Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(9)2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39330842

RESUMO

Insect control traits are a key component of improving the efficacy of insect pest management and maximizing crop yields for growers. Insect traits based on proteins expressed by the bacteria Bacillus thuringiensis (Bt) have proven to be very effective tools in achieving this goal. Unfortunately, the adaptability of insects has led to resistance to certain proteins in current commercial products. Therefore, new insecticidal traits representing a different mode of action (MoA) than those currently in use are needed. Cry1Ja has good insecticidal activity against various lepidopteran species, and it provides robust protection against insect feeding with in planta expression. For Bt proteins, different MoAs are determined by their binding sites in the insect midgut. In this study, competitive binding assays are performed using brush border membrane vesicles (BBMVs) from Helicoverpa zea, Spodoptera frugiperda, and Chrysodeixis includens to evaluate the MoA of Cry1Ja relative to representatives of the various Bt proteins that are expressed in current commercial products for lepidopteran insect protection. This study highlights differences in the shared Cry protein binding sites in three insect species, Cry1Ja bioactivity against Cry1Fa resistant FAW, and in planta efficacy against target pests. These data illustrate the potential of Cry1Ja for new insect trait development.


Assuntos
Toxinas de Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Controle Biológico de Vetores , Animais , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Toxinas de Bacillus thuringiensis/metabolismo , Endotoxinas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Inseticidas/farmacologia , Spodoptera/efeitos dos fármacos , Microvilosidades/metabolismo , Microvilosidades/efeitos dos fármacos , Controle de Insetos/métodos , Bacillus thuringiensis/genética , Plantas Geneticamente Modificadas/genética
2.
Front Mol Biosci ; 11: 1392608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721277

RESUMO

J-domain proteins (JDPs) are obligate cochaperones of Hsp70s. The Class A JDP Apj1 of the yeast cytosol has an unusually complex region between the N-terminal J-domain and the substrate binding region-often called the Grich or GF region in Class A and B JDPs because of its typical abundance of glycine. The N-terminal 161-residue Apj1 fragment is known to be sufficient for Apj1 function in prion curing, driven by the overexpression of Hsp104. Further analyzing the N-terminal segment of Apj1, we found that a 90-residue fragment that includes the 70-residue J-domain and the adjacent 12-residue glutamine/alanine (Q/A) segment is sufficient for curing. Furthermore, the 121-residue fragment that includes the Grich region was sufficient to not only sustain the growth of cells lacking the essential Class B JDP Sis1 but also enabled the maintenance of several prions normally dependent on Sis1 for propagation. A J-domain from another cytosolic JDP could substitute for the Sis1-related functions but not for Apj1 in prion curing. Together, these results separate the functions of JDPs in prion biology and underscore the diverse functionality of multi-domain cytosolic JDPs in yeast.

3.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1023892

RESUMO

AIM:To explore the mechanism of ATP synthase mitochondrial F0 complex H+ transporting,sub-unit F6(ATP5J)in affecting the metastasis of hepatoma carcinoma cells by regulating mitochondrial function-mediated cy-toskeletal remodeling.METHODS:Hepatocellular carcinoma cells Li-7 were used to construct the ATP5J overexpression and knockdown models.JC-1 staining was used to detect the mitochondrial membrane potential in each group,reactive oxygen species(ROS)levels were examined by DCHF-DA,and mitochondrial ATP fluorescence probe was used to assess mito-chondrial function.Cytoskeletal remodeling was detected with a microfilament green fluorescent probe(Actin-Tracker Green-488).Transwell assay was used to assess cell invasion ability.The expression levels of ATP5J and translocase of outer mitochondrial membrane 20(TOMM20)were determined by Western blot.RESULTS:Overexpression of ATP5J up-regulated mitochondrial membrane potential and mitochondrial ATP fluorescence intensity,induced cytoskeletal re-modeling,promoted cell invasion and TOMM20 expression,and inhibited ROS production(P<0.01).On the contrary,knockdown of ATP5J significantly decreased mitochondrial membrane potential and mitochondrial ATP fluorescence inten-sity,significantly decreased cell invasion ability and TOMM20 expression,promoted ROS production and blocked cyto-skeletal remodeling(P<0.01).CONCLUSION:ATP5J regulates mitochondrial energy transformation in hepatocellular carcinoma cells,and affects metastasis of hepatoma carcinoma cells by regulating mitochondrial membrane potential and mitochondrial ATP production-mediated cytoskeletal remodeling through TOMM20.

4.
Mol Cell Biochem ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851175

RESUMO

The endoplasmic reticulum (ER) membrane provides infrastructure for intracellular signaling, protein degradation, and communication among the ER lumen, cytosol, and nucleus via transmembrane and membrane-associated proteins. Failure to maintain homeostasis at the ER leads to deleterious conditions in humans, such as protein misfolding-related diseases and neurodegeneration. The ER transmembrane heat shock protein 40 (Hsp40) proteins, including DNAJB12 (JB12) and DNAJB14 (JB14), have been studied for their importance in multiple aspects of cellular events, including degradation of misfolded membrane proteins, proteasome-mediated control of proapoptotic Bcl-2 members, and assembly of multimeric ion channels. This study elucidates a novel facet of JB12 and JB14 in that their expression could be regulated in response to stress caused by the presence of ER stressors and the mitochondrial potential uncoupler CCCP. Furthermore, JB14 overexpression could affect the level of PTEN-induced kinase 1 (PINK1) expression under CCCP-mediated stress. Cells with genetic knockout (KO) of DNAJB12 and DNAJB14 exhibited an altered kinetic of phosphorylated Drp1 in response to the stress caused by CCCP treatment. Surprisingly, JB14-KO cells exhibited a prolonged stabilization of PINK1 during chronic exposure to CCCP. Cells depleted with JB12 or JB14 also revealed an increase in the mitochondrial count and branching. Hence, this study indicates the possible novel functions of JB12 and JB14 involving mitochondria in nonstress conditions and under stress caused by CCCP.

5.
Genes (Basel) ; 14(6)2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37372434

RESUMO

The J-protein family comprises molecular chaperones involved in plant growth, development, and stress responses. Little is known about this gene family in soybean. Hence, we characterized J-protein genes in soybean, with the most highly expressed and responsive during flower and seed development. We also revealed their phylogeny, structure, motif analysis, chromosome location, and expression. Based on their evolutionary links, we divided the 111 potential soybean J-proteins into 12 main clades (I-XII). Gene-structure estimation revealed that each clade had an exon-intron structure resembling or comparable to others. Most soybean J-protein genes lacked introns in Clades I, III, and XII. Moreover, transcriptome data obtained from a publicly accessible soybean database and RT-qPCR were used to examine the differential expression of DnaJ genes in various soybean tissues and organs. The expression level of DnaJ genes indicated that, among 14 tissues, at least one tissue expressed the 91 soybean genes. The findings suggest that J-protein genes could be involved in the soybean growth period and offer a baseline for further functional research into J-proteins' role in soybean. One important application is the identification of J-proteins that are highly expressed and responsive during flower and seed development in soybean. These genes likely play crucial roles in these processes, and their identification can contribute to breeding programs to improve soybean yield and quality.


Assuntos
Glycine max , Proteínas de Choque Térmico HSP40 , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Crescimento e Desenvolvimento
6.
Mol Biol Rep ; 50(6): 5117-5124, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37106211

RESUMO

BACKGROUND: Among the heavy metal pollution in soil, lead pollution is particularly prominent. The lead in contaminated soil will not only cause damage to plants, animals and microorganisms, but also seriously affect the progress of the entire ecosystem. Under lead stress, the abundance of DnaJ protein in plants will increase. However, little is known about the role of DnaJ in lead stress. METHODS AND RESULTS: We used transgenic Arabidopsis that overexpressed DnaJ gene ZjDjB1 of Zostera japonica as material to study the role of DnaJ in the mechanism of lead induced stress response. Under lead stress, the seedlings and adult plants of transgenic ZjDjB1 Arabidopsis have higher tolerance to lead stress than wild type. Under lead stress, the content of NO and O2·- free radicals in transgenic ZjDjB1 Arabidopsis was lower than that of wild type. The negative effect of catalase in transgenic ZjDjB1 Arabidopsis under lead stress was weaker than that of wild type. The expression of ABC transporter of mitochondrion 3 (ATM3; systematic name: ABCB25) in transgenic ZjDjB1 Arabidopsis under lead stress was higher than that in wild type. CONCLUSIONS: These results confirmed that ZjDjB1, the DnaJ gene of Z. japonica, was involved in the reaction mechanism to lead pollution, which might improve the tolerance of plants to lead stress by maintaining catalase activity and increasing the expression level of ATM3 under lead stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Zosteraceae , Arabidopsis/metabolismo , Catalase/metabolismo , Zosteraceae/genética , Ecossistema , Plantas Geneticamente Modificadas/metabolismo , Proteínas de Plantas/genética , Solo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
7.
Genetics ; 219(2)2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34849884

RESUMO

[PSI+] is a prion of Saccharomyces cerevisiae Sup35, an essential ribosome release factor. In [PSI+] cells, most Sup35 is sequestered into insoluble amyloid aggregates. Despite this depletion, [PSI+] prions typically affect viability only modestly, so [PSI+] must balance sequestering Sup35 into prions with keeping enough Sup35 functional for normal growth. Sis1 is an essential J-protein regulator of Hsp70 required for the propagation of amyloid-based yeast prions. C-terminally truncated Sis1 (Sis1JGF) supports cell growth in place of wild-type Sis1. Sis1JGF also supports [PSI+] propagation, yet [PSI+] is highly toxic to cells expressing only Sis1JGF. We searched extensively for factors that mitigate the toxicity and identified only Sis1, suggesting Sis1 is uniquely needed to protect from [PSI+] toxicity. We find the C-terminal substrate-binding domain of Sis1 has a critical and transferable activity needed for the protection. In [PSI+] cells that express Sis1JGF in place of Sis1, Sup35 was less soluble and formed visibly larger prion aggregates. Exogenous expression of a truncated Sup35 that cannot incorporate into prions relieved [PSI+] toxicity. Together our data suggest that Sis1 has separable roles in propagating Sup35 prions and in moderating Sup35 aggregation that are crucial to the balance needed for the propagation of what otherwise would be lethal [PSI+] prions.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Fatores de Terminação de Peptídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Fatores de Terminação de Peptídeos/genética , Domínios Proteicos , Proteostase , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
8.
Biol Chem ; 401(6-7): 723-736, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32142474

RESUMO

Biogenesis of mitochondria relies on import of more than 1000 different proteins from the cytosol. Approximately 70% of these proteins follow the presequence pathway - they are synthesized with cleavable N-terminal extensions called presequences and reach the final place of their function within the organelle with the help of the TOM and TIM23 complexes in the outer and inner membranes, respectively. The translocation of proteins along the presequence pathway is powered by the import motor of the TIM23 complex. The import motor of the TIM23 complex is localized at the matrix face of the inner membrane and is likely the most complicated Hsp70-based system identified to date. How it converts the energy of ATP hydrolysis into unidirectional translocation of proteins into mitochondria remains one of the biggest mysteries of this translocation pathway. Here, the knowns and the unknowns of the mitochondrial protein import motor are discussed.


Assuntos
Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Humanos , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo
9.
Cell Rep ; 30(7): 2430-2443.e4, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32075773

RESUMO

Cells have developed protein quality-control strategies to manage the accumulation of misfolded substrates during heat stress. Using a soluble reporter of misfolding in fission yeast, Rho1.C17R-GFP, we demonstrate that upon mild heat shock, the reporter collapses in protein aggregate centers (PACs). They contain and/or require several chaperones, such as Hsp104, Hsp16, and the Hsp40/70 couple Mas5/Ssa2. Stress granules do not assemble at mild temperatures and, therefore, are not required for PAC formation; on the contrary, PACs may serve as nucleation centers for the assembly of stress granules. In contrast to the general belief, the dominant fate of these PACs is not degradation, and the aggregated reporter can be disassembled by chaperones and recovers native structure and activity. Using mass spectrometry, we show that thermo-unstable endogenous proteins form PACs as well. In conclusion, formation of PACs during heat shock is a chaperone-mediated adaptation strategy.


Assuntos
Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Resposta ao Choque Térmico , Humanos , Dobramento de Proteína
10.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31748398

RESUMO

Molecular chaperones and cochaperones are the most abundant cellular effectors of protein homeostasis, assisting protein folding and preventing aggregation of misfolded proteins. We have previously shown that herpes simplex virus 1 (HSV-1) infection results in the drastic spatial reorganization of the cellular chaperone Hsc70 into nuclear domains called VICE (Virus Induced Chaperone Enriched) domains and that this recruitment is dependent on the viral immediate early protein ICP22. Here, we present several lines of evidence supporting the notion that ICP22 functions as a virally encoded cochaperone (J-protein/Hsp40) functioning together with its Hsc70 partner to recognize and manage aggregated and misfolded proteins. We show that ICP22 results in (i) nuclear sequestration of nonnative proteins, (ii) reduction of cytoplasmic aggresomes in cells expressing aggregation-prone proteins, and (iii) thermoprotection against heat inactivation of firefly luciferase, and (iv) sequence homology analysis indicated that ICP22 contains an N-terminal J domain and a C-terminal substrate binding domain, similar to type II cellular J proteins. ICP22 may thus be functionally similar to J-protein/Hsp40 cochaperones that function together with their HSP70 partners to prevent aggregation of nonnative proteins. This is not the first example of a virus hijacking a function of a cellular chaperone, since simian immunodeficiency virus T antigen was previously shown to contain a J domain; however, this the first known example of the acquisition of a functional J-like protein by a virus and suggests that HSV has taken advantage of the adaptable nature of J proteins to evolve a multifunctional cochaperone that functions with Hsc70 to promote lytic infection.IMPORTANCE Viruses have evolved a variety of strategies to succeed in a hostile environment. The herpes simplex virus 1 (HSV-1) immediate early protein ICP22 plays several roles in the virus life cycle, including downregulation of cellular gene expression, upregulation of late viral gene expression, inhibition of apoptosis, prevention of aggregation of nonnative proteins, and the recruitment of a cellular heat shock protein, Hsc70, to nuclear domains. We present evidence that ICP22 functionally resembles a cellular J-protein/HSP40 family cochaperone, interacting specifically with Hsc70. We suggest that HSV has taken advantage of the adaptable nature of J proteins to evolve a multifunctional cochaperone that functions with Hsc70 to promote lytic infection.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Herpesvirus Humano 1/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Animais , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Herpes Simples/virologia , Herpesvirus Humano 1/patogenicidade , Herpesvirus Humano 1/fisiologia , Humanos , Proteínas Imediatamente Precoces/genética , Chaperonas Moleculares/metabolismo , Fosforilação , Dobramento de Proteína , RNA Polimerase II/metabolismo , Células Vero , Proteínas Virais/metabolismo
11.
Int J Mol Sci ; 20(23)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766407

RESUMO

The etiological agent of African trypanosomiasis, Trypanosoma brucei (Tb), has been identified to possess an expanded and diverse group of heat shock proteins, which have been implicated in cytoprotection, differentiation, and subsequently progression and transmission of the disease. Heat shock protein 70 (Hsp70) is a highly conserved and ubiquitous molecular chaperone that is important in maintaining protein homeostasis in the cell. Its function is regulated by a wide range of co-chaperones, and inhibition of these functions and interactions with co-chaperones are emerging as potential therapeutic targets for numerous diseases. This study sought to biochemically characterize the cytosolic TbHsp70 and TbHsp70.4 proteins and to investigate if they functionally co-operate with the Type I J-protein, Tbj2. Expression of TbHsp70 was shown to be heat inducible, while TbHsp70.4 was constitutively expressed. The basal ATPase activities of TbHsp70.4 and TbHsp70 were stimulated by Tbj2. It was further determined that Tbj2 functionally co-operated with TbHsp70 and TbHsp70.4 as the J-protein was shown to stimulate the ability of both proteins to mediate the refolding of chemically denatured ß-galactosidase. This study provides further insight into this important class of proteins, which may contribute to the development of new therapeutic strategies to combat African Trypanosomiasis.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico/genética , Temperatura Alta , Chaperonas Moleculares/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/fisiologia , Tripanossomíase Africana/parasitologia
12.
3 Biotech ; 9(10): 358, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31544012

RESUMO

J-proteins which function as molecular chaperone played critical roles in plant growth, development, and response to various environment stresses, but little was reported on this gene family in rice. Here, we identified 115 putative rice J-proteins and classified them into nine major clades (I-IX) according to their phylogenetic relationships. Gene-structure analysis revealed that each member of the same clade has same or similar exon-intron structure, and most rice J-protein genes of clade VII were intronless. Chromosomes mapping suggested that tandem duplication was occurred in evolution. Expression profile showed that the 61 rice J-protein genes were expressed in at least one tissue. The result implied that they could be involved in the process of rice growth and development. The RNA-sequencing data identified 96 differentially expressed genes, 59.38% (57/96), 67.71% (65/96), and 62.50% (60/96) genes were induced by heat stress, drought stress, and salt stress, respectively. The results indicated that J-protein genes could participated in rice response to different stresses. The findings in this study would provide a foundation for further analyzing the function of J-proteins in rice.

13.
Planta ; 250(5): 1449-1460, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31309322

RESUMO

MAIN CONCLUSION: Despite AtJ3 and AtJ2 sharing a high protein-sequence identity and both being substrates of protein farnesyltransferase (PFT), AtJ3 but not AtJ2 mediates in Arabidopsis the heat-dependent phenotypes derived from farnesylation modification. Arabidopsis HEAT-INTOERANT 5 (HIT5)/ENHANCED RESPONSE TO ABA 1 (ERA1) encodes the ß-subunit of the protein farnesyltransferase (PFT), and the hit5/era1 mutant is better able to tolerate heat-shock stress than the wild type. Given that Arabidopsis AtJ2 (J2) and AtJ3 (J3) are heat-shock protein 40 (HSP40) homologs, sharing 90% protein-sequence identity, and each contains a CaaX box for farnesylation; atj2 (j2) and atj3 (j3) mutants were subjected to heat-shock treatment. Results showed that j3 but not j2 manifested the heat-shock tolerant phenotype. In addition, transgenic j3 plants that expressed a CaaX- abolishing J3C417S construct maintained the same capacity to tolerate heat shock as j3. The basal transcript levels of HEAT-SHOCK PROTEIN 101 (HSP101) in hit5/era1 and j3 were higher than those in the wild type. Although the capacities of j3/hsp101 and hit5/hsp101 double mutants to tolerate heat-shock stress declined compared to those of j3 and hit5/era1, they were still greater than that of the wild type. These results show that a lack of farnesylated J3 contributes to the heat-dependent phenotypes of hit5/era1, in part by the modulation of HSP101 activity, and also indicates that (a) mediator(s) other than J3 is (are) involved in the PFT-regulated heat-stress response. In addition, because HSP40s are known to function in dimer formation, bimolecular fluorescence complementation experiments were performed, and results show that J3 could dimerize regardless of farnesylation. In sum, in this study, a specific PFT substrate was identified, and its roles in the farnesylation-regulated heat-stress responses were clarified, which could be of use in future agricultural applications.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Choque Térmico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico , Fenótipo , Plantas Geneticamente Modificadas , Prenilação de Proteína
14.
Biochem J ; 476(11): 1653-1677, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201219

RESUMO

The Hsp70 family of chaperones works with its co-chaperones, the nucleotide exchange factors and J-domain proteins, to facilitate a multitude of cellular functions. Central players in protein homeostasis, these jacks-of-many-trades are utilized in a variety of ways because of their ability to bind with selective promiscuity to regions of their client proteins that are exposed when the client is unfolded, either fully or partially, or visits a conformational state that exposes the binding region in a regulated manner. The key to Hsp70 functions is that their substrate binding is transient and allosterically cycles in a nucleotide-dependent fashion between high- and low-affinity states. In the past few years, structural insights into the molecular mechanism of this allosterically regulated binding have emerged and provided deep insight into the deceptively simple Hsp70 molecular machine that is so widely harnessed by nature for diverse cellular functions. In this review, these structural insights are discussed to give a picture of the current understanding of how Hsp70 chaperones work.


Assuntos
Proteínas de Choque Térmico HSP70/química , Sítio Alostérico , Sítios de Ligação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Modelos Moleculares , Agregados Proteicos , Dobramento de Proteína , Transporte Proteico , Proteólise
15.
Trends Cell Biol ; 29(7): 534-548, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31030976

RESUMO

Mitochondrial biogenesis requires the import of a large number of precursor proteins from the cytosol. Although specific membrane-bound preprotein translocases have been characterized in detail, it was assumed that protein transfer from the cytosol to mitochondria mainly involved unselective binding to molecular chaperones. Recent findings suggest an unexpected versatility of protein transfer to mitochondria. Cytosolic factors have been identified that bind to selected subsets of preproteins and guide them to mitochondrial receptors in a post-translational manner. Cotranslational import processes are emerging. Mechanisms for crosstalk between protein targeting to mitochondria and other cell organelles, in particular the endoplasmic reticulum (ER) and peroxisomes, have been uncovered. We discuss how a network of cytosolic machineries and targeting pathways promote and regulate preprotein transfer into mitochondria.


Assuntos
Citosol/metabolismo , Mitocôndrias/metabolismo , Humanos , Transporte Proteico
16.
Viruses ; 11(4)2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995727

RESUMO

Yeast prions are protein-based genetic elements found in the baker's yeast Saccharomyces cerevisiae, most of which are amyloid aggregates that propagate by fragmentation and spreading of small, self-templating pieces called propagons. Fragmentation is carried out by molecular chaperones, specifically Hsp104, Hsp70, and Hsp40. Like other amyloid-forming proteins, amyloid-based yeast prions exhibit structural polymorphisms, termed "strains" in mammalian systems and "variants" in yeast, which demonstrate diverse phenotypes and chaperone requirements for propagation. Here, the known differential interactions between chaperone proteins and yeast prion variants are reviewed, specifically those of the yeast prions [PSI+], [RNQ+]/[PIN+], and [URE3]. For these prions, differences in variant-chaperone interactions (where known) with Hsp104, Hsp70s, Hsp40s, Sse1, and Hsp90 are summarized, as well as some interactions with chaperones of other species expressed in yeast. As amyloid structural differences greatly impact chaperone interactions, understanding and accounting for these variations may be crucial to the study of chaperones and both prion and non-prion amyloids.


Assuntos
Amiloide/química , Chaperonas Moleculares/metabolismo , Príons/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogênicas/química , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Príons/química , Príons/genética , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
17.
Cell Stress Chaperones ; 24(1): 125-148, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30506377

RESUMO

The etiological agent of the neglected tropical disease African trypanosomiasis, Trypanosoma brucei, possesses an expanded and diverse repertoire of heat shock proteins, which have been implicated in cytoprotection, differentiation, as well as progression and transmission of the disease. Hsp70 plays a crucial role in proteostasis, and inhibition of its interactions with co-chaperones is emerging as a potential therapeutic target for numerous diseases. In light of genome annotations and the release of the genome sequence of the human infective subspecies, an updated and current in silico overview of the Hsp70/J-protein machinery in both T. brucei brucei and T. brucei gambiense was conducted. Functional, structural, and evolutionary analyses of the T. brucei Hsp70 and J-protein families were performed. The Hsp70 and J-proteins from humans and selected kinetoplastid parasites were used to assist in identifying proteins from T. brucei, as well as the prediction of potential Hsp70-J-protein partnerships. The Hsp70 and J-proteins were mined from numerous genome-wide proteomics studies, which included different lifecycle stages and subcellular localisations. In this study, 12 putative Hsp70 proteins and 67 putative J-proteins were identified to be encoded on the genomes of both T. brucei subspecies. Interestingly there are 6 type III J-proteins that possess tetratricopeptide repeat-containing (TPR) motifs. Overall, it is envisioned that the results of this study will provide a future context for studying the biology of the African trypanosome and evaluating Hsp70 and J-protein interactions as potential drug targets.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Humanos , Filogenia , Mapeamento de Interação de Proteínas
18.
Mol Cell Biol ; 38(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224519

RESUMO

Polyglutamine (polyQ) aggregates are associated with pathology in protein-folding diseases and with toxicity in the yeast Saccharomyces cerevisiae Protection from polyQ toxicity in yeast by human DnaJB6 coincides with sequestration of aggregates. Gathering of misfolded proteins into deposition sites by protein quality control (PQC) factors has led to the view that PQC processes protect cells by spatially segregating toxic aggregates. Whether DnaJB6 depends on this machinery to sequester polyQ aggregates, if this sequestration is needed for DnaJB6 to protect cells, and the identity of the deposition site are unknown. Here, we found DnaJB6-driven deposits share characteristics with perivacuolar insoluble protein deposition sites (IPODs). Binding of DnaJB6 to aggregates was necessary, but not enough, for detoxification. Focal formation required a DnaJB6-Hsp70 interaction and actin, polyQ could be detoxified without sequestration, and segregation of aggregates alone was not protective. Our findings suggest DnaJB6 binds to smaller polyQ aggregates to block their toxicity. Assembly and segregation of detoxified aggregates are driven by an Hsp70- and actin-dependent process. Our findings show sequestration of aggregates is not the primary mechanism by which DnaJB6 suppresses toxicity and raise questions regarding how and when misfolded proteins are detoxified during spatial segregation.


Assuntos
Amiloide/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/metabolismo , Agregados Proteicos/fisiologia , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Ligação Proteica/fisiologia
19.
Trends Biochem Sci ; 43(4): 285-300, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29501325

RESUMO

Protein aggregates are formed in cells with profoundly perturbed proteostasis, where the generation of misfolded proteins exceeds the cellular refolding and degradative capacity. They are a hallmark of protein conformational disorders and aged and/or environmentally stressed cells. Protein aggregation is a reversible process in vivo, which counteracts proteotoxicities derived from aggregate persistence, but the chaperone machineries involved in protein disaggregation in Metazoa were uncovered only recently. Here we highlight recent advances in the mechanistic understanding of the major protein disaggregation machinery mediated by the Hsp70 chaperone system and discuss emerging alternative disaggregation activities in multicellular organisms.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Agregados Proteicos , Animais , Humanos , Agregação Patológica de Proteínas/metabolismo , Agregação Patológica de Proteínas/prevenção & controle , Conformação Proteica
20.
Aging Cell ; 16(6): 1414-1424, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29024389

RESUMO

Protein aggregation is enhanced upon exposure to various stress conditions and aging, which suggests that the quality control machinery regulating protein homeostasis could exhibit varied capacities in different stages of organismal lifespan. Recently, an efficient metazoan disaggregase activity was identified in vitro, which requires the Hsp70 chaperone and Hsp110 nucleotide exchange factor, together with single or cooperating J-protein co-chaperones of classes A and B. Here, we describe how the orthologous Hsp70s and J-protein of Caenorhabditis elegans work together to resolve protein aggregates both in vivo and in vitro to benefit organismal health. Using an RNAi knockdown approach, we show that class A and B J-proteins cooperate to form an interactive flexible network that relocalizes to protein aggregates upon heat shock and preferentially recruits constitutive Hsc70 to disaggregate heat-induced protein aggregates and polyQ aggregates that form in an age-dependent manner. Cooperation between class A and B J-proteins is also required for organismal health and promotes thermotolerance, maintenance of fecundity, and extended viability after heat stress. This disaggregase function of J-proteins and Hsc70 therefore constitutes a powerful regulatory network that is key to Hsc70-based protein quality control mechanisms in metazoa with a central role in the clearance of aggregates, stress recovery, and organismal fitness in aging.


Assuntos
Proteínas de Choque Térmico/metabolismo , Agregados Proteicos/fisiologia , Envelhecimento , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA