Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosurg Pediatr ; 33(4): 359-366, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215438

RESUMO

OBJECTIVE: Relatively little is known about the safety and accuracy of catheter placement for oncolytic viral therapy in children with malignant brain tumors. Accordingly, this study combines data from two phase I clinical trials that employed viral immunotherapy across two institutions to describe the adverse event profile, safety, and accuracy associated with the stereotactic placement and subsequent removal of intratumoral catheters. METHODS: Children with progressive/recurrent supratentorial malignant tumors were enrolled in two clinical trials (NCT03043391 and NCT02457845) and treated with either the recombinant polio:rhinovirus (lerapolturev) or the genetically modified oncolytic herpesvirus (G207). Age, sex, race, tumor diagnosis, and tumor location were analyzed. Events related to the catheter placement or removal were categorized. A catheter that was either pulled back or could not be used was defined as "misplaced." Neuronavigation software was used to analyze the accuracy of catheter placement for NCT03043391. Descriptive statistics were performed. RESULTS: Nineteen patients were treated across the two completed trials with a total of 49 catheters. The mean ± SD (range) age was 14.1 ± 3.6 (7-19) years. All tumors were grade 3 or 4 gliomas. Nonlobar catheter tip placement included the corpus callosum, thalamus, insula, and cingulate gyrus. Six of 19 patients (31.6%) had minor hemorrhage noted on CT; however, no patients were symptomatic and/or required intervention related to these findings. One of 19 patients had a delayed CSF leak after catheter removal that required oversewing of the surgical site. No patients developed infection or a neurological deficit. In 7 patients with accuracy data, the mean ± SD distance of the planned trajectory (PT) to the catheter tip was 1.57 ± 1.6 mm, the mean angle of the PT to the catheter was 2.43° ± 2.1°, and the greatest distance of PT to the catheter in the parallel plane was 1.54 ± 1.5 mm. Three of 49 (6.1%) catheters were considered misplaced. CONCLUSIONS: Although instances of minor hemorrhage were encountered, they were clinically asymptomatic. One of 49 catheters required intervention for a CSF leak. Congruent with previous studies in the literature, the stereotactic placement of catheters in these pediatric tumor patients was accurate with approximately 95% of catheters having been adequately placed.


Assuntos
Neoplasias Encefálicas , Recidiva Local de Neoplasia , Criança , Humanos , Adolescente , Recidiva Local de Neoplasia/terapia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/terapia , Catéteres , Imunoterapia , Hemorragia
2.
Mol Aspects Med ; 95: 101239, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38150884

RESUMO

Breast cancer is a heterogeneous disease and is the most prevalent cancer in women. According to the U.S breast cancer statistics, about 1 in every 8 women develop an invasive form of breast cancer during their lifetime. Immunotherapy has been a significant advancement in the treatment of cancer with multiple studies reporting favourable patient outcomes by modulating the immune response to cancer cells. Here, we review the significance of dendritic cell vaccines in treating breast cancer patients. We discuss the involvement of dendritic cells and oncodrivers in breast tumorigenesis, highlighting the rationale for targeting oncodrivers and neoantigens using dendritic cell vaccine therapy. We review different dendritic cell subsets and maturation states previously used to develop vaccines and suggest the use of DC vaccines for breast cancer prevention. Further, we highlight that the intratumoral delivery of type 1 dendritic cell vaccines in breast cancer patients activates tumor antigen-specific CD4+ T helper cell type 1 (Th1) cells, promoting an anti-tumorigenic immune response while concurrently blocking pro-tumorigenic responses. In summary, this review provides an overview of the current state of dendritic cell vaccines in breast cancer highlighting the challenges and considerations necessary for an efficient dendritic cell vaccine design in interrupting breast cancer development.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/prevenção & controle , Imunoterapia , Células Dendríticas/metabolismo
3.
Pharmaceutics ; 15(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37242807

RESUMO

The paradigm of drug delivery via particulate formulations is one of the leading ideas that enable overcoming limitations of traditional chemotherapeutic agents. The trend toward more complex multifunctional drug carriers is well-traced in the literature. Nowadays, the prospectiveness of stimuli-responsive systems capable of controlled cargo release in the lesion nidus is widely accepted. Both endogenous and exogenous stimuli are employed for this purpose; however, endogenous pH is the most common trigger. Unfortunately, scientists encounter multiple challenges on the way to the implementation of this idea related to the vehicles' accumulation in off-target tissues, their immunogenicity, the complexity of drug delivery to intracellular targets, and finally, the difficulties in the fabrication of carriers matching all imposed requirements. Here, we discuss fundamental strategies for pH-responsive drug delivery, as well as limitations related to such carriers' application, and reveal the main problems, weaknesses, and reasons for poor clinical results. Moreover, we attempted to formulate the profiles of an "ideal" drug carrier in the frame of different strategies drawing on the example of metal-comprising materials and considered recently published studies through the lens of these profiles. We believe that this approach will facilitate the formulation of the main challenges facing researchers and the identification of the most promising trends in technology development.

4.
Pharmaceutics ; 14(8)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-36015256

RESUMO

With an understanding of immunity in the tumor microenvironment, immunotherapy turns out to be a powerful tool in the clinic to treat many cancers. The strategies applied in cancer immunotherapy mainly include blockade of immune checkpoints, adoptive transfer of engineered cells, such as T cells, natural killer cells, and macrophages, cytokine therapy, cancer vaccines, and oncolytic virotherapy. Many factors, such as product price, off-target side effects, immunosuppressive tumor microenvironment, and cancer cell heterogeneity, affect the treatment efficacy of immunotherapies against cancers. In addition, some treatments, such as chimeric antigen receptor (CAR) T cell therapy, are more effective in treating patients with lymphoma, leukemia, and multiple myeloma rather than solid tumors. To improve the efficacy of targeted immunotherapy and reduce off-target effects, delivery systems for immunotherapies have been developed in past decades using tools such as nanoparticles, hydrogel matrix, and implantable scaffolds. This review first summarizes the currently common immunotherapies and their limitations. It then synopsizes the relative delivery systems that can be applied to improve treatment efficacy and minimize side effects. The challenges, frontiers, and prospects for applying these delivery systems in cancer immunotherapy are also discussed. Finally, the application of these approaches in clinical trials is reviewed.

5.
Int J Pharm ; 586: 119514, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32565281

RESUMO

The development of cancer theranostic nanomedicines is recommended to concurrently achieve and evaluate the therapeutic benefit and progress. The current work aims to develop gallic acid-gold nanoparticles (GA-Au NPs) as a theranostic probe for 99mTc-Doxorubicin (99mTc-DOX) based on the spatiotemporal release pattern induced intra-tumoral (IT) delivery. DOX-loaded GA-Au NPs were developed and identified via UV-Vis spectroscopy. The system was characterized for drug loading efficiency%, particle size, zeta potential, topography, in vitro DOX release and anti-proliferative activity against the MCF-7 cell-line. The factors influencing radiolabeling efficiency of DOX with 99mTc (DOX concentration, stannous chloride concentration, reaction time and pH) were optimized. The in vitro stability in mice serum and in vivo distribution studies in mice of 99mTc-DOX-loaded GA-Au NPs were investigated following IV and IT administration. Dox-loaded GA-Au NPs had a loading efficiency of 91%, a small particle size (≈50 nm), a promising zeta potential (-20 mV) and a sustained drug release profile at pH 5.3. GA-Au NPs exhibited increased anti-proliferative activity, with approximately a four-fold lower IC50 value (0.15 µg/ml) than free DOX. The optimized radiolabeling efficiency of 99mTc-DOX was ≈93%. It showed good physiological stability in mice serum for at least 8 h. The IT delivery of 99mTc-DOX-loaded GA-Au NPs in tumor-induced mice showed dramatic tumor accumulation. A maximum magnitude of 86.73%ID/g was achieved, at 15 min post-injection, with a target/non-target ratio of ≈56. 99mTc-DOX-loaded GA-Au NPs could be used for the selective IT delivery of a chemotherapeutic agent and an imaging agent to a target organ.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Ácido Gálico/química , Nanopartículas Metálicas , Animais , Antibióticos Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Feminino , Ouro/química , Humanos , Concentração Inibidora 50 , Células MCF-7 , Camundongos , Tamanho da Partícula , Medicina de Precisão , Tecnécio/química
6.
Mol Pharm ; 17(4): 1028-1048, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32150417

RESUMO

Currently, clinically used antitumor nanomedicine is usually insufficient to eradicate malignancies, due to the tumor stroma exerting therapeutic resistance and physical barriers for proper drug delivery. As the most abundant cells in the tumor stroma, cancer-associated fibroblasts (CAFs) produce a critical tumor-promoting effect and barriers preventing the physical delivery of nanomedicines through secreting pro-tumorigenic cytokines, increasing solid tumor pressure and interstitial fluid pressure (IFP), and nonspecific internalization. Therefore, beyond treatment centered on cancer cells, researchers are focusing on targeting CAFs to fight stromal-rich tumors. In recent years, a series of novel nano delivery systems have been developed based on specific CAF-targeted ligands and advanced biofunctional materials. On the one hand, CAF-targeted nano delivery systems inhibit the pro-tumor signaling pathway between CAFs and cancer cells to reverse tumorigenesis, immunosuppression, or drug resistance in the tumor microenvironment, thus improving the sensitivity to antitumor treatments. On the other hand, nanostrategies acting on CAFs profoundly contribute to increasing the deep penetration of antitumor drugs through the decrease of solid pressure, IFP, and dense extracellular matrix generation related to the resistance to intratumoral diffusion. In this review, we first introduce the biological mechanisms of CAFs that interfere with nanotherapy. The state-of-the-art passive and active strategies of nano delivery systems targeting CAFs are then summarized, focusing on the therapeutic mechanism involved and the rational design of nano delivery systems. Additionally, the challenges of CAF-targeted nanotherapy are discussed from the perspectives of developing efficient nano delivery systems and potential clinical use.


Assuntos
Antineoplásicos/farmacologia , Fibroblastos Associados a Câncer/efeitos dos fármacos , Animais , Sistemas de Liberação de Medicamentos/métodos , Matriz Extracelular/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
7.
CNS Oncol ; 8(3): CNS40, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747784

RESUMO

Management of high-grade gliomas (HGGs) remains a complex challenge with an overall poor prognosis despite aggressive multimodal treatment. New translational research has focused on maximizing tumor cell eradication through improved tumor cell targeting while minimizing collateral systemic side effects. In particular, biological intratumoral therapies have been the focus of novel translational research efforts due to their inherent potential to be both dynamically adaptive and target specific. This two part review will provide an overview of biological intratumoral therapies that have been evaluated in human clinical trials in HGGs, and summarize key advances and remaining challenges in the development of these therapies as a potential new paradigm in the management of HGGs. Part II discusses vector-based therapies, cell-based therapies and radioimmunotherapy.


Assuntos
Neoplasias Encefálicas/terapia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Genética/métodos , Glioma/terapia , Radioimunoterapia/métodos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Quimioterapia do Câncer por Perfusão Regional , Terapia Combinada , Sistemas de Liberação de Medicamentos , Vetores Genéticos/administração & dosagem , Glioma/genética , Glioma/imunologia , Glioma/patologia , Humanos , Infusões Intralesionais , Injeções Intralesionais , Gradação de Tumores , Ensaios Clínicos Controlados Aleatórios como Assunto
8.
CNS Oncol ; 8(3): CNS38, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747788

RESUMO

Management of high-grade gliomas remains a complex challenge. Standard of care consists of microsurgical resection, chemotherapy and radiation, but despite these aggressive multimodality therapies the overall prognosis remains poor. A major focus of ongoing translational research studies is to develop novel therapeutic strategies that can maximize tumor cell eradication while minimizing collateral side effects. Particularly, biological intratumoral therapies have been the focus of new translational research efforts due to their inherent potential to be both dynamically adaptive and target specific. This two-part review will provide an overview of biological intratumoral therapies and summarize key advances and remaining challenges in intratumoral biological therapies for high-grade glioma. Part I focuses on discussion of the concepts of intratumoral delivery and immunotoxin therapies.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Imunotoxinas/uso terapêutico , Antineoplásicos/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Sistemas de Liberação de Medicamentos , Glioma/patologia , Humanos , Imunotoxinas/imunologia , Infusões Intralesionais , Injeções Intralesionais , Gradação de Tumores , Prognóstico , Ensaios Clínicos Controlados Aleatórios como Assunto
9.
Oncoimmunology ; 8(10): e1625687, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31646070

RESUMO

The benefits of anti-cancer agents extend beyond direct tumor killing. One aspect of cell death is the potential to release antigens that initiate adaptive immune responses. Here, a diffusion enhanced formulation, INT230-6, containing potent anti-cancer cytotoxic agents, was administered intratumorally into large (approx. 300mm3) subcutaneous murine Colon26 tumors. Treatment resulted in regression from baseline in 100% of the tumors and complete response in up to 90%. CD8+ or CD8+/CD4+ T cell double-depletion at treatment onset prevented complete responses, indicating a critical role of T cells in promoting complete tumor regression. Mice with complete response were protected from subcutaneous and intravenous re-challenge of Colon26 cells in a CD4+/CD8+ dependent manner. Thus, immunological T cell memory was induced by INT230-6. Colon26 tumors express the endogenous retroviral protein gp70 containing the CD8+ T-cell AH-1 epitope. AH-1-specific CD8+ T cells were detected in peripheral blood of tumor-bearing mice and their frequency increased 14 days after treatment onset. AH-1-specific CD8+ T cells were also significantly enriched in tumors of untreated mice. These cells had an activated phenotype and highly expressed Programmed cell-death protein-1 (PD-1) but did not lead to tumor regression. CD8+ T cell tumor infiltrate also increased 11 days after treatment. INT230-6 synergized with checkpoint blockade, inducing a complete remission of the primary tumors and shrinking of untreated contralateral tumors, which demonstrates not only a local but also systemic immunological effect of the combined therapy. Similar T-cell dependent inhibition of tumor growth was also found in an orthotopic 4T1 breast cancer model.

10.
Carbohydr Polym ; 203: 302-309, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30318217

RESUMO

The malignant gliomas are most destructive brain tumor having low drug response. The thermosensitive hydrogel from pluronic F127 (PF127) and N,N,N-trimethyl chitosan (TMC) is developed as a drug delivery system for anticancer drug docetaxel (DTX) to the glioblastoma multiforme. The influence of TMC on morphology, physico-chemical, mechanical, and release properties of PF127 based thermosensitive hydrogel is investigated here. The hydrogels shows porous network as shown by scanning electron microscopy and TMC addition hindered close packing of PF127 layers in the gel system leaving more pores on the surface. TEM images demonstrate micelle formation by PF127-TMC with diameters of about 50 nm. MTT assay result shows that DTX loaded PF127-TMC hydrogel is more capable of killing U87MG cell than free DTX and DTX loaded PF-127. Hydrogels retain sustained release of DTX under different pH conditions more than one month. Furthermore, in vivo experiments are carried out by creating xenograft tumor model on the head of BALB/c nude mice for checking tumor suppression by PF127-TMC/DTX hydrogel. Overall, the hydrogels shows sustained release of DTX on different pH with tumor suppression suggests that it can be used for treating tumor.


Assuntos
Antineoplásicos/uso terapêutico , Quitosana/química , Glioblastoma/tratamento farmacológico , Hidrogéis/química , Poloxâmero/química , Taxoides/uso terapêutico , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Quitosana/síntese química , Docetaxel , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Humanos , Hidrogéis/síntese química , Concentração de Íons de Hidrogênio , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Taxoides/química
11.
Onco Targets Ther ; 11: 2673-2683, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780259

RESUMO

BACKGROUND: Many reports have indicated that the intravenous administration of bevacizumab produces a number of systemic side effects. Therefore, we investigated the therapeutic effects of intratumoral bevacizumab administration using a glioma animal model. METHODS: The glioma cell lines U251 and U87 that carried luciferase were implanted into the brains of mice to develop glioma models. Glioma-bearing mice were treated with bevacizumab intravenously or intratumorally by Alzet micro-osmotic pumps, and the survival time of mice was monitored. Tumor volumes and location were observed by fluorescence imaging and histological analysis. Levels of microvessel marker, cancer stem cell marker as well as angiogenesis-, invasion-, and inflammation-related factors in tumors were examined by immunohistochemical staining. RESULTS: Mice treated with intratumoral low-dose bevacizumab had smaller tumor volumes, longer survival time, lower microvessel density, and fewer cancer stem cells as compared with untreated and intravenously treated mice. Furthermore, expression levels of inflammation-related factors increased signifiwhereas that of angiogenesis- and invasion-related factors decreased in intratumorally treated animals, compared with intravenously treated mice. CONCLUSION: These results implied bevacizumab delivery by intratumoral injection via Alzet micro-osmotic pumps may be a more effective and safer protocol for treating gliomas.

12.
Nanomaterials (Basel) ; 7(11)2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29135959

RESUMO

By taking advantage of the pH-sensitive drug release property of graphene oxide (GO) after intracellular uptake, we prepared folic acid (FA)-conjugated GO (GOFA) for targeted delivery of the chemotherapeutic drug doxorubicin (DOX). GOFA-DOX was further encapsulated in an injectable in-situ forming thermo-sensitive hyaluronic acid-chitosan-g-poly(N-isopropylacrylamide) (HACPN) hydrogel for intratumoral delivery of DOX. As the degradation time of HACPN could be extended up to 3 weeks, intratumoral delivery of GOFA-DOX/HACPN could provide controlled and targeted delivery of DOX through slow degradation HACPN and subsequent cellular uptake of released GOFA-DOX by tumor cells through interactions of GOFA with folate receptors on the tumor cell's surface. GOFA nano-carrier and HACPN hydrogel were first characterized for the physico-chemical properties. The drug loading experiments indicated the best preparation condition of GOFA-DOX was by reacting 0.1 mg GOFA with 2 mg DOX. GOFA-DOX showed pH-responsive drug release with ~5 times more DOX released at pH 5.5 than at pH 7.4 while only limited DOX was released from GOFA-DOX/HACPN at pH 7.4. Intracellular uptake of GOFA by endocytosis and release of DOX from GOFA-DOX in vitro could be confirmed from transmission electron microscopic and confocal laser scanning microscopic analysis with MCF-7 breast cancer cells. The targeting effect of FA was revealed when intracellular uptake of GOFA was blocked by excess FA. This resulted in enhanced in vitro cytotoxicity as revealed from the lower half maximal inhibitory concentration (IC50) value of GOFA-DOX (7.3 µg/mL) compared with that of DOX (32.5 µg/mL) and GO-DOX (10 µg/mL). The flow cytometry analysis indicated higher apoptosis rates for cells treated with GOFA-DOX (30%) compared with DOX (8%) and GO-DOX (11%). Animal studies were carried out with subcutaneously implanted MCF-7 cells in BALB/c nude mice and subject to intratumoral administration of drugs. The relative tumor volumes of control (saline) and GOFA-DOX/HACPN groups at day 21 were 2.17 and 1.79 times that at day 0 with no significant difference. In comparison, the relative tumor volumes of treatment groups at the same time were significantly different at 1.02, 0.67 and 0.48 times for DOX, GOFA-DOX and GOFA-DOX/HACPN groups, respectively. The anti-tumor efficacy was also supported by images from an in vivo imaging system (IVIS) using MCF-7 cells transfected with luciferase (MCF-7/Luc). Furthermore, tissue biopsy examination and blood analysis indicated that intratumoral delivery of DOX using GOFA-DOX/HACPN did not elicit acute toxicity. Taken together, GOFA-DOX/HACPN could be deemed as a safe and efficient intratumoral drug delivery system for breast cancer therapy.

13.
J Pharm Sci ; 106(8): 2037-2045, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28456734

RESUMO

Toll-like receptor (TLR) agonists TLR 7/8, MEDI9197, is a imidazoquinoline analogue that can be used for cancer immunotherapy based on its efficacy toward a variety of tumors. Systemic administration of TLR agonists results in stimulation of the immune system throughout the entire body causing undesirable side effects. To minimize these adverse events, local administration of TLR agonists including intratumoral (IT) delivery has been introduced. Here, a poloxamer 407 thermogel formulation for IT delivery of a TLR 7/8 dual agonist, MEDI9197, is described in which the combination of the aqueous thermogel and the ethanolic TLR 7/8 dual agonist, MEDI9197, solution leads to precipitated drug particles within the gel. The in vitro release profile showed an initial burst followed by sustained release. A B16-OVA mouse tumor model was used to assess the in vivo pharmacokinetics, efficacy, and systemic cytokine and chemokine (cytokine) production of the poloxamer 407-based thermogel formulation. The pharmacokinetic evaluation showed that the agonist level within the tumor was reduced by ∼70% over 14 days while serum agonist levels indicated an initial burst at the 6-h time point followed by a drop in serum drug levels over the 14 days of the experiment. The tumor growth inhibition, survival, and serum cytokines for post-IT injection of the poloxamer 407 formulation showed that it slowly released TLR 7/8 agonist, MEDI9197, resulting in more efficacious tumor growth inhibition compared with control groups. In addition, the cytokine levels in circulation indicated that a dose increase led to a decrease in the serum inflammatory and interferon-inducible cytokines levels. This observation could be due to a reduction of drug diffusion and escape from the tumor site due to the precipitation of the drug inside the tumor leading to sustained release. IT delivery of TLR 7/8 dual agonist, MEDI9197, via a thermosensitive gel-based formulation was efficacious and could offer an alternate method of local drug delivery.


Assuntos
Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Poloxâmero/química , Ácidos Esteáricos/administração & dosagem , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Citocinas/sangue , Citocinas/imunologia , Sistemas de Liberação de Medicamentos , Feminino , Géis/química , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Melanoma Experimental/sangue , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Esteáricos/farmacocinética , Ácidos Esteáricos/uso terapêutico , Temperatura , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia
14.
Drug Deliv ; 24(1): 857-866, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28549383

RESUMO

Intratumoral injection of anticancer drugs directly delivers chemotherapeutics to the tumor region, offering an alternative strategy for cancer treatment. However, most hydrophilic drugs spread quickly from the injection site into systemic circulation, leading to inferior antitumor activity and adverse effects in patients. Therefore, we developed novel reversed lipid-based nanoparticles (RLBN) as a nanoscale drug carrier. RLBNs differ from traditional nanoscale drug carriers in that they possess a reversed structure consisting of a polar core and lipophilic periphery, leading to excellent solubility and stability in hydrophobic liquids; therefore, hydrophilic drugs can be entrapped in RLBNs and dispersed in oil. In vivo studies in tumor-bearing Balb/c nude mice indicated remarkable antitumor activity of RLBN-DOX after a single injection, with effective tumor growth inhibition for at least 17 days; the inhibition rate was ∼80%. These results can be attributed to the long-term retention and sustained drug release of RLBN-DOX in the tumor region. In contrast, intratumoral injection of free DOX showed weaker antitumor activity than RLBN-DOX did, with the tumor size doubling by day 11 and tripling by day 17. Further, the initial burst of drug released from free DOX could produce detrimental systemic effects, such as weight loss. Histological analyses by TUNEL staining showed apoptosis after treatment with RLBN-DOX, whereas tumor cell viability was high in the free DOX group. Current results indicate that RLBNs show sustained delivery of hydrophilic agents to local areas resulting in therapeutic efficacy, and they may be a promising drug delivery system suitable for intratumoral chemotherapy.


Assuntos
Nanopartículas , Animais , Linhagem Celular Tumoral , Doxorrubicina , Humanos , Injeções Intralesionais , Lipídeos , Camundongos , Camundongos Nus , Neoplasias
15.
Nanomedicine ; 13(5): 1833-1839, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28343015

RESUMO

Many cancers fail to respond to immunotherapy as a result of immune suppression by the tumor microenvironment. The exogenous expression of immune cytokines to reprogram the tumor microenvironment represents an approach to circumvent this suppression. The present studies describe the development of a novel dual nanoparticle (DNP) system for driving DNA expression vectors encoding inflammatory cytokines in tumor cells. The DNP system consists of a DNA expression vector-cationic peptide nanocomplex (NC) surrounded by a diblock polymeric NP. Tumor necrosis factor alpha (TNF) was selected as the prototype cytokine for this system, based on its pleotropic inflammatory and anti-cancer activities. Our results demonstrate that the DNP system is highly effective in driving expression of TNF in tumor cells. We also demonstrate that the DNPs are effective in inducing apoptosis and anti-tumor activity. These findings support a novel immunotherapeutic approach for the intratumoral delivery of DNA vectors that express inflammatory cytokines.


Assuntos
Vetores Genéticos , Nanopartículas , Microambiente Tumoral , Fator de Necrose Tumoral alfa , Citocinas , DNA , Humanos , Inflamação , Neoplasias/tratamento farmacológico
16.
Cancer Biol Ther ; 17(7): 732-40, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27089121

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has the poorest prognosis among all malignancies and is resistant to almost all current therapies. Attenuated Salmonella typhimurium strain VNP20009 has been deployed as powerful anticancer agent in a variety of animal cancer models, and previous phase 1 clinical trials have proven its safety profiles. However, thus far, little is known about its effect on PDAC. Here, we established CFPAC-1 cell lines expressing an mKate2 protein and thus emitting far-red fluorescence in the subsequent xenograft implant. VNP20009 strain was further engineered to carry a luciferase cDNA, which catalyzes the light-emitting reaction to allow the observation of salmonella distribution and accumulation within tumor with live imaging. Using such VNP20009 strain and intratumoral delivery, we could reduce the growth of pancreatic cancer by inducing apoptosis and severe necrosis in a dosage dependent manner. Consistent with this finding, intratumoral delivery of VNP20009 also increase caspase-3 activity and the expression of Bax protein. In summary, we revealed that VNP20009 is a promising bacterial agent for the treatment of PDAC, and that we have established a dual fluorescent imaging system as a valuable tool for noninvasive live imaging of solid tumor and engineered bacterial drug.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Imagem Óptica/métodos , Salmonella typhimurium/metabolismo , Animais , Humanos , Camundongos , Camundongos Nus
17.
Expert Opin Drug Deliv ; 13(6): 891-909, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26983898

RESUMO

INTRODUCTION: Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. AREAS COVERED: This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. EXPERT OPINION: Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.


Assuntos
Antineoplásicos/administração & dosagem , Sistemas de Liberação de Medicamentos , Polímeros/química , Antineoplásicos/efeitos adversos , Portadores de Fármacos/química , Humanos , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...