Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
J Chromatogr A ; 1726: 464968, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38723492

RESUMO

The steric mass-action (SMA) model has been widely reported to describe the adsorption of proteins in different types of chromatographic adsorbents. Here in the present work, a pore-blocking steric mass-action model (PB-SMA) was developed for the adsorption of large-size bioparticles, which usually exhibit the unique pore-blocking characteristic on the adsorbent and thus lead to a fraction of ligands in the deep channels physically inaccessible to bioparticles adsorption, instead of being shielded due to steric hindrance by adsorbed bioparticles. This unique phenomenon was taken into account by introducing an additional parameter, Lin, which is defined as the inaccessible ligand densities in the physically blocked pore area, into the PB-SMA model. This fraction of ligand densities (Lin) will be deducted from the total ligand (Lt) for model development, thus the steric factor (σ) in the proposed PB-SMA will reflect the steric shielding effect on binding sites by adsorbed bioparticles more accurately than the conventional SMA model, which assumes that all ligands on the adsorbent have the same accessibility to the bioparticles. Based on a series of model assumptions, a PB-SMA model was firstly developed for inactivated foot-and-mouth disease virus (iFMDV) adsorption on immobilized metal affinity chromatography (IMAC) adsorbents. Model parameters for static adsorption including equilibrium constant (K), characteristic number of binding sites (n), and steric factor (σ) were determined. Compared with those derived from the conventional SMA model, the σ values derived from the PB-SMA model were dozens of times smaller and much closer to the theoretical maximum number of ligands shielded by a single adsorbed iFMDV, indicating the modified model was more accurate for bioparticles adsorption. The applicability of the PB-SMA model was further validated by the adsorption of hepatitis B surface antigen virus-like particles (HBsAg VLPs) on an ion exchange adsorbent with reasonably improved accuracy. Thus, it is considered that the PB-SMA model would be more accurate in describing the adsorption of bioparticles on different types of chromatographic adsorbents.


Assuntos
Cromatografia de Afinidade , Adsorção , Cromatografia de Afinidade/métodos , Vírus da Febre Aftosa/química , Ligantes , Porosidade , Modelos Químicos
2.
Anal Chim Acta ; 1304: 342557, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38637041

RESUMO

BACKGROUND: Nitrite (NO2-) and nitrate (NO3-) can be produced in the distribution systems of chloraminated drinking water due to the nitrification of ammonia. The most applied inorganic chloramine for this purpose, namely monochloramine (NH2Cl), is also released into aquatic environments from water treatment plants' effluent and within industrial waste streams. Within the treatment process, the continuous monitoring of disinfectant levels is necessary to limit the harmful disinfectant by-product (DBP) formation. Currently, NH2Cl can interfere with nutrient analysis in water samples, and there are no analytical techniques available for the simultaneous analysis of NH2Cl, NO2-, and NO3-. RESULTS: A green analytical method based on mixed-mode ion chromatography, specifically ion exchange and ion exclusion modes, was developed for the simultaneous separation and detection of NH2Cl, NO2-, and NO3-. The separation was achieved using a Dionex IonPac AG15 column guard column and a step gradient elution involving deionized water and 120.0 mM NaCl. The method was developed using a benchtop HPLC with a custom-made multi-wavelength UV absorbance detector with a 50-mm flow cell to enable the sensitive detection of NH2Cl, NO2-, and NO3- at 240 nm, 220 nm, and 215 nm, respectively. The developed method was then transferred to a portable ion chromatography (IC) system, the Aquamonitrix analyser. The total run time was less than 10 min for both systems. The benchtop HPLC method had a limit of detection (LOD) of 0.07 µg mL-1 as Cl2 for NH2Cl, 0.01 µg mL-1 for NO2-, and 0.03 µg mL-1 for NO3-. The LODs obtained using the portable Aquamonitrix analyser were found to be 0.36 µg mL-1 as Cl2, 0.02 µg mL-1, and 0.11 µg mL-1 for NH2Cl, NO2-, and NO3-, respectively. Excellent linearity (r ≥ 0.9999) was achieved using the portable analyser over the studied concentration ranges. The developed system was applied to the analysis of spiked municipal drinking water samples and showed excellent repeatability for the three analytes at three different concentration levels (RSD of triplicate recovery experiments ≤ 1.9 %). Moreover, the variation in retention time was negligible for the three target analytes with RSD ≤ 0.8 % over 12 runs. SIGNIFICANCE: We are reporting the first ion chromatographic method for the simultaneous separation and detection of NH2Cl, NO2-, and NO3- in water samples. The monitoring of NH2Cl, NO2-, and NO3- is critical for the determination of disinfectant dosing, water quality, and nitrification status. The developed method can be applied using a benchtop HPLC or via the portable automated IC system to monitor for the three target compounds analysis in water treatment plants.

3.
Anal Chim Acta ; 1305: 342507, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677834

RESUMO

Microfluidic and capillary devices are increasingly being used in analytical applications while their overall size keeps decreasing. Detection sensitivity for these microdevices gains more importance as device sizes and consequently, sample volumes, decrease. This paper reviews optical, electrochemical, electrical, and mass spectrometric detection methods that are applicable to capillary scale and microfluidic devices, with brief introduction to the principles in each case. Much of this is considered in the context of separations. We do consider theoretical aspects of separations by open tubular liquid chromatography, arguably the most potentially fertile area of separations that has been left fallow largely because of lack of scale-appropriate detection methods. We also examine the theoretical basis of zone electrophoretic separations. Optical detection methods discussed include UV/Vis absorbance, fluorescence, chemiluminescence and refractometry. Amperometry is essentially the only electrochemical detection method used in microsystems. Suppressed conductance and especially contactless conductivity (admittance) detection are in wide use for the detection of ionic analytes. Microfluidic devices, integrated to various mass spectrometers, including ESI-MS, APCI-MS, and MALDI-MS are discussed. We consider the advantages and disadvantages of each detection method and compare the best reported limits of detection in as uniform a format as the available information allows. While this review pays more attention to recent developments, our primary focus has been on the novelty and ingenuity of the approach, regardless of when it was first proposed, as long as it can be potentially relevant to miniature platforms.

4.
J Proteome Res ; 23(4): 1221-1231, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38507900

RESUMO

Proteins usually execute their biological functions through interactions with other proteins and by forming macromolecular complexes, but global profiling of protein complexes directly from human tissue samples has been limited. In this study, we utilized cofractionation mass spectrometry (CF-MS) to map protein complexes within the postmortem human brain with experimental replicates. First, we used concatenated anion and cation Ion Exchange Chromatography (IEX) to separate native protein complexes in 192 fractions and then proceeded with Data-Independent Acquisition (DIA) mass spectrometry to analyze the proteins in each fraction, quantifying a total of 4,804 proteins with 3,260 overlapping in both replicates. We improved the DIA's quantitative accuracy by implementing a constant amount of bovine serum albumin (BSA) in each fraction as an internal standard. Next, advanced computational pipelines, which integrate both a database-based complex analysis and an unbiased protein-protein interaction (PPI) search, were applied to identify protein complexes and construct protein-protein interaction networks in the human brain. Our study led to the identification of 486 protein complexes and 10054 binary protein-protein interactions, which represents the first global profiling of human brain PPIs using CF-MS. Overall, this study offers a resource and tool for a wide range of human brain research, including the identification of disease-specific protein complexes in the future.


Assuntos
Proteínas , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Proteínas/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Encéfalo , Proteoma/análise
5.
Biotechnol J ; 19(3): e2300687, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38479994

RESUMO

Developing an accurate and reliable model for chromatographic separation that meets regulatory requirements and ensures consistency in model development remains challenging. In order to address this challenge, a standardized approach was proposed in this study with ion-exchange chromatography (IEC). The approach includes the following steps: liquid flow identification, system and column-specific parameters determination and validation, multi-component system identification, protein amount validation, steric mass action parameters determination and evaluation, and validation of the calibrated model's generalization ability. The parameter-by-parameter (PbP) calibration method and the consideration of extra-column effects were integrated to enhance the accuracy of the developed models. The experiments designed for implementing the PbP method (five gradient experiments for model calibration and one stepwise experiment for model validation) not only streamline the experimental workload but also ensure the extrapolation abilities of the model. The effectiveness of the standardized approach is successfully validated through an application about the IEC separation of industrial antibody variants, and satisfactory results were observed with R2 ≈ 0.9 for the majority of calibration and validation experiments. The standardized approach proposed in this work contributes significantly to improve the accuracy and reliability of the developed IEC models. Models developed using this standardized approach are ready to be applied to a broader range of industrial separation systems, and are likely find further applications in model-assisted decision-making of process development.


Assuntos
Proteínas , Reprodutibilidade dos Testes , Cromatografia por Troca Iônica/métodos , Adsorção , Calibragem
6.
Biosci Biotechnol Biochem ; 88(5): 509-516, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38425056

RESUMO

Nutrient availability in hydroponic solutions must be accurately monitored to maintain crop productivity; however, few cost-effective, accurate, real-time, and long-term monitoring technologies have been developed. In this study, we describe the development and application of cation-/anion-exchange chromatography with a neutral eluent (20-mmol/L sodium formate, pH 7.87) for the simultaneous separation (within 50 min) of ionic nutrients, including K+, NH4+, NO2-, NO3-, and phosphate ion, in a hydroponic fertilizer solution. Using the neutral eluent avoided degradation of the separation column during precipitation of metal ion species, such as hydroxides, with an alkaline eluent and oxidation of NO2- to NO3- with an acidic eluent. The suitability of the current method for monitoring ionic components in a hydroponic fertilizer solution was confirmed. Based on our data, we propose a controlled fertilizer strategy to optimize fertilizer consumption and reduce the chemical load of drained fertilizer solutions.


Assuntos
Fertilizantes , Hidroponia , Soluções , Hidroponia/métodos , Cromatografia por Troca Iônica/métodos , Fertilizantes/análise , Nutrientes/análise , Cátions/análise , Fosfatos/análise , Concentração de Íons de Hidrogênio , Potássio/análise
7.
Mar Biotechnol (NY) ; 26(2): 338-350, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38451444

RESUMO

The sea squirt Ciona robusta (formerly Ciona intestinalis type A) has been the subject of many interdisciplinary studies. Known as a vanadium-rich ascidian, C. robusta is an ideal model for exploring microbes associated with the ascidian and the roles of these microbes in vanadium accumulation and reduction. In this study, we discovered two bacterial strains that accumulate large amounts of vanadium, CD2-88 and CD2-102, which belong to the genera Pseudoalteromonas and Vibrio, respectively. The growth medium composition impacted vanadium uptake. Furthermore, pH was also an important factor in the accumulation and localization of vanadium. Most of the vanadium(V) accumulated by these bacteria was converted to less toxic vanadium(IV). Our results provide insights into vanadium accumulation and reduction by bacteria isolated from the ascidian C. robusta to further study the relations between ascidians and microbes and their possible applications for bioremediation or biomineralization.


Assuntos
Ciona intestinalis , Vanádio , Animais , Vanádio/metabolismo , Ciona intestinalis/metabolismo , Ciona intestinalis/microbiologia , Pseudoalteromonas/metabolismo , Vibrio/metabolismo , Concentração de Íons de Hidrogênio , Intestinos/microbiologia , Meios de Cultura/química , RNA Ribossômico 16S/genética
8.
Anal Chim Acta ; 1297: 342349, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438233

RESUMO

SARS-CoV-2, the causative agent of COVID-19, has imposed a major public health threat, which needs effective therapeutics and vaccination strategies. Several potential candidate vaccines being rapidly developed are in clinical evaluation and recombinant vaccine has gained much attention thanks to its potential for greater response predictability, improved efficacy, rapid development and reduced side effects. Recombinant vaccines are designed and manufactured using bacterial, yeast cells or mammalian cells. A small piece of DNA is taken from the virus or bacterium against which we want to protect and inserted into the manufacturing cells. Due to the extremely complex heterogeneity of SARS-CoV-2 recombinant vaccine, single technology platform cannot achieve thorough and accurate characterization of such difficult proteins so integrating comprehensive technologies is essential. This study illustrates an innovative workflow employing multiple separation techniques tandem high-resolution mass spectrometry for comprehensive and in-depth characterization of SARS-CoV-2 recombinant vaccine, including ultra-high performance liquid chromatography (UHPLC), ion exchange chromatography (IEX) and imaged capillary isoelectric focusing (icIEF). The integrated methodology focuses on the importance of cutting-edge icIEF-MS online coupling and icIEF fractionation applied to revealing the heterogeneity secret of SARS-CoV-2 recombinant vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , COVID-19/prevenção & controle , SARS-CoV-2/genética , Espectrometria de Massas em Tandem , Saccharomyces cerevisiae , Vacinas Sintéticas , Mamíferos
9.
Bioorg Chem ; 144: 107153, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335754

RESUMO

Glycerophosphodiester phosphodiesterase (GDPD) is a highly conserved enzyme in both prokaryotic and eukaryotic organisms. It catalyses the hydrolysis of various glycerophosphodiesters into glycerol-3-phosphate and corresponding alcohols, which serve as building blocks in several biosynthetic pathways. This enzyme is a well-known virulence factor in many pathogenic bacteria, including Staphylococcus aureus, and is thus considered a potential drug target. In this study, competent E. coli BL21(DE3)pLysS expression cells were used to express the GDPD enzyme from vancomycin-resistant Staphylococcus aureus (VRSA), which was then purified using size exclusion and anion exchange chromatography. The hydrolytic activity of GDPD was evaluated on the non-physiological substrate bis(p-nitrophenyl) phosphate (BpNPP), which indicated functional activity of the enzyme. 79 drugs were evaluated for their inhibitory potential against GDPD enzyme by the colorimetric assay. Out of 79 drugs, 13 drugs, including tenofovir (1), adenosine (2), clioquinol (11), bromazepam (12), lamotrigine (13), sulfadiazine (14), azathioprine (15), nicotine (16), sitagliptin PO4 (17), doxofylline (18), clindamycin phosphate (19), gentamycin sulphate (20), and ceftriaxone sodium (21) revealed varying degrees of inhibitory potential with IC50 values in the range of 400 ± 0.007-951 ± 0.016 µM. All drugs were also evaluated for their binding interactions with the target enzyme by saturation transfer difference (STD-NMR) spectroscopy. 10 drugs demonstrated STD interactions and hence, showed binding affinity with the enzyme. Exceptionally, tenofovir (1) was identified to be a better inhibitor with an IC50 value of 400 ± 0.007 µM, as compared to the standard EDTA (ethylenediaminetetraacetic acid) (IC50 = 470 ± 0.008 µM). Moreover, molecular docking studies have identified key interactions of the ligand (tenofovir) with the binding site residues of the enzyme.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Diester Fosfórico Hidrolases , Staphylococcus aureus , Escherichia coli , Ligantes , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Fosfatos , Staphylococcus aureus/metabolismo , Tenofovir , Adenosina/química , Adenosina/metabolismo , Bromazepam/química , Bromazepam/metabolismo
10.
Biotechnol Bioeng ; 121(5): 1702-1715, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38230585

RESUMO

Digital twin (DT) is a virtual and digital representation of physical objects or processes. In this paper, this concept is applied to dynamic control of the collection window in the ion exchange chromatography (IEC) toward sample variations. A possible structure of a feedforward model-based control DT system was proposed. Initially, a precise IEC mechanistic model was established through experiments, model fitting, and validation. The average root mean square error (RMSE) of fitting and validation was 8.1% and 7.4%, respectively. Then a model-based gradient optimization was performed, resulting in a 70.0% yield with a remarkable 11.2% increase. Subsequently, the DT was established by systematically integrating the model, chromatography system, online high-performance liquid chromatography, and a server computer. The DT was validated under varying load conditions. The results demonstrated that the DT could offer an accurate control with acidic variants proportion and yield difference of less than 2% compared to the offline analysis. The embedding mechanistic model also showed a positive predictive performance with an average RMSE of 11.7% during the DT test under >10% sample variation. Practical scenario tests indicated that tightening the control target could further enhance the DT robustness, achieving over 98% success rate with an average yield of 72.7%. The results demonstrated that the constructed DT could accurately mimic real-world situations and perform an automated and flexible pooling in IEC. Additionally, a detailed methodology for applying DT was summarized.


Assuntos
Anticorpos Monoclonais , Cromatografia Líquida de Alta Pressão/métodos , Anticorpos Monoclonais/química , Cromatografia por Troca Iônica/métodos
11.
Int J Biol Macromol ; 261(Pt 1): 129550, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244734

RESUMO

The enzyme α-Galactosidase (α-D-galactoside galactohydrolase [EC 3.2.1.22]) is an exoglycosidase that hydrolyzes the terminal α-galactosyl moieties of glycolipids and glycoproteins. It is ubiquitous in nature and possesses extensive applications in the food, pharma, and biotechnology industries. The present study aimed to purify α-galactosidase from Klebsiella pneumoniae, a bacterium isolated from the human oral cavity. The purification steps involved ammonium sulfate precipitation (70 %), dialysis, ion exchange chromatography using a DEAE-cellulose column, and affinity monolith chromatography. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis was used to determine the molecular weight of the purified enzyme. The kinetic constants, Michaelis constant (Km) and maximal velocity (Vmax), for this enzyme were determined by using p-nitrophenyl-α-D-galactopyranoside as substrate. The results showed that the purification fold, specific activity, and yield were 126.52, 138.58 units/mg, and 21.5 %, respectively. The SDS-PAGE showed that the molecular weight of the purified enzyme was 75 kDa. The optimum pH and temperature of the purified α-galactosidase were detected at pH 6.0 and 50 °C, respectively. The kinetic constants, Michaelis constant (Km) and maximal velocity (Vmax), for this enzyme were 4.6 mM and 769.23 U/ml, respectively. α-galactosidase from Klebsiella pneumoniae was purified and characterized. (SDS-PAGE) analysis showed that the purified enzyme appeared as single band with a molecular weight of 75 kDa.


Assuntos
Klebsiella pneumoniae , alfa-Galactosidase , Humanos , alfa-Galactosidase/química , Klebsiella pneumoniae/metabolismo , Diálise Renal , Temperatura , Cromatografia de Afinidade , Concentração de Íons de Hidrogênio , Peso Molecular , Eletroforese em Gel de Poliacrilamida , Cinética
12.
J Agric Food Chem ; 72(2): 1339-1353, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38183657

RESUMO

Two offline multidimensional chromatography/high-resolution mass spectrometry systems (method 1: fractionation and online two-dimensional liquid chromatography, 2D-LC; method 2: fractionation and offline 2D-LC) were established to characterize the metabolites simultaneously from three Glycyrrhiza species. Ion exchange chromatography in the first-dimensional (1D) separation was well fractionated between the acidic (mainly triterpenoids) and weakly acidic components (flavonoids). These obtained subsamples got sophisticated separation by the second (2D) and third dimension (3D) of chromatography either by online reversed-phase chromatography × reversed-phase chromatography (RPC × RPC) or offline hydrophilic interaction chromatography × RPC (HILIC × RPC). Orthogonality for the 2D/3D separations reached 0.73 for method 1 and 0.81 for method 2, respectively. We could characterize 1097 compounds from three Glycyrrhiza species based on an in-house library and 33 reference standards, involving 618 by method 1 and 668 by method 2, respectively. They exhibited a differentiated performance and complementarity in identifying the multiple subclasses of Glycyrrhiza components.


Assuntos
Cromatografia de Fase Reversa , Glycyrrhiza , Espectrometria de Massas , Cromatografia de Fase Reversa/métodos , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/análise , Interações Hidrofóbicas e Hidrofílicas
13.
J Chromatogr A ; 1716: 464632, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38219623

RESUMO

Recombinant adeno-associated virus (AAV) has emerged as one of the most promising systems for therapeutic gene delivery and has demonstrated clinical success in a wide range of genetic disorders. However, manufacturing of high-quality AAV in large amounts still remains a challenge. A significant difficulty for downstream processing is the need to remove empty capsids that are generated in all currently utilized expression systems and that represent product-related impurities that adversely affect safety and efficacy of AAV vectors. Empty and full capsids exhibit only subtle differences in surface charge and size, making chromatography-based separations highly challenging. Here, we present a rapid methodology for the systematic process development of the crucial AAV full/empty capsid separation on ion-exchange media based on high-throughput screening and mechanistic modeling. Two of the most commonly employed serotypes, AAV8 and AAV9, are used as case studies. First, high-throughput studies in filter-plate format are performed that allow the rapid and comprehensive study of binding and elution behavior of AAV on different resins, using different buffer systems, pH, salt conditions, and solution additives. Small amounts of separated empty and full AAV capsids are generated by iodixanol gradient centrifugation that allow studying the binding and elution behavior of the two vector species separately in miniaturized format. Process conditions that result in maximum differences in elution behavior between empty and full capsids are then transferred to benchtop chromatography systems that are used to generate calibration data for the estimation of steric mass-action isotherm and mass transport parameters for process simulation. The resulting column models are employed for in-silico process development that serves to enhance understanding of separation constraints and to identify optimized conditions for the removal of empty particles. Finally, optimized separation conditions are verified experimentally. The methodology presented in this work provides a systematic framework that affords mechanistic understanding of the crucial empty/full capsid separation and accelerates the development of a scalable AAV downstream process.


Assuntos
Capsídeo , Dependovirus , Capsídeo/química , Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Ensaios de Triagem em Larga Escala , Vetores Genéticos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/análise
14.
Cytotherapy ; 26(2): 157-170, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38069981

RESUMO

BACKGROUND AIMS: Extracellular vesicle (EV) isolation methods are based on different physicochemical properties and may result in the purification of distinct EV populations. We compared two different isolation methods suitable for producing clinical-grade mesenchymal stromal cell-derived EVs (MSC-EVs)-ion exchange chromatography (IEX) and ultrafiltration (UF)-and evaluated their impact on the composition and functional properties of EVs. METHODS: EVs were purified from conditioned culture medium using an anion exchange resin (IEX) or Amicon filters with a 100-kDa cutoff (UF) (MilliporeSigma, Burlington, MA, USA). We assessed nanoparticle size and distribution by nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS) and morphology by transmission electron microscopy. We also measured protein, lipid and total RNA concentration and immunophenotyped both EV populations by flow cytometry (MACSPlex assay; Miltenyi Biotec, Bergisch Gladbach, Germany). Moreover, immunomodulatory activity was tested using a standardized macrophage polarization assay and T-cell stimulation assay. Finally, proteomic analysis and cytokine quantification were carried out to better characterize both EV populations. RESULTS: We found by both TRPS and NTA that IEX and UF yielded a comparable amount of total particles with similar size and distribution. In addition, a similar quantity of lipids was obtained with the two procedures. However, IEX yielded 10-fold higher RNA quantity and a larger amount of proteins than UF. MSC-EVs isolated from IEX and UF were positive for the exosome markers CD9, CD63 and CD81 and showed a comparable surface marker expression pattern. Both populations demonstrated immunomodulatory activity in vitro, as they prevented acquisition of the M1 phenotype in lipopolysaccharide-stimulated macrophages and inhibited acquisition of the activation markers CD69 and CD25 on T cells, but the IEX-EVs exerted a significantly greater immunomodulatory effect on both macrophages and T cells compared with UF-EVs. Proteomic analysis and gene ontology enrichment analysis revealed no major differences between the preparations. Finally, cytokine quantification revealed that IEX-EVs were more enriched in some crucial anti-inflammatory and immunomodulatory cytokines (e.g., IL-2, IL-10, transforming growth factor beta and vascular endothelial growth factor) compared with UF-EVs. CONCLUSIONS: MSC-EVs isolated by IEX and UF displayed similar physicochemical, phenotypic and functional characteristics. In our conditions, both EV populations demonstrated important anti-inflammatory activity in macrophages and T cells. However, IEX-EVs were more potent than UF-EVs, which may indicate the superiority of this method for the production of clinical-grade EVs.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Proteômica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/metabolismo , RNA/análise , RNA/metabolismo
15.
Nucl Med Biol ; 128-129: 108874, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38154167

RESUMO

INTRODUCTION: Due to its decay and chemical properties, interest in manganese-52 has increased for development of long-lived PET radiopharmaceuticals. Its long half-life of 5.6 days, low average positron energy (242 keV), and sufficient positron decay branching ratio make it suitable for radiolabeling macromolecules for investigating slow biological processes. This work aims to establish suitable chelators for manganese-52 that can be radiolabeled at mild conditions through the evaluation of commercially available chelators. METHODS: Manganese-52 was produced through the nuclear reaction NatCr(p,n)52Mn by irradiation of natural chromium targets on a TR24 cyclotron followed by purification through ion exchange chromatography. The radiolabeling efficiencies of chelators: DOTA, DiAmsar, TETA, DO3A, NOTA, 4'-Formylbenzo-15-crown-5, Oxo-DO3A, and DFO, were assessed by investigating the impact of pH, buffer type, and temperature. In vitro stability of [52Mn]Mn(DO3A)-, [52Mn]Mn(Oxo-DO3A)-, and [52Mn]Mn(DOTA)2- were evaluated in mouse serum. The radiocomplexes were also evaluated in vivo in mice. Crystals of [Mn(Oxo-DO3A)]- were synthesized by reacting Oxo-DO3A with MnCl2 and characterized by single crystal X-ray diffraction. RESULTS: Yields of 185 ± 19 MBq (5.0 ± 0.5 mCi) (n = 4) of manganese-52 were produced at the end of a 4 h, 15 µA, bombardment with 12.5 MeV protons. NOTA, DO3A, DOTA, and Oxo-DO3A chelators were readily radiolabeled with >96 % radiochemical purity at all conditions. Manganese radiocomplexes of Oxo-DO3A, DOTA, and DO3A remained stable in vitro up to 5 days and exhibited different biodistribution profiles compared to [52Mn]MnCl2. The solid-state structure of Mn-Oxo-DO3A complex was determined by single-crystal X-ray diffraction. CONCLUSIONS: DO3A and Oxo-DO3A are suitable chelators for manganese-52 which are readily radiolabeled at mild conditions with high molar activity, and demonstrate both in vitro and in vivo stability.


Assuntos
Manganês , Tomografia por Emissão de Pósitrons , Radioisótopos , Camundongos , Animais , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Quelantes/química
16.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38068945

RESUMO

Charge heterogeneity among therapeutic monoclonal antibodies (mAbs) is considered an important critical quality attribute and requires careful characterization to ensure safe and efficacious drug products. The charge heterogeneity among mAbs is the result of chemical and enzymatic post-translational modifications and leads to the formation of acidic and basic variants that can be characterized using cation exchange chromatography (CEX). Recently, the use of mass spectrometry-compatible salt-mediated pH gradients has gained increased attention to elute the proteins from the charged stationary phase material. However, with the increasing antibody product complexity, more and more selectivity is required. Therefore, in this study, we set out to improve the selectivity by using a solvent-enriched mobile phase composition for the analysis of a variety of mAbs and bispecific antibody products. It was found that the addition of the solvents to the mobile phase appeared to modify the hydrate shell surrounding the protein and alter the retention behavior of the studied proteins. Therefore, this work demonstrates that the use of solvent-enriched mobile phase composition could be an attractive additional method parameter during method development in CEX.


Assuntos
Produtos Biológicos , Concentração de Íons de Hidrogênio , Anticorpos Monoclonais/química , Solventes , Indicadores e Reagentes , Cromatografia por Troca Iônica/métodos
17.
Molecules ; 28(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067465

RESUMO

We previously enabled a direct insight into the quality of citrate anticoagulant tubes before their intended use for specimen collection by introducing an easy-to-perform UV spectrometric method for citrate determination on a purified water model. The results revealed differences between the tubes of three producers, Greiner BIO-ONE (A), LT Burnik (B), and BD (C). It became apparent that tubes C contain an additive, which absorbs light in the ultraviolet range and prevents reliable evaluation of citrate anticoagulant concentration with the suggested method. In this research, we re-evaluate the quality of citrate-evacuated blood collection tubes by complementing UV spectrometry with ion chromatography. (1) Comparable results were obtained for tubes B at 220 nm. (2) Citrate concentrations determined with ion chromatography were lower for tubes A and C. Chromatograms reveal additional peaks for both. (3) Influences of heparin on absorption spectra and chromatograms of citrate were studied. Some similarities with the shape of the anticoagulant spectra of tubes A and C were observed, and the lithium heparin peak in chromatograms is close to them, but a confident judgment was not possible. (4) Contamination of anticoagulant solution with potassium, magnesium, and calcium was confirmed for all the brands, and contamination with lithium for B and C.


Assuntos
Ácido Cítrico , Lítio , Anticoagulantes/farmacologia , Anticoagulantes/química , Heparina/química , Citratos , Espectrofotometria Ultravioleta
18.
Prep Biochem Biotechnol ; : 1-8, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37947457

RESUMO

This study reports the tannase purification produced by a tannery effluent-originated fungal isolate i.e., Aspergillus fumigatus MA under solid state fermentation (SSF) condition. Purification of tannase from culture filtrate was attained using ammonium sulfate precipitation with subsequent diethylaminoethyl (DEAE)-cellulose mediated ion exchange chromatographic technique. Fractional precipitation of the culture filtrate with 60-80% ammonium sulfate yielded 80.9% recovery of tannase with 6.16-fold purification. The enzyme fractions were collected and eluted as a single peak using 0.5 M NaCl-gradient concentration. DEAE-cellulose column chromatography results in overall 23-fold purification with 27.6% recovery of the enzyme. SDS-PAGE analysis of purified tannase confirmed the presence of a single band of protein with a molecular mass equivalent to 66.2 kDa. The highest activity of tannase was observed at optimum pH ranged between 5.0-6.0 whereas, the tannase stability (>80%) was observed at 4.0 to 7.0 pH ranges. The purified tannase activity was found to be optimally active at 30 °C whereas stability (>90%) was accomplished between 30-50 °C temperature. The Km and Vmax were found to be 1.61 × 10-3 M and 1.04 mM respectively. These properties suggest the potential of the enzyme to be utilized in various food, feed, and pharmaceutical sectors.

19.
Artigo em Inglês | MEDLINE | ID: mdl-37890003

RESUMO

The oxidation of the aqueous H3PO3 in contact with Pt was investigated for a fundamental understanding of the Pt/aqueous H3PO3 interaction with the goal of providing a comprehensive basis for the further optimization of high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs). Ion-exchange chromatography (IEC) experiments suggested that in ambient conditions, Pt catalyzes H3PO3 oxidation to H3PO4 with H2O. X-ray photoelectron spectroscopy (XPS) on different substrates, including Au and Pt, previously treated in H3PO3 solutions was conducted to determine the catalytic abilities of selected metals toward H3PO3 oxidation. In situ ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES) combined with the "dip-and-pull" method was performed to investigate the state of H3PO3 at the Pt|H3PO3 interface and in the bulk solution. It was shown that whereas H3PO3 remains stable in the bulk solution, the catalyzed oxidation of H3PO3 by H2O to H3PO4 accompanied by H2 generation occurs in contact with the Pt surface. This catalytic process likely involves H3PO3 adsorption at the Pt surface in a highly reactive pyramidal tautomeric configuration.

20.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4295-4307, 2023 Oct 25.
Artigo em Chinês | MEDLINE | ID: mdl-37877406

RESUMO

We developed a method for accurate quantification of the intact virus particles in inactivated avian influenza virus feedstocks. To address the problem of impurities interference in the detection of inactivated avian influenza virus feedstocks by direct high performance size exclusion chromatography (HPSEC), we firstly investigated polyethylene glycol (PEG) precipitation and ion exchange chromatography (IEC) for H5N8 antigen purification. Under the optimized conditions, the removal rate of impurity was 86.87% in IEC using DEAE FF, and the viral hemagglutination recovery was 100%. HPSEC was used to analyze the pretreated samples. The peak of 8.5-10.0 min, which was the characteristic adsorption of intact virus, was analyzed by SDS-PAGE and dynamic light scattering. It was almost free of impurities and the particle size was uniform with an average particle size of 127.7 nm. After adding antibody to the IEC pretreated samples for HPSEC detection, the characteristic peak disappeared, indicating that IEC pretreatment effectively removed the impurities. By coupling HPSEC with multi-angle laser scattering technique (MALLS), the amount of intact virus particles in the sample could be accurately quantified with a good linear relationship between the number of virus particles and the chromatographic peak area (R2=0.997). The established IEC pretreatment-HPSEC-MALLS assay was applied to accurate detection of the number of intact virus particles in viral feedstocks of different subtypes (H7N9), different batches and different concentrations, all with good applicability and reproducibility, Relative standard deviation < 5%, n=3.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Animais , Reprodutibilidade dos Testes , Cromatografia em Gel , Vírion , Lasers
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...