGC network density and glial activity were examined by Gene Set Enrichment Analysis, three-dimensional (3-D) volume imaging, and Western blot and its function in regulating epithelial restitution was assessed ex vivo in Ussing chamber using the glia-specific inhibitor fluoroacetate (FA), and in vitro by coculture assay. Here we refine and elaborate our translational model, confirming a neonatal phenotype characterized by a complete lack of coordinated reparative signaling in the mucosal microenvironment. Furthermore, we report important evidence that the subepithelial EGC network changes significantly over the early postnatal period and demonstrate that the proximity of a specific functional population of EGC to wounded intestinal epithelium contributes to intestinal barrier restitution following ischemic injury.NEW & NOTEWORTHY This study refines a powerful translational pig model, defining an age-dependent relationship between enteric glia and the intestinal epithelium during intestinal ischemic injury and confirming an important role for enteric glial cell (EGC) activity in driving mucosal barrier restitution. This study suggests that targeting the enteric glial network could lead to novel interventions to improve recovery from intestinal injury in neonatal patients.


Assuntos
Intestino Delgado , Neuroglia , Humanos , Animais , Recém-Nascido , Suínos , Neuroglia/fisiologia , Intestinos , Mucosa Intestinal , Jejuno , Isquemia
16.
Arch Med Sci ; 19(6): 1889-1900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38058713

RESUMO

Introduction: Pediatric intussusception is one of the most common causes of bowel obstruction in the pediatric population. Affected children have one section of the intestine sliding into the adjacent section. Intestinal ischemia-reperfusion injury (I/R) can occur during pediatric intussusception, and any delay in diagnosis or treatment can lead to loss of intestinal viability that requires bowel resection. The aim of the present study was to investigate whether transfer ribonucleic acid (tRNA)-derived fragments (tRFs) can serve as candidate biomarkers for pediatric intussusception. Material and methods: Using high-throughput sequencing technology, we identified differentially expressed tRFs, and ultimately selected three tRFs to establish a signature as a predictive biomarker of pediatric intussusception. Selection of these three upregulated genes was verified using quantitative reverse-transcription polymerase chain reaction (qRT-PCR). We conducted receiver operator characteristic (ROC) curve analysis to evaluate the predictive accuracy of the selected genes for pediatric intussusception. Results: We detected 732 tRFs and tRNA-derived stress-induced RNA (tiRNAs), 1705 microRNAs (miRNAs), 52 differentially expressed miRNAs, and 34 differentially expressed tRFs and tiRNAs between patients and controls. Compared with controls, we found 33 upregulated miRNAs, 24 upregulated tRFs and tiRNAs, 19 downregulated miRNAs, and 10 downregulated tRFs and tiRNAs in children with intussusception. Using qPCR, the expression trends of tRF-Leu-TAA-006, tRF-Gln-TTG-033 and tRF-Lys-TTT-028 were consistent with the sequencing results. AUCs of tRF-Leu-TAA-006, tRF-Gln-TTG-033 and tRF-Lys-TTT-028 were 0.984, 0.970 and 0.837, respectively. Conclusions: Circulating tRF-Leu-TAA-006, tRF-Gln-TTG-033 and tRF-Lys-TTT-028 expression might be a novel potential biomarker for diagnosis of pediatric intussusception.

17.
Rev. Fac. Med. UNAM ; 66(6): 29-34, nov.-dic. 2023. graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1535224

RESUMO

Resumen La isquemia mesentérica aguda se asocia a una mortalidad de entre el 50 y el 100%, la causa más rara de esta es la trombosis venosa de los vasos mesentéricos (5%) y portal (1%). Las manifestaciones clínicas son diversas, siendo el dolor abdominal el principal síntoma. La tomografía computarizada con contraste intravenoso en fase portal es la imagen más precisa para el diagnóstico. El tratamiento en fase aguda se basa en anticoagulación, fluidos intravenosos, antibióticos profilácticos, descanso intestinal y descompresión. La laparotomía de control de daños, incluida la resección intestinal y el abdomen abierto, pueden estar justificados en última instancia para pacientes con necrosis intestinal y sepsis. Caso clínico: Hombre de 35 años, sin antecedentes de importancia, solo tabaquismo desde hace 15 años. Refirió que 5 días previos comenzó a presentar dolor en el epigastrio tipo cólico, de intensidad moderada, posteriormente refirió que el dolor se generalizó y aumentó de intensidad, acompañado de náusea, vómito, intolerancia a la vía oral y alza térmica. Al examen físico tuvo datos de respuesta inflamatoria sistémica, estaba consciente y orientado, con abdomen doloroso a la palpación superficial y profunda a nivel generalizado, pero acentuado en el flanco derecho, rebote positivo con resistencia, timpanismo generalizado, peristalsis ausente. Se ingresó a quirófano a laparotomía exploradora, encontrando lesión a intestinal isquémica-necrótica a 190-240 cm del ángulo de Treitz, y 400 cc de líquido hemático; se realizó resección de la parte intestinal afectada, con entero-enteroanastomosis término-terminal manual. Se envió pieza a patología, y se reportó un proceso inflamatorio agudo con necrosis transmural y congestión vascular. Ante estos hallazgos se realizó angiotomografía abdominal que reportó defecto de llenado en la vena mesentérica superior, secundario a trombosis que se extendía hasta la confluencia y la vena porta. Conclusión: La trombosis venosa mesentérica y portal es una patología muy infrecuente en pacientes jóvenes sin factores de riesgo en los que se presenta dolor abdominal. El diagnóstico es complejo debido a que los datos clínicos y de laboratorio son poco específicos. Sin embargo, debemos tenerla en cuenta en el diagnóstico diferencial de etiologías de dolor abdominal.


Abstract Acute Mesenteric Ischemia is associated with a mortality rate between 50% and 100%; the rarest cause of this is venous thrombosis of the mesenteric (5%) and portal (1%) vessels. The clinical manifestations are diverse, with abdominal pain being the main symptom. Computed tomography with intravenous contrast in the portal phase is the most accurate image for diagnosis. Treatment in the acute phase is based on anticoagulation, intravenous fluids, prophylactic antibiotics, intestinal rest, and decompression. Damage control laparotomy, including bowel resection and open abdomen, may ultimately be warranted for patients with bowel necrosis and sepsis. Clinical case: 35-year-old man, with no significant history, only smoking for 15 years. For 5 days before, he reported crampy epigastric pain of moderate intensity. He subsequently reported that the pain became generalized and increased in intensity, accompanied by nausea, vomiting, oral intolerance, and temperature rise. The physical examination showed signs of a systemic inflammatory response, conscious and oriented, abdomen painful on superficial and deep palpation at a generalized level but accentuated on the right flank, positive rebound with resistance, generalized tympanism, absent peristalsis. The operating room was entered for exploratory laparotomy, finding an ischemic-necrotic intestinal lesion at 190 - 240 cm from the angle of Treitz, and 400cc of blood fluid. Resection of the affected intestinal part is performed, with entire manual terminal end anastomosis. The specimen was sent to pathology, reporting an acute inflammatory process with transmural necrosis and vascular congestion. Given these findings, abdominal CT angiography was performed, which reported a filling defect in the superior mesenteric vein, secondary to thrombosis that extended to the confluence and the portal vein. Conclusion: Mesenteric and portal venous thrombosis is a very rare pathology in young patients without risk factors in whom abdominal pain occurs. The diagnosis is complex because the clinical and laboratory data are not very specific. However, we must take it into account in the differential diagnosis of abdominal pain etiologies.

18.
Life Sci ; 334: 122234, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931744

RESUMO

Intestinal ischemia-reperfusion (IIR) injury is associated with inflammation and oxidative stress, yet its precise mechanisms remain not fully understood. IIR injury is closely linked to the gut microbiota and its metabolites. The anti-inflammatory and antioxidant effects of Lactiplantibacillus plantarum are specific to IIR. In our study, we conducted a 30-day pre-treatment of SD rats with both a standard strain of Lactiplantibacillus plantarum and Lactiplantibacillus plantarum GL001. After a 7-day cessation of treatment, we induced an IIR injury model to investigate the mechanisms by which Lactiplantibacillus plantarum alleviates IIR damage. The results demonstrate that Lactiplantibacillus plantarum effectively mitigates the inflammatory and oxidative stress damage induced by IIR. Lactiplantibacillus plantarum GL001 can improve the gut microbiota by reducing the abundance of harmful bacteria and increasing the abundance of beneficial bacteria. In IIR intestinal tissue, the levels of secondary bile acids are elevated. The content of the bacterial metabolite Calcimycin increases. Annotations of metabolic pathways suggest that Lactiplantibacillus plantarum GL001 can alleviate IIR damage by modulating calcium-phosphorus homeostasis through the regulation of parathyroid hormone synthesis, secretion, and action. Microbiota-metabolite correlation analysis reveals a significant negative correlation between calcimycin and Lactonacillus and a significant positive correlation between calcimycin and Shigella. There is also a significant positive correlation between calcimycin and secondary bile acids. Lactiplantibacillus plantarum GL001 can alleviate oxidative damage induced by IIR through improvements in gut microbiota and intestinal tissue metabolism.


Assuntos
Estresse Oxidativo , Traumatismo por Reperfusão , Ratos , Animais , Calcimicina/farmacologia , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Bactérias , Ácidos e Sais Biliares
19.
Aging (Albany NY) ; 15(22): 12852-12872, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37955663

RESUMO

Intestinal ischemia/reperfusion injury (IIRI) has the potential to be life threatening and is associated with significant morbidity and serious damage to distant sites in the body on account of disruption of the intestinal mucosal barrier. In the present study, we have explored this line of research by comparing and identifying peptides that originated from the intestinal segments of IIRI model rats by using liquid chromatography-mass spectrometry (LC-MS). We also analyzed the basic characteristics, cleavage patterns, and functional domains of differentially expressed peptides (DEPs) between the IIRI model rats and control (sham-operated) rats and identified bioactive peptides that are potentially associated with ischemia reperfusion injury. We also performed bioinformatics analyses in order to identify the biological roles of the DEPs based on their precursor proteins. Enrichment analysis demonstrated the role of several DEPs in impairment of the intestinal mucosal barrier caused by IIRI. Based on the results of comprehensive ingenuity pathway analysis, we identified the DEPs that were significantly correlated with IIRI. We identified a candidate precursor protein (Actg2) and seven of its peptides, and we found that Actg2-6 had a more significant difference in its expression, a longer half-life, and better lipophilicity, hydrophobicity, and stability than the other candidate Actg2 peptides examined. Furthermore, we observed that Actg2-6 might play critical roles in the protection of the intestinal mucosal barrier during IIRI. In summary, our study provides a better understanding of the peptidomics profile of IIRI, and the results indicate that Actg2-6 could be a useful target in the treatment of IIRI.


Assuntos
Intestinos , Traumatismo por Reperfusão , Ratos , Animais , Mucosa Intestinal/metabolismo , Traumatismo por Reperfusão/metabolismo , Isquemia , Peptídeos
20.
Int J Mol Sci ; 24(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834329

RESUMO

Intestinal ischemia is a potentially catastrophic emergency, with a high rate of morbidity and mortality. Currently, no specific pharmacological treatments are available. Previous work demonstrated that pre-treatment with obeticholic acid (OCA) protected against ischemia reperfusion injury (IRI). Recently, a more potent and water-soluble version has been synthesized: Intercept 767 (INT-767). The aim of this study was to investigate if intravenous treatment with INT-767 can improve outcomes after IRI. In a validated rat model of IRI (60 min ischemia + 60 min reperfusion), three groups were investigated (n = 6/group): (i) sham: surgery without ischemia; (ii) IRI + vehicle; and (iii) IRI + INT-767. The vehicle (0.9% NaCl) or INT-767 (10 mg/kg) were administered intravenously 15 min after start of ischemia. Endpoints were 7-day survival, serum injury markers (L-lactate and I-FABP), histology (Park-Chiu and villus length), permeability (transepithelial electrical resistance and endotoxin translocation), and cytokine expression. Untreated, IRI was uniformly lethal by provoking severe inflammation and structural damage, leading to translocation and sepsis. INT-767 treatment significantly improved survival by reducing inflammation and preserving intestinal structural integrity. This study demonstrates that treatment with INT-767 15 min after onset of intestinal ischemia significantly decreases IRI and improves survival. The ability to administer INT-767 intravenously greatly enhances its clinical potential.


Assuntos
Ácidos e Sais Biliares , Intestinos , Receptores Citoplasmáticos e Nucleares , Receptores Acoplados a Proteínas G , Traumatismo por Reperfusão , Animais , Ratos , Inflamação/tratamento farmacológico , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Traumatismo por Reperfusão/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Ácidos e Sais Biliares/uso terapêutico , Intestinos/irrigação sanguínea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...