Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 579
Filtrar
1.
J Anim Ecol ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773788

RESUMO

Testing for intraspecific variation for host tolerance or resistance in wild populations is important for informing conservation decisions about captive breeding, translocation, and disease treatment. Here, we test the importance of tolerance and resistance in multiple populations of boreal toads (Anaxyrus boreas boreas) against Batrachochytrium dendrobatidis (Bd), the amphibian fungal pathogen responsible for the greatest host biodiversity loss due to disease. Boreal toads have severely declined in Colorado (CO) due to Bd, but toad populations challenged with Bd in western Wyoming (WY) appear to be less affected. We used a common garden infection experiment to expose post-metamorphic toads sourced from four populations (2 in CO and 2 in WY) to Bd and monitored changes in mass, pathogen burden and survival for 8 weeks. We used a multi-state modelling approach to estimate weekly survival and transition probabilities between infected and cleared states, reflecting a dynamic infection process that traditional approaches fail to capture. We found that WY boreal toads are more tolerant to Bd infection with higher survival probabilities than those in CO when infected with identical pathogen burdens. WY toads also appeared more resistant to Bd with a higher probability of infection clearance and an average of 5 days longer to reach peak infection burdens. Our results demonstrate strong intraspecific differences in tolerance and resistance that likely contribute to why population declines vary regionally across this species. Our multi-state framework allowed us to gain inference on typically hidden disease processes when testing for host tolerance or resistance. Our findings demonstrate that describing an entire host species as 'tolerant' or 'resistant' (or lack thereof) is unwise without testing for intraspecific variation.

2.
Ecol Lett ; 27(5): e14435, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735857

RESUMO

A long-standing debate exists among ecologists as to how diversity regulates infectious diseases (i.e., the nature of diversity-disease relationships); a dilution effect refers to when increasing host diversity inhibits infectious diseases (i.e., negative diversity-disease relationships). However, the generality, strength, and potential mechanisms underlying negative diversity-disease relationships in natural ecosystems remain unclear. To this end, we conducted a large-scale survey of 63 grassland sites across China to explore diversity-disease relationships. We found widespread negative diversity-disease relationships that were temperature-dependent; non-random diversity loss played a fundamental role in driving these patterns. Our study provides field evidence for the generality and temperature dependence of negative diversity-disease relationships in grasslands, becoming stronger in colder regions, while also highlighting the role of non-random diversity loss as a mechanism. These findings have important implications for community ecology, disease ecology, and epidemic control.


Assuntos
Biodiversidade , Pradaria , Doenças das Plantas , Temperatura , China , Doenças das Plantas/microbiologia , Fungos/fisiologia , Folhas de Planta/microbiologia , Poaceae/microbiologia , Poaceae/fisiologia
3.
Ecol Evol ; 14(5): e11316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38694757

RESUMO

Widespread species experience a variety of climates across their distribution, which can structure their thermal tolerance, and ultimately, responses to climate change. For ectotherms, activity is highly dependent on temperature, its variability and availability of favourable microclimates. Thermal exposure and tolerance may be structured by the availability and heterogeneity of microclimates for species living along temperature and/or precipitation gradients - but patterns and mechanisms underlying such gradients are poorly understood. We measured critical thermal limits (CTmax and CTmin) for five populations of two sympatric lizard species, a nocturnal gecko (Chondrodactylus bibronii) and a diurnal skink (Trachylepis variegata) and recorded hourly thermal variation for a year in three types of microclimate relevant to the activity of lizards (crevice, full sun and partial shade) for six sites across a precipitation gradient. Using a combination of physiological and modelling approaches, we derived warming tolerance for the present and the end of the century. In the present climate, we found an overall wider thermal tolerance for the nocturnal species relative to the diurnal species, and no variation in CTmax but variable CTmin along the precipitation gradient for both species. However, warming tolerances varied significantly over the course of the day, across months and microhabitats. The diurnal skink was most restricted in its daily activity in the three driest sites with up to six daily hours of restricted activity in the open (i.e. outside refugia) during the summer months, while the impacts for the nocturnal gecko were less severe, due to its higher CTmax and night activity. With climate change, lizards will experience more months where activity is restricted and increased exposure to high temperatures even within the more sheltered microhabitats. Together our results highlight the importance of considering the relevant spatiotemporal scale and habitat for understanding the thermal exposure of diurnal and nocturnal species.

4.
J Anim Ecol ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38706400

RESUMO

1. Individual niche specialization is widespread in natural populations and has key implications for higher levels of biological organization. This phenomenon, however, has been primarily quantified in resource niche axes, overlooking individual variation in environmental associations (i.e. abiotic conditions organisms experience). 2. Here, we explore what we can learn from a multidimensional perspective of individual niche specialization that integrates resource use and environmental associations into a common framework. 3. By combining predictions from theory and simple simulations, we illustrate how (i) multidimensional intraspecific niche variation and (ii) the spatiotemporal context of interactions between conspecifics scale up to shape emergent patterns of the population niche. 4. Contemplating individual specialization as a multidimensional, unifying concept across biotic and abiotic niche axes is a fundamental step towards bringing this concept closer to the n-dimensional niche envisioned by Hutchinson.


1. A especialização individual de nicho é prevalente em populações naturais e tem implicações importantes para níveis de organização biológica superiores. Esse fenômeno, entretanto, tem sido principalmente quantificado em eixos do nicho que representam o uso de recursos, negligenciando a variação individual em associações ambientais (i.e. as condições abióticas que organismos experimentam). 2. Aqui, exploramos o que podemos aprender a partir de uma perspectiva multidimensional da especialização individual que integra o uso de recursos e associações ambientais em uma abordagem única. 3. Ao combinar predições da teoria e simulações simples, ilustramos como (i) a variação intraespecífica multidimensional de nicho e (ii) o contexto espaço­temporal de interações entre conspecíficos podem moldar padrões emergentes do nicho de populações. 4. Encarar a especialização individual como um conceito multidimensional e unificador em eixos do nicho bióticos e abióticos é um passo fundamental na direção de aproximar esse conceito do nicho n­dimensional idealizado por Hutchinson.

5.
Am J Bot ; : e16331, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750661

RESUMO

PREMISE: Soil microbes can influence patterns of diversity in plant communities via plant-soil feedbacks. Intraspecific plant-soil feedbacks occur when plant genotype leads to variations in soil microbial composition, resulting in differences in the performance of seedlings growing near their maternal plants versus seedlings growing near nonmaternal conspecific plants. How consistently such intraspecific plant-soil feedbacks occur in natural plant communities is unclear, especially in variable field conditions. METHODS: In an in situ experiment with four native tree species on Barro Colorado Island (BCI), Panama, seedlings of each species were transplanted beneath their maternal tree or another conspecific tree in the BCI forest. Mortality and growth were assessed at the end of the wet season (~4 months post-transplant) and at the end of the experiment (~7 months post-transplant). RESULTS: Differences in seedling performance among field treatments were inconsistent among species and eroded over time. Effects of field environment were detected at the end of the wet season in two of the four species: Virola surinamensis seedlings had higher survival beneath their maternal tree than other conspecific trees, while seedling survival of Ormosia macrocalyx was higher under other conspecific trees. However, these differences were gone by the end of the experiment. CONCLUSIONS: Our results suggest that intraspecific plant-soil feedbacks may not be consistent in the field for tropical tree species and may have a limited role in determining seedling performance in tropical tree communities. Future studies are needed to elucidate the environmental and genetic factors that determine the incidence and direction of intraspecific plant-soil feedbacks in plant communities.

6.
J Fish Biol ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599588

RESUMO

Understanding recruitment, the process by which individuals are added to a population or to a fishery, is critical for understanding population dynamics and facilitating sustainable fisheries management. Important variation in recruitment dynamics is observed among populations, wherein some populations exhibit asymptotic productivity and others exhibit overcompensation (i.e., compensatory density-dependence in recruitment). Our ability to understand this interpopulation variability in recruitment patterns is limited by a poor understanding of the underlying mechanisms, such as the complex interactions between density dependence, recruitment, and environment. Furthermore, most studies on recruitment are conducted using an observational design with long time series that are seldom replicated across populations in an experimentally controlled fashion. Without proper replication, extrapolations between populations are tenuous, and the underlying environmental trends are challenging to quantify. To address these issues, we conducted a field experiment manipulating stocking densities of juvenile brook trout Salvelinus fontinalis in three wild populations to show that these neighboring populations-which exhibit divergent patterns of density dependence due to environmental conditions-also have important differences in recruitment dynamics. Testing against four stock-recruitment models (density independent, linear, Beverton-Holt, and Ricker), populations exhibited ~twofold variation in asymptotic productivity, with no overcompensation following a Beverton-Holt model. Although environmental variables (e.g., temperature, pH, depth, substrate) correlated with population differences in recruitment, they did not improve the predictive power in individual populations. Comparing our patterns of recruitment with classic salmonid case studies revealed that despite differences in the shape and parameters of the curves (i.e., Ricker vs. Beverton-Holt), a maximum stocking density of about five YOY fish/m2 emerged. Higher densities resulted in very marginal increases in recruitment (Beverton-Holt) or reduced recruitment due to overcompensation (Ricker).

7.
BMC Ecol Evol ; 24(1): 43, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600505

RESUMO

Leaf traits were affected by soil factors and displayed varietal differences in forest. However, few examples have been reported on the Island ecosystems. We comprehensively investigated 9 leaf traits (leaf length, leaf width, leaf area, SLA, leaf fresh weight, leaf C content, leaf N content, leaf K content, leaf C:N ratio) of 54 main subtropical woody species and soil parameters (soil pH, total C content, total N content, total K content, available N content, available P content, available K content and soil moisture) in Neilingding Island, Shenzhen, southern China. Intra-and interspecific variation of leaf traits were measured and their correlations with soil parameters were explored. The interspecific variations of leaf C:N ratio, leaf N content and leaf fresh weight were higher than their intraspecific variations. The intraspecific variation of leaf K content was larger than that of interspecific one, accounting for 80.69% of the total variance. Positive correlations were found among intraspecific coefficients of variations in leaf morphological traits. The correlation analysis between the variation of intraspecific traits and the variation of soil parameters showed that changes in soil factors affected leaf morphology and stoichiometry. The interaction between soil moisture and soil available P content was the key factor on intraspecific variations of leaf traits including leaf area, leaf fresh weight, leaf C and leaf K content. We concluded that leaf traits of plants in the island were tightly related to soil parameters. Soil parameters, especially soil moisture and available P content, affected plant leaf morphology and stoichiometry at the local scale.


Assuntos
Ecossistema , Solo , Solo/química , Florestas , Folhas de Planta/anatomia & histologia , China
8.
Zookeys ; 1196: 79-93, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560095

RESUMO

We describe the complete mitogenomes of the black corals Alternatipathesmirabilis Opresko & Molodtsova, 2021 and Parantipatheslarix (Esper, 1790) (Cnidaria, Anthozoa, Hexacorallia, Antipatharia, Schizopathidae). The analysed specimens include the holotype of Alternatipathesmirabilis, collected from Derickson Seamount (North Pacific Ocean; Gulf of Alaska) at 4,685 m depth and a potential topotype of Parantipatheslarix, collected from Secca dei Candelieri (Mediterranean Sea; Tyrrhenian Sea; Salerno Gulf; Italy) at 131 m depth. We also assemble, annotate and make available nine additional black coral mitogenomes that were included in a recent phylogeny (Quattrini et al. 2023b), but not made easily accessible on GenBank. This is the first study to present and compare two mitogenomes from the same species of black coral (Stauropathesarctica (Lütken, 1871)) and, thus, place minimum boundaries on the expected level of intraspecific variation at the mitogenome level. We also compare interspecific variation at the mitogenome-level across five different specimens of Parantipathes Brook, 1889 (representing at least two different species) from the NE Atlantic and Mediterranean Sea.

9.
J Chem Ecol ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647585

RESUMO

The production of herbivore-induced plant volatiles (HIPVs) is a type of indirect defense used by plants to attract natural enemies and reduce herbivory by insect pests. In many crops little is known about genotypic variation in HIPV production or how this may affect natural enemy attraction. In this study, we identified and quantified HIPVs produced by 10 sorghum (Sorghum bicolor) cultivars infested with a prominent aphid pest, the sorghum aphid (Melanaphis sorghi Theobald). Volatiles were collected using dynamic headspace sampling techniques and identified and quantified using GC-MS. The total amounts of volatiles induced by the aphids did not differ among the 10 cultivars, but overall blends of volatiles differed significantly in composition. Most notably, aphid herbivory induced higher levels of methyl salicylate (MeSA) emission in two cultivars, whereas in four cultivars, the volatile emissions did not change in response to aphid infestation. Dual-choice olfactometer assays were used to determine preference of the aphid parasitoid, Aphelinus nigritus, and predator, Chrysoperla rufilabris, between plants of the same cultivar that were un-infested or infested with aphids. Two aphid-infested cultivars were preferred by natural enemies, while four other cultivars were more attractive to natural enemies when they were free of aphids. The remaining four cultivars elicited no response from parasitoids. Our work suggests that genetic variation in HIPV emissions greatly affects parasitoid and predator attraction to aphid-infested sorghum and that screening crop cultivars for specific predator and parasitoid attractants has the potential to improve the efficacy of biological control.

10.
Microbiol Spectr ; : e0316223, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38661581

RESUMO

Intraspecific genomic diversity brings the potential for an unreported and diverse reservoir of cryptic antibiotic resistance genes in pathogens, as cryptic resistance can occur without major mutations and horizontal transmission. Here, we predicted the differences in the types of antibiotics and genes that induce cryptic and latent resistance between micro-diverse Escherichia coli strains. For example, we hypothesize that known resistance genes will be the culprit of latent resistance within clinical strains. We used a modified functional metagenomics method to induce expression in eight E. coli strains. We found a total of 66 individual genes conferring phenotypic resistance to 11 out of 16 antibiotics. A total of 14 known antibiotic resistance genes comprised 21% of total identified genes, whereas the majority (52 genes) were unclassified cryptic resistance genes. Between the eight strains, 1.2% of core orthologous genes were positive (conferred resistance in at least one strain). Sixty-four percent of positive orthologous genes conferred resistance to only one strain, demonstrating high intraspecific variability of latent resistance genes. Cryptic resistance genes comprised most resistance genes among laboratory and clinical strains as well as natural, semisynthetic, and synthetic antibiotics. Known antibiotic resistance genes primarily conferred resistance to multiple antibiotics from varying origins and within multiple strains. Hence, it is uncommon for E. coli to develop cross-cryptic resistance to antibiotics from multiple origins or within multiple strains. We have uncovered prospective and previously unknown resistance genes as well as antibiotics that have the potential to trigger latent antibiotic resistance in E. coli strains from varying origins.IMPORTANCEIntraspecific genomic diversity may be a driving force in the emergence of adaptive antibiotic resistance. Adaptive antibiotic resistance enables sensitive bacterial cells to acquire temporary antibiotic resistance, creating an optimal window for the development of permanent mutational resistance. In this study, we investigate cryptic resistance, an adaptive resistance mechanism, and unveil novel (cryptic) antibiotic resistance genes that confer resistance when amplified within eight E. coli strains derived from clinical and laboratory origins. We identify the potential of cryptic resistance genes to confer cross-resistance to antibiotics from varying origins and within multiple strains. We discern antibiotic characteristics that promote latent resistance in multiple strains, considering intraspecific diversity. This study may help detect novel resistance genes and functional genes that could become responsible for cryptic resistance among diverse strains and antibiotics, thus also identifying potential novel antibiotic targets and mechanisms.

11.
Ecol Evol ; 14(3): e11080, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455146

RESUMO

Prey selection is a fundamental aspect of ecology that drives evolution and community structure, yet the impact of intraspecific variation on the selection for prey size remains largely unaccounted for in ecological theory. Here, we explored puma (Puma concolor) prey selection across six study sites in North and South America. Our results highlighted the strong influence of season and prey availability on puma prey selection, and the smaller influence of puma age. Pumas in all sites selected smaller prey in warmer seasons following the ungulate birth pulse. Our top models included interaction terms between sex and age, suggesting that males more than females select larger prey as they age, which may reflect experiential learning. When accounting for variable sampling across pumas in our six sites, male and female pumas killed prey of equivalent size, even though males are larger than females, challenging assumptions about this species. Nevertheless, pumas in different study sites selected prey of different sizes, emphasizing that the optimal prey size for pumas is likely context-dependent and affected by prey availability. The mean prey weight across all sites averaged 1.18 times mean puma weight, which was less than predicted as the optimal prey size by energetics and ecological theory (optimal prey = 1.45 puma weight). Our results help refine our understanding of optimal prey for pumas and other solitary carnivores, as well as corroborate recent research emphasizing that carnivore prey selection is impacted not just by energetics but by the effects of diverse ecology.

12.
J Evol Biol ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460029

RESUMO

Intraspecific processes impact macroevolutionary patterns through individual variation, selection, and ecological specialisation. According to the niche variation hypothesis, the broader ecological niche of gen- eralist species results in an increased morphological variation among individuals, either because they are constituted of diversified specialised individuals each exploiting a fraction of the species' niche, or because they are constituted of true generalist individuals that experience relaxed selection. To test this hypoth- esis, we surveyed the individual floral morphology of species of Antillean Gesneriaceae, a group that has transitioned between specialisation for hummingbird pollination and generalisation multiple times throughout its evolutionary history. We characterised the profiles of corollas using geometric morpho- metrics and compared the intraspecific shape variance of specialists and generalists in a phylogenetic context. We used three approaches that differently accounted for the high dimensionality of morphologi- cal traits, the ancestral reconstruction of pollination syndromes over time, and the error associated with the estimation of the intraspecific variance. Our findings provide partial support for the niche variation hypothesis. If considering the whole shape in the analysis corroborated this idea, decomposing the shape into principal components indicated that not all aspects of the corolla exhibit the same pattern of vari- ation. Specifically, pollination generalists tend to display greater intraspecific variation than specialists in terms of tubularity, but not of curvature. Accounting for the error in the variance estimation also reduced the support for the hypothesis, suggesting that larger sample sizes may be required to reach stronger conclusions. This study emphasises the reciprocal influence between plants and their pollinators on floral morphology at different biodiversity scales, and suggests that ecological strategies of species can affect patterns of morphological variation at macroevolutionary scales.

13.
Biol Lett ; 20(3): 20230451, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38442870

RESUMO

Elevated leaf silicon (Si) concentrations improve drought resistance in cultivated plants, suggesting Si might also improve drought performance of wild species. Tropical tree species, for instance, take up substantial amounts of Si, and leaf Si varies markedly at local and regional scales, suggesting consequences for seedling drought resistance. Yet, whether elevated leaf Si improves seedling drought performance in tropical forests is unknown. To manipulate leaf Si concentrations, seedlings of seven tropical tree species were grown in Si-rich and -poor soil, before exposing them to drought in the forest understorey. Survival, growth and wilting were monitored. Elevated leaf Si did not improve drought survival and growth in any of the species. In one species, drought survival was reduced in seedlings previously grown in Si-rich soil, contrary to our expectation. Our results suggest that elevated leaf Si does not improve drought resistance of wild tropical tree species. Elevated leaf Si may even reduce drought performance, suggesting differences in soil conditions influencing leaf Si may contribute to soil-related variation of tropical seedling performance. Furthermore, our results are at odds with most studies on cultivated species and show that alleviative effects of Si in crops cannot be generalized to wild plants in natural systems.


Assuntos
Plântula , Árvores , Secas , Silício/farmacologia , Folhas de Planta , Solo
14.
J Anim Ecol ; 93(4): 488-500, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38459628

RESUMO

As animal home range size (HRS) provides valuable information for species conservation, it is important to understand the driving factors of HRS variation. It is widely known that differences in species traits (e.g. body mass) are major contributors to variation in mammal HRS. However, most studies examining how environmental variation explains mammal HRS variation have been limited to a few species, or only included a single (mean) HRS estimate for the majority of species, neglecting intraspecific HRS variation. Additionally, most studies examining environmental drivers of HRS variation included only terrestrial species, neglecting marine species. Using a novel dataset of 2800 HRS estimates from 586 terrestrial and 27 marine mammal species, we quantified the relationships between HRS and environmental variables, accounting for species traits. Our results indicate that terrestrial mammal HRS was on average 5.3 times larger in areas with low human disturbance (human footprint index [HFI] = 0), compared to areas with maximum human disturbance (HFI = 50). Similarly, HRS was on average 5.4 times larger in areas with low annual mean productivity (NDVI = 0), compared to areas with high productivity (NDVI = 1). In addition, HRS increased by a factor of 1.9 on average from low to high seasonality in productivity (standard deviation (SD) of monthly NDVI from 0 to 0.36). Of these environmental variables, human disturbance and annual mean productivity explained a larger proportion of HRS variance than seasonality in productivity. Marine mammal HRS decreased, on average, by a factor of 3.7 per 10°C decline in annual mean sea surface temperature (SST), and increased by a factor of 1.5 per 1°C increase in SST seasonality (SD of monthly values). Annual mean SST explained more variance in HRS than SST seasonality. Due to the small sample size, caution should be taken when interpreting the marine mammal results. Our results indicate that environmental variation is relevant for HRS and that future environmental changes might alter the HRS of individuals, with potential consequences for ecosystem functioning and the effectiveness of conservation actions.


Assuntos
Ecossistema , Comportamento de Retorno ao Território Vital , Animais , Mamíferos , Temperatura
15.
J Anim Ecol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500218

RESUMO

Small mammals such as mice and voles play a fundamental role in the ecosystem service of seed dispersal by caching seeds in small hoards that germinate under beneficial conditions. Pilferage is a critical step in this process in which animals steal seeds from other individuals' caches. Pilferers often recache stolen seeds, which are often pilfered by new individuals, who may recache again, and so on, potentially leading to compounded increased dispersal distance. However, little research has investigated intraspecific differences in pilfering frequency, despite its importance in better understanding the role of behavioural diversity in the valuable ecosystem service of seed dispersal. We conducted a field experiment in Maine (USA) investigating how intraspecific variation, including personality, influences pilferage effectiveness. Within the context of a long-term capture-mark-recapture study, we measured the unique personality of 3311 individual small mammals of 10 species over a 7-year period. For this experiment, we created artificial caches using eastern white pine (Pinus strobus) seeds monitored with trail cameras and buried antennas for individual identification. Of the 436 caches created, 83.5% were pilfered by 10 species, including deer mice ((Peromyscus maniculatus) and southern red-backed voles (Myodes gapperi). We show how individuals differ in their ability to pilfer seeds and that these differences are driven by personality, body condition and sex. More exploratory deer mice and those with lower body condition were more likely to locate a cache, and female southern red-backed voles were more likely than males to locate caches. Also, caches were more likely to be pilfered in areas of higher small mammal abundance. Because the risk of pilferage drives decisions concerning where an animal chooses to store seeds, pilferage pressure is thought to drive the evolution of food-hoarding behaviour. Our study shows that pilferage ability varies between individuals, meaning that some individuals have a disproportionately strong influence on others' caching decisions and disproportionately contribute to compounded longer-distance seed dispersal facilitated by pilferage. Our results add to a growing body of knowledge showing that the unique personalities of individual small mammals play a critical role in forest regeneration by impacting seed dispersal.

16.
Environ Sci Technol ; 58(11): 5024-5034, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38454313

RESUMO

Detecting cyanobacteria in environments is an important concern due to their crucial roles in ecosystems, and they can form blooms with the potential to harm humans and nonhuman entities. However, the most widely used methods for high-throughput detection of environmental cyanobacteria, such as 16S rRNA sequencing, typically provide above-species-level resolution, thereby disregarding intraspecific variation. To address this, we developed a novel DNA microarray tool, termed the CyanoStrainChip, that enables strain-level comprehensive profiling of environmental cyanobacteria. The CyanoStrainChip was designed to target 1277 strains; nearly all major groups of cyanobacteria are included by implementing 43,666 genome-wide, strain-specific probes. It demonstrated strong specificity by in vitro mock community experiments. The high correlation (Pearson's R > 0.97) between probe fluorescence intensities and the corresponding DNA amounts (ranging from 1-100 ng) indicated excellent quantitative capability. Consistent cyanobacterial profiles of field samples were observed by both the CyanoStrainChip and next-generation sequencing methods. Furthermore, CyanoStrainChip analysis of surface water samples in Lake Chaohu uncovered a high intraspecific variation of abundance change within the genus Microcystis between different severity levels of cyanobacterial blooms, highlighting two toxic Microcystis strains that are of critical concern for Lake Chaohu harmful blooms suppression. Overall, these results suggest a potential for CyanoStrainChip as a valuable tool for cyanobacterial ecological research and harmful bloom monitoring to supplement existing techniques.


Assuntos
Cianobactérias , Microcystis , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Ribossômico 16S/genética , Ecossistema , Proliferação Nociva de Algas , Cianobactérias/genética , Lagos/microbiologia , Microcystis/genética
17.
Saudi J Biol Sci ; 31(3): 103943, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38327658

RESUMO

A species introduced outside of its native range will likely encounter unusual abiotic and biotic conditions,and may exhibit phenotypic traits that may facilitate survival and persistance. Phenotypic plasticity drives non-native species' development of adaptive traits in the new environment, increases their fitness, and as a result, contributes to invasion success. In this study, we examined inter and intraspecific phenotypic variation (body size and shape) for an invasive (Carassius gibelio) and introduced (Cyprinus carpio) cyprinid fish species (Teleostei: Cyprinidae) in the Düden Stream, Turkey, which is a small-scale river system. We hypothesized that interspecific phenotypic variation correlates with fish-specific variables and river site. We further hypothesized that these two species may exhibit similar phenotypic variation patterns between populations. The MANCOVA revealed that species-specific traits, river site, had significant effects on body shape variation and size along the stream. The differences in the shape of the head, the central portion of the body, and fins in both species most probably reflected differences in the swimming and feeding of the fish, possibly to avoid interspecies competition. The intraspecific phenotypic variation observed in both species may indicate rapid local adaptation, triggered by multiple founding event, or/and phenotypic plasticity.

18.
Front Plant Sci ; 15: 1335524, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38348271

RESUMO

Introduction: Canopy species need to shift their ecological adaptation to improve light and water resources utilization, and the study of intraspecific variations in plant leaf functional traits based at individual scale is of great significance for evaluating plant adaptability to climate change. Methods: In this study, we evaluate how leaf functional traits of giant trees relate to spatial niche specialization along a vertical gradient. We sampled the tropical flagship species of Parashorea chinensis around 60 meters tall and divided their crowns into three vertical layers. Fourteen key leaf functional traits including leaf morphology, photosynthetic, hydraulic and chemical physiology were measured at each canopy layer to investigate the intraspecific variation of leaf traits and the interrelationships between different functional traits. Additionally, due to the potential impact of different measurement methods (in-situ and ex-situ branch) on photosynthetic physiological parameters, we also compared the effects of these two gas exchange measurements. Results and discussion: In-situ measurements revealed that most leaf functional traits of individual-to-individual P. chinensis varied significantly at different canopy heights. Leaf hydraulic traits such as midday leaf water potential (MWP) and leaf osmotic potential (OP) were insignificantly correlated with leaf photosynthetic physiological traits such as maximal net assimilation rate per mass (A mass). In addition, great discrepancies were found between in-situ and ex-situ measurements of photosynthetic parameters. The ex-situ measurements caused a decrease by 53.63%, 27.86%, and 38.05% in A mass, and a decrease of 50.00%, 19.21%, and 27.90% in light saturation point compared to the in-situ measurements. These findings provided insights into our understanding of the response mechanisms of P. chinensis to micro-habitat in Xishuangbanna tropical seasonal rainforests and the fine scale adaption of different resultant of decoupled traits, which have implications for understanding ecological adaption strategies of P. chinensis under environmental changes.

19.
Proc Biol Sci ; 291(2017): 20232687, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38378151

RESUMO

Understanding the distribution of herbivore damage among leaves and individual plants is a central goal of plant-herbivore biology. Commonly observed unequal patterns of herbivore damage have conventionally been attributed to the heterogeneity in plant quality or herbivore behaviour or distribution. Meanwhile, the potential role of stochastic processes in structuring plant-herbivore interactions has been overlooked. Here, we show that based on simple first principle expectations from metabolic theory, random sampling of different sizes of herbivores from a regional pool is sufficient to explain patterns of variation in herbivore damage. This is despite making the neutral assumption that herbivory is caused by randomly feeding herbivores on identical and passive plants. We then compared its predictions against 765 datasets of herbivory on 496 species across 116° of latitude from the Herbivory Variability Network. Using only one free parameter, the estimated attack rate, our neutral model approximates the observed frequency distribution of herbivore damage among plants and especially among leaves very well. Our results suggest that neutral stochastic processes play a large and underappreciated role in natural variation in herbivory and may explain the low predictability of herbivory patterns. We argue that such prominence warrants its consideration as a powerful force in plant-herbivore interactions.


Assuntos
Herbivoria , Folhas de Planta , Plantas
20.
Ecol Evol ; 14(2): e10908, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38327684

RESUMO

The variation of plant traits is closely related to the trade-offs between resource acquisition and conservation, as well as the accumulation of biomass. However, there has been a lack of comprehensive insights into the variation patterns, phylogenetic conservatism, and covariation with biomass allocation of root system architecture in desert areas. We examined the root systems of 47 annual ephemeral species and evaluated their biomass allocation and six key root system architecture traits. Our results indicated that the variation in root traits mainly originated from interspecific variation (48.78%-99.76%), but intraspecific variation should not be ignored as to why the contribution rate of root tissue density (RTD) reached 51.22%. The six root traits were mainly loaded on the first and second axes of the principal component analysis (PCA), these traits mainly vary along two dimensions. The highest interspecific variation is in RTD (51.63%) and the lowest in topological index (TI; 5.92%). The intraspecific variation value and range of specific root length (SRL), specific root area (SRA), and RTD were significantly higher than TI (p < .05), and they are not limited by phylogenetic relationships (0< K < 1, p > .05). The SRA is positively correlated with SRL (r = .72, p < .001) and negatively correlated with RTD (r = -.57, p < .05). The LMF is positively correlated with SRL, and SRA demonstrated the coordination between water consumption and acquisition. The positive correlation between RMF and MRD indicated the coordination of root carbon investment with exploring soil vertical space. The multi-dimensional variation of root traits, divergence of RTDs, and convergence of TI are important ecological strategies for annual short-lived plants to adapt to heterogeneous desert habitats. Meanwhile, these plants achieve optimal access to scarce resources through the high plasticity of resource acquisition (e.g., SRL and SRA) and conservation traits (e.g., RTD), as well as the trade-offs between them and organ mass fraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...