Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
J Comp Physiol B ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38739280

RESUMO

The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.

3.
Methods Enzymol ; 696: 287-320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38658084

RESUMO

Acidimicrobium sp. strain A6 is a recently discovered autotrophic bacterium that is capable of oxidizing ammonium while reducing ferric iron and is relatively common in acidic iron-rich soils. The genome of Acidimicrobium sp. strain A6 contains sequences for several reductive dehalogenases, including a gene for a previously unreported reductive dehalogenase, rdhA. Incubations of Acidimicrobium sp. strain A6 in the presence of perfluorinated substances, such as PFOA (perfluorooctanoic acid, C8HF15O2) or PFOS (perfluorooctane sulfonic acid, C8HF17O3S), have shown that fluoride, as well as shorter carbon chain PFAAs (perfluoroalkyl acids), are being produced, and the rdhA gene is expressed during these incubations. Results from initial gene knockout experiments indicate that the enzyme associated with the rdhA gene plays a key role in the PFAS defluorination by Acidimicrobium sp. strain A6. Experiments focusing on the defluorination kinetics by Acidimicrobium sp. strain A6 show that the defluorination kinetics are proportional to the amount of ammonium oxidized. To explore potential applications for PFAS bioremediation, PFAS-contaminated biosolids were augmented with Fe(III) and Acidimicrobium sp. strain A6, resulting in PFAS degradation. Since the high demand of Fe(III) makes growing Acidimicrobium sp. strain A6 in conventional rectors challenging, and since Acidimicrobium sp. strain A6 was shown to be electrogenic, it was grown in the absence of Fe(III) in microbial electrolysis cells, where it did oxidize ammonium and degraded PFAS.


Assuntos
Biodegradação Ambiental , Fluorocarbonos , Fluorocarbonos/metabolismo , Fluorocarbonos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Caprilatos/metabolismo , Halogenação , Ácidos Alcanossulfônicos/metabolismo , Ácidos Alcanossulfônicos/química , Oxirredução
4.
BMC Genomics ; 25(1): 144, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317113

RESUMO

BACKGROUND: The cation/proton antiporter (CPA) superfamily plays a crucial role in regulating ion homeostasis and pH in plant cells, contributing to stress resistance. However, in potato (Solanum tuberosum L.), systematic identification and analysis of CPA genes are lacking. RESULTS: A total of 33 StCPA members were identified and classified into StNHX (n = 7), StKEA (n = 6), and StCHX (n = 20) subfamilies. StCHX owned the highest number of conserved motifs, followed by StKEA and StNHX. The StNHX and StKEA subfamilies owned more exons than StCHX. NaCl stress induced the differentially expression of 19 genes in roots or leaves, among which StCHX14 and StCHX16 were specifically induced in leaves, while StCHX2 and StCHX19 were specifically expressed in the roots. A total of 11 strongly responded genes were further verified by qPCR. Six CPA family members, StNHX1, StNHX2, StNHX3, StNHX5, StNHX6 and StCHX19, were proved to transport Na+ through yeast complementation experiments. CONCLUSIONS: This study provides comprehensive insights into StCPAs and their response to NaCl stress, facilitating further functional characterization.


Assuntos
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Prótons , Cloreto de Sódio/farmacologia , Antiporters/genética , Antiporters/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Regulação da Expressão Gênica de Plantas , Cátions/metabolismo , Estresse Fisiológico/genética
5.
Trends Biochem Sci ; 49(2): 134-144, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38102017

RESUMO

Tripartite ATP-independent periplasmic (TRAP) transporters are nutrient-uptake systems found in bacteria and archaea. These evolutionary divergent transporter systems couple a substrate-binding protein (SBP) to an elevator-type secondary transporter, which is a first-of-its-kind mechanism of transport. Here, we highlight breakthrough TRAP transporter structures and recent functional data that probe the mechanism of transport. Furthermore, we discuss recent structural and biophysical studies of the ion transporter superfamily (ITS) members and highlight mechanistic principles that are relevant for further exploration of the TRAP transporter system.


Assuntos
Proteínas de Bactérias , Proteínas de Membrana Transportadoras , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Transporte/metabolismo , Bactérias/metabolismo , Transporte Biológico
6.
Antioxidants (Basel) ; 12(11)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38001821

RESUMO

To investigate the mechanisms through which ferrous ion (Fe2+) addition improves the utilization of a cottonseed meal (CSM) diet, two experimental diets with equal nitrogen and energy content (low-cottonseed meal (LCM) and high-cottonseed meal (HCM) diets, respectively) containing 16.31% and 38.46% CSM were prepared. Additionally, the HCM diet was supplemented with graded levels of FeSO4·7H2O to establish two different Fe2+ supplementation groups (HCM + 0.2%Fe2+ and HCM + 0.4%Fe2+). Juvenile Ctenopharyngodon idellus (grass carps) (5.0 ± 0.5 g) were fed one of these four diets (HCM, LCM, HCM + 0.2%Fe2+ and HCM + 0.4%Fe2+ diets) for eight weeks. Our findings revealed that the HCM diet significantly increased lipid peroxide (LPO) concentration and the expression of lipogenic genes, e.g., sterol regulatory element binding transcription factor 1 (srebp1) and stearoyl-CoA desaturase (scd), leading to excessive lipid droplet deposition in the liver (p < 0.05). However, these effects were significantly reduced in the HCM + 0.2%Fe2+ and HCM + 0.4%Fe2+ groups (p < 0.05). Plasma high-density lipoprotein (HDL) concentration was also significantly lower in the HCM and HCM + 0.2%Fe2+ groups compared to the LCM group (p < 0.05), whereas low-density lipoprotein (LDL) concentration was significantly higher in the HCM + 0.2%Fe2+ and HCM + 0.4%Fe2+ groups than in the LCM group (p < 0.05). Furthermore, the plasma levels of liver functional indices, including alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and glucose (GLU), were significantly lower in the HCM + 0.4%Fe2+ group (p < 0.05). Regarding the expression of genes related to iron transport regulation, transferrin 2 (tfr2) expression in the HCM group and Fe2+ supplementation groups were significantly suppressed compared to the LCM group (p < 0.05). The addition of 0.4% Fe2+ in the HCM diet activated hepcidin expression and suppressed ferroportin-1 (fpn1) expression (p < 0.05). Compared to the LCM group, the expression of genes associated with ferroptosis and inflammation, including acyl-CoA synthetase long-chain family member 4b (acsl4b), lysophosphatidylcholine acyltransferase 3 (lpcat3), cyclooxygenase (cox), interleukin 1ß (il-1ß), and nuclear factor kappa b (nfκb), were significantly increased in the HCM group (p < 0.05), whereas Fe2+ supplementation in the HCM diet significantly inhibited their expression (p < 0.05) and significantly suppressed lipoxygenase (lox) expression (p < 0.05). Compared with the HCM group without Fe2+ supplementation, Fe2+ supplementation in the HCM diet significantly upregulated the expression of genes associated with ferroptosis, such as heat shock protein beta-associated protein1 (hspbap1), glutamate cysteine ligase (gcl), and glutathione peroxidase 4a (gpx4a) (p < 0.05), and significantly decreased the expression of the inflammation-related genes interleukin 15/10 (il-15/il-10) (p < 0.05). In conclusion, FeSO4·7H2O supplementation in the HCM diet maintained iron transport and homeostasis in the liver of juvenile grass carps, thus reducing the occurrence of ferroptosis and alleviating hepatic lipid deposition and inflammatory responses caused by high dietary CSM contents.

8.
Front Plant Sci ; 14: 1200106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636124

RESUMO

Introduction: Salicylic acid (SA) is a multi-functional endogenous phytohormone implicated in the growth, development, and metabolism of many plant species. Methods: This study evaluated the effects of different concentrations of SA (0, 25, 100, 200, and 500 mg/L) on the growth and cadmium (Cd) content of lettuce (Lactuca sativa L.) under Cd stress. The different concentrations of SA treatments were administered through foliar application. Results: Our results showed that 100-200 mg/L SA significantly increased the plant height and biomass of lettuce under Cd stress. When SA concentration was 200 mg/L, the plant height and root length of lettuce increased by 19.42% and 22.77%, respectively, compared with Cd treatment alone. Moreover, 200 mg/L and 500mg/L SA concentrations could reduce peroxidase (POD) and superoxide dismutase (SOD) activities caused by Cd stress. When the concentration of exogenous SA was 500 mg/L, the POD and SOD activities of lettuce leaves decreased by 15.51% and 19.91%, respectively, compared with Cd treatment. A certain concentration of SA reduced the uptake of Cd by the lettuce root system and the transport of Cd from the lettuce root system to shoots by down-regulating the expression of Nramp5, HMA4, and SAMT, thus reducing the Cd content of lettuce shoots. When the concentration of SA was 100 mg/L, 200 mg/L, and 500 mg/L, the Cd contents of lettuce shoots were 11.28%, 22.70%, and 18.16%, respectively, lower than that of Cd treatment alone. Furthermore, principal component and correlation analyses showed that the Cd content of lettuce shoots was correlated with plant height, root length, biomass, antioxidant enzymes, and the expression level of genes related to Cd uptake. Discussion: In general, these results provide a reference for the mechanism by which SA reduces the Cd accumulation in vegetables and a theoretical basis for developing heavy metal blockers with SA components.

9.
Plants (Basel) ; 12(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37570932

RESUMO

Cation/Proton Antiporters (CPA) acting in all biological membranes regulate the volume and pH of cells and of intracellular organelles. A key issue with these proteins is their structure-function relationships since they present intrinsic regulatory features that rely on structural determinants, including pH sensitivity and the stoichiometry of ion exchange. Crystal structures are only available for prokaryotic CPA, whereas the eukaryotic ones have been modeled using the former as templates. Here, we present an updated and improved structural model of the tonoplast-localized K+, Na+/H+ antiporter NHX1 of Arabidopsis as a representative of the vacuolar NHX family that is essential for the accumulation of K+ into plant vacuoles. Conserved residues that were judged as functionally important were mutated, and the resulting protein variants were tested for activity in the yeast Saccharomyces cerevisiae. The results indicate that residue N184 in the ND-motif characteristic of CPA1 could be replaced by the DD-motif of CPA2 family members with minimal consequences for their activity. Attempts to alter the electroneutrality of AtNHX1 by different combinations of amino acid replacements at N184, R353 and R390 residues resulted in inactive or partly active proteins with a differential ability to control the vacuolar pH of the yeast.

10.
New Phytol ; 239(6): 2108-2112, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424515

RESUMO

All plants are electrically excitable, but only few are known to fire a well-defined, all-or-nothing action potential (AP). The Venus flytrap Dionaea muscipula displays APs with an extraordinarily high firing frequency and speed, enabling the capture organ of this carnivorous plant to catch small animals as fast as flies. The number of APs triggered by the prey is counted and serves as the basis for decisions within the flytrap's hunting cycle. The archetypical Dionaea AP lasts 1 s and consists of five phases: Starting from the resting state, an initial cytosolic Ca2+ transient is followed by depolarization, repolarization and a transient hyperpolarization (overshoot) before the original membrane potential is finally recovered. When the flytrap matures and becomes excitable, a distinct set of ion channels, pumps and carriers is expressed, each mastering a distinct AP phase.


Assuntos
Droseraceae , Animais , Potenciais de Ação , Droseraceae/fisiologia , Canais Iônicos
11.
Int J Mol Sci ; 24(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37175562

RESUMO

In cardiomyocytes, regular activity of the Na,K-ATPase (NKA) and its Na/K pump activity is essential for maintaining ion gradients, excitability, propagation of action potentials, electro-mechanical coupling, trans-membrane Na+ and Ca2+ gradients and, thus, contractility. The activity of NKA is impaired in ischemic heart disease and heart failure, which has been attributed to decreased expression of the NKA subunits. Decreased NKA activity leads to intracellular Na+ and Ca2+ overload, diastolic dysfunction and arrhythmias. One signal likely related to these events is hypoxia, where hypoxia-inducible factors (HIF) play a critical role in the adaptation of cells to low oxygen tension. HIF activity increases in ischemic heart, hypertension, heart failure and cardiac fibrosis; thus, it might contribute to the impaired function of NKA. This review will mainly focus on the regulation of NKA in ischemic heart disease in the context of stressed myocardium and the hypoxia-HIF axis and argue on possible consequences of treatment.


Assuntos
Insuficiência Cardíaca , Isquemia Miocárdica , Humanos , ATPase Trocadora de Sódio-Potássio/metabolismo , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Isquemia Miocárdica/metabolismo , Insuficiência Cardíaca/metabolismo , Hipóxia/metabolismo
12.
Chemistry ; 29(25): e202300044, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36723493

RESUMO

Bilayer membranes that enhance the stability of the cell are essential for cell survival, separating and protecting the interior of the cell from its external environment. Membrane-based channel proteins are crucial for sustaining cellular activities. However, dysfunction of these proteins would induce serial channelopathies, which could be substituted by artificial ion channel analogs. Crown ethers (CEs) are widely studied in the area of artificial ion channels owing to their intrinsic host-guest interaction with different kinds of organic and inorganic ions. Other advantages such as lower price, chemical stability, and easier modification also make CE a research hotspot in the field of synthetic transmembrane nanopores. And numerous CEs-based membrane-active synthetic ion channels were designed and fabricated in the past decades. Herein, the recent progress of CEs-based synthetic ion transporters has been comprehensively summarized in this review, including their design principles, functional mechanisms, controllable properties, and biomedical applications. Furthermore, this review has been concluded by discussing the future opportunities and challenges facing this research field. It is anticipated that this review could offer some inspiration for the future fabrication of novel CEs-derived ion transporters with more advanced structures, properties, and practical applications.


Assuntos
Éteres de Coroa , Nanoporos , Éteres de Coroa/química , Canais Iônicos/química , Íons
14.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768856

RESUMO

Ion channels provide the basis for the nervous system's intrinsic electrical activity. Neuronal excitability is a characteristic property of neurons and is critical for all functions of the nervous system. Glia cells fulfill essential supportive roles, but unlike neurons, they also retain the ability to divide. This can lead to uncontrolled growth and the formation of gliomas. Ion channels are involved in the unique biology of gliomas pertaining to peritumoral pathology and seizures, diffuse invasion, and treatment resistance. The emerging picture shows ion channels in the brain at the crossroads of neurophysiology and fundamental pathophysiological processes of specific cancer behaviors as reflected by uncontrolled proliferation, infiltration, resistance to apoptosis, metabolism, and angiogenesis. Ion channels are highly druggable, making them an enticing therapeutic target. Targeting ion channels in difficult-to-treat brain tumors such as gliomas requires an understanding of their extremely heterogenous tumor microenvironment and highly diverse molecular profiles, both representing major causes of recurrence and treatment resistance. In this review, we survey the current knowledge on ion channels with oncogenic behavior within the heterogeneous group of gliomas, review ion channel gene expression as genomic biomarkers for glioma prognosis and provide an update on therapeutic perspectives for repurposed and novel ion channel inhibitors and electrotherapy.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/tratamento farmacológico , Glioma/genética , Canais Iônicos/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Convulsões , Neurônios/metabolismo , Microambiente Tumoral
15.
Plant Physiol Biochem ; 196: 415-430, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36758289

RESUMO

The members of ZRT, IRT-like protein (ZIP) family are involved in the uptake and transportation of several metal ions. Here, we report a comprehensive identification of ZIP transporter genes from Capsicum annuum, C. chinense, and C. baccatum, and their expression analysis under Zn and Fe stress. Changes in root morphology and differential accumulation of several metabolites from sugars, amino acids, carboxylic acids, and fatty acids in root and leaf tissues of plants in the absence of Zn and Fe were observed. Further, metabolites such as L-aspartic acid, 2-ketoglutaric acids, ß-L-fucopyranose, quininic acid, chlorogenic acid, and aucubin were significantly upregulated in root and leaf tissues under Zn/Fe deprived conditions. qRT-PCR analysis of 17 CaZIPs in different tissues revealed tissue-specific expression of CaZIP1-2, CaZIP4-8, CaZIP13, and CaZIP16-17 under normal conditions. However, the absence of Zn and Fe significantly induced the expression of CaZIP4-5, CaZIP7-9, and CaZIP14 genes in root and leaf tissues. Additionally, in the absence of Fe, upregulation of CaZIP4-5 and CaZIP8 and increased uptake of mineral elements Cu, Zn, Mg, P, and S were observed in roots, suggesting their potential role in metal-ion uptake in Capsicum. The identified genes provide the basis for future studies of mineral uptake and their biofortification to increase the nutritional values in Capsicum.


Assuntos
Capsicum , Capsicum/genética , Capsicum/metabolismo , Zinco/metabolismo , Ferro/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Proteínas de Membrana Transportadoras/genética , Verduras , Regulação da Expressão Gênica de Plantas
16.
J Biol Inorg Chem ; 28(2): 213-224, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36656371

RESUMO

Guanine-rich quadruplex DNA (G-quadruplex) is of interest both in cell biology and nanotechnology. Its biological functions necessitate a G-quadruplex to be stabilized against escape of the monovalent metal cations. The potassium ion ([Formula: see text]) is particularly important as it experiences a potential energy barrier while it enters and exits the G-quadruplex systems which are normally found in human telomere. In the present work, we analyzed the time it takes for the [Formula: see text] cations to get in and out of the G-quadruplex. Our time estimate is based on entropic tunneling time-a time formula which gave biologically relevant results for DNA point mutation by proton tunneling. The potential energy barrier experienced by [Formula: see text] ions is determined from a quantum mechanical simulation study, Schrodinger equation is solved using MATLAB, and the computed eigenfunctions and eigenenergies are used in the entropic tunneling time formula to compute the time delay and charge accumulation rate during the tunneling of [Formula: see text] in G-quadruplex. The computations have shown that ion tunneling takes picosecond times. In addition, average [Formula: see text] accumulation rate is found to be in the picoampere range. Our results show that time delay during the [Formula: see text] ion tunneling is in the ballpark of the conformational transition times in biological systems, and it could be an important parameter for understanding its biological role in human DNA as well as for the possible applications in biotechnology. To our knowledge, for the first time in the literature, time delay during the ion tunneling from and into G-quadruplexes is computed.


Assuntos
Quadruplex G , Humanos , Guanina/química , DNA/genética , DNA/química , Cátions/química , Telômero/genética
17.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499285

RESUMO

The utilization of symbiosis with beneficial microorganisms has considerable potential for increasing growth and resistance under abiotic stress. The endophytic root fungus Piriformospora indica has been shown to improve plant growth under salt and drought stress in diverse plant species, while there have been few reports of the interaction of P. indica with soybean under salt stress. In this study, the symbiotic system of P. indica and soybean (Glycine max L.) was established, and the effect of P. indica on soybean growth and salt tolerance was investigated. The colonized and non-colonized soybeans were subjected to salt stress (200 mmol/L NaCl), and the impairments in chlorophyll and increasing relative conductivity that can be caused by salt stress were alleviated in the P. indica-colonized plants. The accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2−) were lower than that in non-colonized plants under salt treatment, whereas the activities of antioxidant enzymes were significantly increased by P. indica colonization, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione reductase (GR). Importantly, without salt treatment, the Na+ concentration was lower, and the K+ concentration was higher in the roots compared with non-colonized plants. Differential expressions of ion transporter genes were found in soybean roots after P. indica colonization. The P. indica colonization positively regulated the transcription level of PM H+-ATPase, SOS1, and SOS2. The study shows that P. indica enhances the growth and salt tolerance of soybean, providing a strategy for the agricultural production of soybean plants in saline-alkali soils.


Assuntos
Basidiomycota , Glycine max , Antioxidantes/farmacologia , Peróxido de Hidrogênio/metabolismo , Basidiomycota/genética , Tolerância ao Sal/genética , Expressão Gênica , Raízes de Plantas
18.
Front Plant Sci ; 13: 1019169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275527

RESUMO

Soil salinity can negatively impact plants growth, development and fitness. Natural plant populations restricted to coastal environments may evolve in response to saline habitats and therefore provide insights into the process of salinity adaptation. We investigated the growth and physiological responses of coastal and inland populations of Panicum hallii to experimental salinity treatments. Coastal genotypes demonstrated less growth reduction and superior ion homeostasis compared to the inland genotypes in response to saline conditions, supporting a hypothesis of local adaptation. We identified several QTL associated with the plasticity of belowground biomass, leaf sodium and potassium content, and their ratio which underscores the genetic variation present in this species for salinity responses. Genome-wide transcriptome analysis in leaf and root tissue revealed tissue specific overexpression of genes including several cation transporters in the coastal genotype. These transporters mediate sodium ion compartmentalization and potassium ion retention and thus suggests that maintenance of ionic homeostasis of the coastal genotypes might be due to the regulation of these ion transporters. These findings contribute to our understanding of the genetics and molecular mechanisms of salinity adaptation in natural populations, and widens the scope for genetic manipulation of these candidate genes to design plants more resilient to climate change.

19.
Front Physiol ; 13: 1023237, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277202

RESUMO

S-palmitoylation is an essential lipid modification catalysed by zDHHC-palmitoyl acyltransferases that regulates the localisation and activity of substrates in every class of protein and tissue investigated to date. In the heart, S-palmitoylation regulates sodium-calcium exchanger (NCX1) inactivation, phospholemman (PLM) inhibition of the Na+/K+ ATPase, Nav1.5 influence on membrane excitability and membrane localisation of heterotrimeric G-proteins. The cell surface localised enzyme zDHHC5 palmitoylates NCX1 and PLM and is implicated in injury during anoxia/reperfusion. Little is known about how palmitoylation remodels in cardiac diseases. We investigated expression of zDHHC5 in animal models of left ventricular hypertrophy (LVH) and heart failure (HF), along with HF tissue from humans. zDHHC5 expression increased rapidly during onset of LVH, whilst HF was associated with decreased zDHHC5 expression. Paradoxically, palmitoylation of the zDHHC5 substrate NCX1 was significantly reduced in LVH but increased in human HF, while palmitoylation of the zDHHC5 substrate PLM was unchanged in all settings. Overexpression of zDHHC5 in rabbit ventricular cardiomyocytes did not alter palmitoylation of its substrates or overall cardiomyocyte contractility, suggesting changes in zDHHC5 expression in disease may not be a primary driver of pathology. zDHHC5 itself is regulated by post-translational modifications, including palmitoylation in its C-terminal tail. We found that in HF palmitoylation of zDHHC5 changed in the same manner as palmitoylation of NCX1, suggesting additional regulatory mechanisms may be involved. This study provides novel evidence that palmitoylation of cardiac substrates is altered in the setting of HF, and that expression of zDHHC5 is dysregulated in both hypertrophy and HF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA